
A Sparse and Locally Shift Invariant Feature Extractor
Applied to Document Images

Marc’Aurelio Ranzato Yann LeCun
Courant Institute of Mathematical Sciences

New York University - New York, NY 10003

Abstract

We describe an unsupervised learning algorithm for ex-
tracting sparse and locally shift-invariant features. We also
devise a principled procedure for learning hierarchies of in-
variant features. Each feature detector is composed of a set
of trainable convolutional filters followed by a max-pooling
layer over non-overlapping windows, and a point-wise sig-
moid non-linearity. A second stage of more invariant fea-
tures is fed with patches provided by the first stage feature
extractor, and is trained in the same way. The method is
used to pre-train the first four layers of a deep convolutional
network which achieves state-of-the-art performance on the
MNIST dataset of handwritten digits. The final testing error
rate is equal to 0.42%. Preliminary experiments on com-
pression of bitonal document images show very promising
results in terms of compression ratio and reconstruction er-
ror.

1. Introduction

Most computer vision systems for document analysis as
well as for general image understanding include a feature
extractor as first pre-processing step. Principal Compo-
nent Analysis and K-Means are the most well known tech-
niques used in these vision applications. The first problem
we address in this paper is how we can learn invariant fea-
tures. Some methods build invariance from pre-determined
features based on local histograms such as the SIFT de-
scriptors [8]. However, learning these features could make
them more adaptive to the particular dataset in use. Other
methods [11, 9, 10] achieve indirectly invariance to small
shifts thanks to a sub-sampling layer which is added after
the training phase is completed. The method we propose
includes and integrates efficiently invariance in the learn-
ing stage. Each feature extractor is composed of a set of
linear filters that are convolved with the input image, fol-
lowed by a max-pooling layer which selects the largest val-
ues within non-overlapping windows, and by a point-wise

sigmoid non-linearity. Sec. 2.1 and 2.4 describes the de-
tails of the architecture used during training and the learn-
ing algorithm which allows us to learn invariant and sparse
features.

The second problem we address in the paper is how we
can learn hierarchies of features in a principled way. Hier-
archical feature extractor have already been proposed in the
literature, but some of them introduce rather ad hoc learning
procedures [4], or propose to hard-wire Gabor filters [11, 9],
or seem inefficient when dealing with deep multi-layer sys-
tems and few labelled samples [7, 6]. Several recent works
have shown the advantages (in terms of speed and accu-
racy) of pre-training each layer of a deep network in un-
supervised mode, before tuning the whole system with a
gradient-based algorithm [5, 2, 10]. The present work is
inspired by these methods. Sec. 2.5 describes how we can
learn layer by layer feature detectors with increasing level
of invariance and complexity, and sec. 3 demonstrates the
method for the classification of handwritten numerals and
for compression of bitonal document images.

2. The System

The system we describe is derived from the Energy-
Based Model for learning sparse features introduced by
Ranzato et al. [10]. We extend that model by devising an ar-
chitecture which produces features that are not only sparse,
but also locally invariant to shifts. Moreover, we propose a
hierarchical extension which learns features that correspond
to larger and more complex receptive fields in input space.

2.1 Architecture

During training the architecture of the system is com-
posed of anencoderand adecoderas shown in fig. 1. The
encoder takes image patchesY and computes a prediction
of the optimal internal representationZ, namely thecode.
We postpone the definition of code optimality until the later
discussion. The decoder produces a reconstruction ofY

Figure 1. The encoder-decoderarchitecture for
unsupervised learning of features. In an in-
variant feature extractor, Z represent the in-
variant part of the code while the variables U
encode the transformation which the invari-
ant features must undergo in order to recon-
struct the input.

from the input codeZ. The model has an associated en-
ergy which is the weighted sum of two terms, the encoder
and decoder energies. The decoder energy is the square Eu-
clidean distance between the output of the decoder and the
input Y . The encoder energy is the square Euclidean dis-
tance between the encoder prediction and the optimal code
Z. The codeZ is optimal when it minimizes the overall
energy of the system. At the same time it minimizes the re-
construction error ofY , and it is as close as possible to the
encoder output for the given set of parameters in the system.

