
Learning Factored Representations in a
Deep Mixture of Experts

David Eigen 1,2 Marc’Aurelio Ranzato 1 ∗ Ilya Sutskever 1

1 Google, Inc.
2 Dept. of Computer Science, Courant Institute, NYU

deigen@cs.nyu.edu ranzato@fb.com ilyasu@google.com

Abstract

Mixtures of Experts combine the outputs of several “expert” networks, each of
which specializes in a different part of the input space. This is achieved by train-
ing a “gating” network that maps each input to a distribution over the experts. Such
models show promise for building larger networks that are still cheap to compute
at test time, and more parallelizable at training time. In this this work, we ex-
tend the Mixture of Experts to a stacked model, the Deep Mixture of Experts, with
multiple sets of gating and experts. This exponentially increases the number of
effective experts by associating each input with a combination of experts at each
layer, yet maintains a modest model size. On a randomly translated version of the
MNIST dataset, we find that the Deep Mixture of Experts automatically learns to
develop location-dependent (“where”) experts at the first layer, and class-specific
(“what”) experts at the second layer. In addition, we see that the different combi-
nations are in use when the model is applied to a dataset of speech monophones.
These demonstrate effective use of all expert combinations.

1 Introduction

Deep networks have achieved very good performance in a variety of tasks, e.g. [10, 5, 3]. However,
a fundamental limitation of these architectures is that the entire network must be executed for all
inputs. This computational burden imposes limits network size. One way to scale these networks up
while keeping the computational cost low is to increase the overall number of parameters and hidden
units, but use only a small portion of the network for each given input. Then, learn a computationally
cheap mapping function from input to the appropriate portions of the network.

The Mixture of Experts model [7] is a continuous version of this: A learned gating network mixes
the outputs of N “expert” networks to produce a final output. While this model does not itself
achieve the computational benefits outlined above, it shows promise as a stepping stone towards
networks that can realize this goal.

In this work, we extend the Mixture of Experts to use a different gating network at each layer in
a multilayer network, forming a Deep Mixture of Experts (DMoE). This increases the number of
effective experts by introducing an exponential number of paths through different combinations of
experts at each layer. By associating each input with one such combination, our model uses different
subsets of its units for different inputs. Thus it can be both large and efficient at the same time.

We demonstrate the effectiveness of this approach by evaluating it on two datasets. Using a jittered
MNIST dataset, we show that the DMoE learns to factor different aspects of the data representation
at each layer (specifically, location and class), making effective use of all paths. We also find that all
combinations are used when applying our model to a dataset of speech monophones.

∗Marc’Aurelio Ranzato currently works at the Facebook AI Group.

1

ar
X

iv
:1

31
2.

43
14

v3
 [

cs
.L

G
]

 9
 M

ar
 2

01
4

2 Related Work

A standard Mixture of Experts (MoE) [7] learns a set of expert networks fi along with a gating
network g. Each fi maps the input x to C outputs (one for each class c = 1, . . . , C), while g(x) is a
distribution over experts i = 1, . . . , N that sums to 1. The final output is then given by Eqn. 1

FMoE(x) =

N∑
i=1

gi(x)softmax(fi(x)) (1)

=

N∑
i=1

p(ei|x)p(c|ei, x) = p(c|x) (2)

This can also be seen as a probability model, where the final probability over classes is marginalized
over the selection of expert: setting p(ei|x) = gi(x) and p(c|ei, x) = softmax(fi(x)), we have
Eqn. 2.

A product of experts (PoE) [6] is similar, but instead combines log probabilities to form a product:

FPoE(x) ∝
N∏
i=1

softmax(fi(x)) =

N∏
i=1

pi(c|x) (3)

Also closely related to our work is the Hierarchical Mixture of Experts [9], which learns a hierarchy
of gating networks in a tree structure. Each expert network’s output corresponds to a leaf in the tree;
the outputs are then mixed according to the gating weights at each node.

Our model differs from each of these three models because it dynamically assembles a suitable
expert combination for each input. This is an instance of the concept of conditional computation
put forward by Bengio [1] and examined in a single-layer stochastic setting by Bengio, Leonard and
Courville [2]. By conditioning our gating and expert networks on the output of the previous layer,
our model can express an exponentially large number of effective experts.

3 Approach

To extend MoE to a DMoE, we introduce two sets of experts with gating networks (g1, f1
i) and

(g2, f2
j), along with a final linear layer f3 (see Fig. 1). The final output is produced by composing

the mixtures at each layer:

z1 =

N∑
i=1

g1i (x)f1
i (x)

z2 =

M∑
j=1

g2j (z1)f2
j (z1)

F (x) = z3 = softmax(f3(z2))

We set each f l
i to a single linear map with rectification, and each gli to two layers of linear maps with

rectification (but with few hidden units); f3 is a single linear layer. See Section 4 for details.