The problem regarding invariant feature extraction in
such architecture is about the reconstruction. Can we de-
code the input from its invariant representation? Unfortu-
nately, we cannot. However, we can always augment the
internal representation with the information necessary tore-
construct the input (i.e. the non-invariant part of the code)
and use it for decoding. This is what we calltransformation
parametersin fig. 1. The encoder extracts both the trans-
formation parametersU , and the invariant codeZ. The pa-
rametersU are copied into the decoder in order to allow the
reconstruction. For instance in our shift invariant model,Z
representswhatfeatures are present in the input patch while
U representswherethese features appear in the image. Gen-
erally, the transformation parameters and the decoding are
necessary only during the learning phase in order to assess
whether the code is good in preserving enough information
from the input, so that we are able to obtain accurate recon-

structions. In applications where the goal is to extract in-
variant features, the transformation parameters and the de-
coder are disregarded after the training phase because the
interest is only in the invariant codeZ produced by the en-
coder.

2.2 Invariance to Shifts

In this section we present an instance of the previously
described general model. This model allows the extraction
of locally shift-invariant features. The encoder is composed
of a set of filters that are convolved with the input, and a
max-pooling layer. The filter bank performs feature detec-
tion and produces a set of feature maps. How the filters are
learned is explained in sec. 2.4. The following max-pooling
layer operates feature map by feature map separately, and
selects thelargestvalues in non overlapping windows. The
resulting spatially reduced representation constitutes the lo-
cally shift-invariant codeZ, while the positions of the se-
lected largest values are the transformation parametersU .
No matter where the features appear in the input patch, the
codeZ will be always the same and only the parametersU
will be affected. The parametersU are copied into the de-
coder which is also composed of a set of linear filters. The
reconstruction is computed by placing each code value of
Z at the proper location in the decoder feature map, using
the transformation parametersU obtained in the encoder,
and setting all other values in the feature maps to zero. The
reconstruction is simply the sum of the decoder basis func-
tions weighted by the feature map values at all locations.

2.3 Sparsity

Sparsity is achieved by inserting a non-linearity in front
of the decoder, dubbed Sparsifying Logistic as in [10]. This
non-linearity is an adaptive logistic with a very high thresh-
old which enforces sparsity of its output across training
samples. After training the threshold is fixed, and the lo-
gistic turns into a standard logistic function (with a large
bias). The sparsifying logistic module transforms the in-
put code vectorZ into a sparse codēZ vector with positive
components between[0, 1]. Let us consider thek-th train-
ing sample and thei-th component of the code,zi(k) with
i ∈ [1..m] wherem is the number of components in the
code vector. Let̄zi(k) be its corresponding output after the
sparsifying logistic. Given two parametersη ∈ [0, 1] and
β > 0, the transformation performed by this non-linearity
is given by:

z̄i(k) =
eβzi(k)

ζi(k)
, with ζi(k) = eβzi(k) +

(1 − η)

η
ζi(k − 1) (1)

This can be seen as a kind of weighted “softmax” function
over past values of the code unit. This adaptive logistic can

output a large value, i.e. a value close to 1, only if the unit
has undergone a long enough quiescent period. The param-
eterη controls the sparseness of the code by determining
the length of the window over which samples are summed
up. β controls the gain of the logistic function, with large
values yielding quasi-binary outputs.

Recalling the shift-invariant model described earlier, we
have that the codeZ is shift-invariant while the transformed
codeZ̄ will be not only shift-invariant, but also sparse. This
is the code that is used by the following decoder modules
that perform the weighted sum of basis functions.

2.4 Learning Algorithm

Let WC andWD be the trainable parameters in the en-
coder and decoder, respectively. These parameters are the
set of filters in the encoder, and the set of basis functions
in the decoder. The goal of the learning algorithm is to
find a value forWC andWD that minimize the energy of
the system over the training dataset. This energy is the
weighted sum of encoder energyEC and decoder energy
ED. Denoting the output of the encoder withEnc(Y ; WC)
and the output of the decoder withDec(Z, U ; WD), these
quantities are defined as:EC = ||Z − Enc(Y ; WC)||2 and
ED = ||Y − Dec(Z, U ; WD)||2.
Then, we need to solve forminWC ,WD

minZEC + αED,
whereα has been set to 1 in our experiments. Learning
proceeds in a EM-like fashion with the followingon-line
algorithm:

1. propagate the input through the encoder to produce
a predictionZ0 of the optimal codeZ, and copy the
transformation parametersU into the decoder

2. keeping bothU and the set of parametersWC andWD

fixed, find by gradient descent the codeZ∗ that mini-
mizes the energyEC + αED starting from the initial
valueZ0 that was provided by the encoder

3. keeping fixed the code atZ∗, update the decoder pa-
rametersWD by one step of gradient descent in the
decoder energy

4. update the encoder parametersWC by one step of gra-
dient descent in the encoder energy whereZ∗ will play
the role of target value for the encoder output.

After training, the system converges to a state where mini-
mum energy codesZ are predicted by the encoder in one
shot without the need for a minimization in code space,
and the decoder produces good reconstructions from the en-
coder output.

2.5 Hierarchies of Locally-Invariant Fea-
tures

Once the system is trained, it can be applied to larger im-
ages in order to extract locally invariant feature maps. These
feature maps can be used to train another machine which
will produce features that are more invariant and more com-
plex than the first level features. Disregarding the effect of
the filter size used in the convolution, let us assume that
the input image has sizepxq, and that the first level feature
extractor performs a pooling inNxN neighborhoods while
the second level feature extractor pools in aMxM neigh-
borhood. While the output of the first level feature extrac-
tor of (approximate) sizep/Nxq/N is invariant inNxN
max-pooling windows, the output of the second level fea-
ture extractor is invariant inMNxMN windows in input
space. Moreover, the second level feature extractor com-
bines many first level feature maps into each output feature
map increasing in this way its representational power for
encoding complex patterns in input space. The connection
between each set of input feature maps with a single output
feature map is given by a pre-determined table, which in the
experiments described in sec. 3.1 is random.

Learning a hierarchy of feature extractors proceeds in se-
quence. Each level is trained separately and, when trained,
it provides the input for the next higher level feature ex-
tractor. As a final step, a global relaxation throughout the
whole system can be done in order to fine tune the param-
eters. This procedure was originally proposed by Hinton et
al. [5] for training deep belief nets.

3. Experiments

We present two applications of the proposed unsuper-
vised method for learning invariant features. In the first ex-
ample we have considered the MNIST dataset [1] of hand-
written digits, and we have used the algorithm to pre-train
the first layers of a deep convolutional network. After this
unsupervised layer-by-layer training yielded a hierarchical
shift-invariant feature extractor, all the parameters of the
network were tuned together in a supervised way, as pro-
posed by Hinton et al. [5]. The second example shows a
straightforward application of this algorithm for compres-
sion of bitonal text images yielding very promising results.
In both experiments,η andβ in the Sparsifying Logistic are
fixed to 0.01 and 1, respectively. Also, a small lasso regu-
larization term of the order of 0.001 is added to the energy
loss.

3.1 Classification of MNIST dataset

In this section we describe the training protocol of a 6
layer convolutional network trained on the MNIST dataset.

A

B

Figure 2. (A) The fifty 7x7 filters that were
learned by the sparse and shift-invariant
model trained on the MNIST dataset. These
filters are used to initialize the first layer of a
deep convolutional network. (B) The fifty 7x7
filters in the first layer of the convolutional
network after supervised training on the aug-
mented dataset.

Figure 3. The 42 misclassified digits in the
testing MNIST dataset. On the upper left cor-
ner there is the true label.

The training dataset was augmented with elastically dis-
torted digits, as discussed in Simard et al. [12]. For each
training sample 10 distorted replicas have been added to
the set, making the total number of training digits 660,000.
For training we have selected 5,000 digits (from the original
training dataset) for validation.

The training protocol is the following. First, we trainun-
supervisedon the whole original training dataset the first
four layers of the convolutional network with the hierar-
chical feature extractor described in the previous sections.
Second, we trainsupervisedon the whole training dataset
the top two layers using the features provided by the feature
extractor. By taking the parameters that gave the minimum
loss on the validation set, we have found the initial value of
the parameters for the last supervised training of thewhole
network, including the first four layers. Testing is done on
the parameters that gave the minimum loss on the validation
dataset.

In particular, the unsupervised training of the first four
layers is done as follows. First, we learn the filters in the
convolutional layer with the sparsifying encoder-decoder
model described in sec. 2.4 trained on patches randomly
extracted from training images. We learn fifty 7x7 filters
that capture feature that are invariant in a 2x2 neighbor-
hood since the max-pooling layer considers 2x2 windows.
Once training is complete, the encoder and decoder filters

are frozen, and the sparsifying logistic is replaced by atanh
sigmoid function with a trainable bias and a gain coefficient.
The bias and the gain are trained with a few iterations of
back-propagation through the encoder-decoder system. The
rationale for relaxing the sparsity constraint is to produce
representation with a richer information content. While the
the sparsifying logistic drives the system to produce good
filters, the quasi-binary codes produced do not carry enough
information for the later classification. Then, training im-
ages are run through this level to generate patches for the
next level in the hierarchy. The second level feature extrac-
tor (i.e. layer 3 and 4 of the convolutional net) has 1,280
filters of size 5x5 that connect 10 randomly chosen input
feature maps to each output feature map. There are 128
output feature maps that are subsequently max-pooled over
2x2 neighborhoods. This second feature extractor is trained
in the same way as before. Once the feature extractor is
fed with 34x34 padded digits, it produces features of size
128x5x5 that are given to the top two layers of the con-
volutional network. These layers form a two-layer neural
net with 200 hidden units and 10 output units. The super-
vised training of both the top two layers as well as of the
whole network is done by error back-propagation using a
loss which is the average square Euclidean distance between
the output of the net and the target value of the input digit
(a 1 of N code of the label). The error rate on the testing
dataset is equal to 0.42%, very close to 0.39% which is the
record [10] for this dataset. For comparison, training the
same network from random initial condition by supervised
back-propagation of gradients yields an error rate equal to
0.48%.

3.2 Compression of Text Document Im-
ages

In this section we describe how we can apply the un-
supervised learning algorithm to compression of document
images. We considered the CCITT black and white test im-
age number 5, which contains both text and drawings. With
a resolution of 200dpi, the image has size 2376x1728 pixels.
First, we ran a connected component (CC) analysis which
revealed 1,421 components. We considered patches of size
30x30 that cover about 95% of these CC’s, and we built a
dataset of patches that we used to train the system. If a CC
is bigger than 30x30 pixel, it is split in chunks of 30x30
pixels. If it is smaller, it is centered in a 30x30 patch. In
total there were 3102 patches, some are shown in fig. 4. We
considered a (single stage) invariant feature extractor with
256 30x30 filters in both encoder and decoder. Since the
input is evenly padded in a 34x34 window, the max-pooling
layer operates in a 5x5 neighborhood. Encoding consists
of performing the CC analysis, encoding the locations of
the patches that are extracted from the document (whose

Figure 4. Detail of the test CCITT image number 5 at 200dpi whi ch has been compressed and recon-
structed by our algorithm.

entropy is 5.16 bits), propagating the patch through the en-
coder filter bank and the Sparsifying Logistic, thresholding
the code in order to make it binary, and finally, encoding
both the code and locations of the largest values selected
by the max-pooling layer (which amounts in 13.9 bits per
patch). The decoding has to uncompress the bit stream, use
the decoder filters to reconstruct the codes and the transfor-
mation parameters, and place the thresholded reconstruc-
tion in the given location in the image. Ideally, the filters
would be learned from a variety of images with different
fonts and would be hard-wired in the decoder. Under the
assumption that we do not need to encode also the decoder
filters, the compression ratio would be equal to 95. The
percentage of reconstructed pixels whose value has been
flipped is equal to 1.35%. An example of patches that are
encoded and reconstructed is shown in fig. 5. Fig. 4 shows a
detail of the reconstructed image. For comparison, the state-
of-the-art method for compressing images is the JB2 [3]
which achieves a lossy compression ratio equal to 55 and
produces a visually lossless result on this test image.

4. Conclusions

We have described an unsupervised method for learning
hierarchies of shift-invariant features. We have applied this
algorithm to pre-train the first four layers of a deep convolu-
tional network achieving state-of-the-art performance inthe
classification of handwritten digits in the MNIST dataset.
An application in compression using a single level invariant
feature extractor has also been presented and shows promis-
ing results.

In this paper we have defined a novel method for learning
locally shift invariant features. Moreover, we have proposed
a general and principled method for learning hierarchies of
features. In our experiments, we have limited ourselves to
two layers of features but one could stack as many mod-

Figure 5. LEFT PANELS Examples of win-
dows that are used for training and com-
pressing the CCITT test page number 5.
RIGHT PANELS Reconstructions provided
by the algorithm.

ules like this as one needs in order to achieve the desired
level of invariance and complexity. This method is useful
to pre-train deep architectures such as convolutional neural
networks. But also, it can be used to learn and extract fea-
tures from datasets with few labelled examples, and it can
be used to learn complex invariant features with the desired
dimensionality.

The future work will take into account other learning al-
gorithms to train multiple levels of feature extractor all to-
gether, the definition of a more efficient and hierarchical
method for compression, the possibility to learn also the
parameters in the Sparsifying Logistic which controls the
sparsity of the representation, and a more exhaustive exper-
imentation in order to understand better in which conditions
unsupervised learning is beneficial to supervised learning.

References

[1] http://yann.lecun.com/exdb/mnist/.
[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.

Greedy layer-wise training of deep networks. InNIPS. MIT
Press, 2007.

[3] L. Bottou, P. Haffner, P. Howard, P. Simard, Y. Bengio, and
Y. LeCun. High quality document image compression with
djvu. Journal of Electronic Imaging, 7(3):410–425, 1998.

[4] K. Fukushima and S. Miyake. Neocognitron: A new algo-
rithm for pattern recognition tolerant of deformations and
shifts in position. Pattern Recognition, 15(6):455–469,
1982.

[5] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algo-
rithm for deep belief nets.Neural Computation, 18:1527–
1554, 2006.

[6] F.-J. Huang and Y. LeCun. Large-scale learning with svm
and convolutional nets for generic object categorization.In
CVPR. IEEE Press, 2006.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition.Proceed-
ings of the IEEE, 86(11):2278–2324, November 1998.

[8] D. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[9] J. Mutch and D. Lowe. Multiclass object recognition with
sparse, localized features. InCVPR, 2006.

[10] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Ef-
ficient learning of sparse representations with an energy-
based model. InNIPS. MIT Press, 2006.

[11] T. Serre, L. Wolf, and T. Poggio. Object recognition with
features inspired by visual cortex. InCVPR, 2005.

[12] P. Simard, D. Steinkraus, and J. Platt. Best practices for
convolutional neural networks. InICDAR, 2003.