We train the network using stochastic gradient descent (SGD) with an additional constraint on gating
assignments (described below). SGD by itself results in a degenerate local minimum: The experts at
each layer that perform best for the first few examples end up overpowering the remaining experts.
This happens because the first examples increase the gating weights of these experts, which in turn
causes them to be selected with high gating weights more frequently. This causes them to train more,
and their gating weights to increase again, ad infinitum.

To combat this, we place a constraint on the relative gating assignments to each expert during train-
ing. Let Gl

i(t) =
∑t

t′=1 g
l
i(xt′) be the running total assignment to expert i of layer l at step t, and

let Ḡl(t) = 1
N

∑N
i=1 G

l
i(t) be their mean (here, xt′ is the training example at step t′). Then for each

expert i, we set gli(xt) = 0 if Gl
i(t) − Ḡl(t) > m for a margin threshold m, and renormalize the

2

x	

f1
1(x)	
 f2

1(x)	
 fN
1(x)	

g1(x)	

z1	

. . .	

x	

f1
1(x)	
 f2

1(x)	
 fN
1(x)	

g1(x)	

z1	

. . .	

f1
2(x)	
 f2

2(x)	
 fM
2(x)	

g2(x)	

z2	

. . .	

z3	

(a) (b)

Figure 1: (a) Mixture of Experts; (b) Deep Mixture of Experts with two layers.

distribution gl(xt) to sum to 1 over experts i. This prevents experts from being overused initially,
resulting in balanced assignments. After training with the constraint in place, we lift it and further
train in a second fine-tuning phase.

4 Experiments

4.1 Jittered MNIST

We trained and tested our model on MNIST with random uniform translations of±4 pixels, resulting
in grayscale images of size 36 × 36. As explained above, the model was trained to classify digits
into ten classes.

For this task, we set all f1
i and f2

j to one-layer linear models with rectification, f1
i (x) =

max(0,W 1
i x + b1i), and similarly for f2

j . We set f3 to a linear layer, f3(z2) = W 3z2 + b3.
We varied the number of output hidden units of f1

i and f2
j between 20 and 100. The final output

from f3 has 10 units (one for each class).

The gating networks g1 and g2 are each composed of two linear+rectification layers with either 50
or 20 hidden units, and 4 output units (one for each expert), i.e. g1(x) = softmax(B ·max(0, Ax+
a) + b), and similarly for g2.

We evaluate the effect of using a mixture at the second layer by comparing against using only a single
fixed expert at the second layer, or concatenating the output of all experts. Note that for a mixture
with h hidden units, the corresponding concatenated model has N · h hidden units. Thus we expect
the concatenated model to perform better than the mixture, and the mixture to perform better than
the single network. It is best for the mixture to be as close as possible to the concatenated-experts
bound. In each case, we keep the first layer architecture the same (a mixture).

We also compare the two-layer model against a one-layer model in which the hidden layer z1 is
mapped to the final output through linear layer and softmax. Finally, we compare against a fully-
connected deep network with the same total number of parameters. This was constructed using the
same number of second-layer units z2, but expanding the number first layer units z1 such that the
total number of parameters is the same as the DMoE (including its gating network parameters).

3

4.2 Monophone Speech

In addition, we ran our model on a dataset of monophone speech samples. This dataset is a random
subset of approximately one million samples from a larger proprietary database of several hundred
hours of US English data collected using Voice Search, Voice Typing and read data [8]. For our
experiments, each sample was limited to 11 frames spaced 10ms apart, and had 40 frequency bins.
Each input was fed to the network as a 440-dimensional vector. There were 40 possible output
phoneme classes.

We trained a model with 4 experts at the first layer and 16 at the second layer. Both layers had
128 hidden units. The gating networks were each two layers, with 64 units in the hidden layer. As
before, we evaluate the effect of using a mixture at the second layer by comparing against using only
a single expert at the second layer, or concatenating the output of all experts.

5 Results

5.1 Jittered MNIST

Table 1 shows the error on the training and test sets for each model size (the test set is the MNIST test
set with a single random translation per image). In most cases, the deeply stacked experts performs
between the single and concatenated experts baselines on the training set, as expected. However, the
deep models often suffer from overfitting: the mixture’s error on the test set is worse than that of the
single expert for two of the four model sizes. Encouragingly, the DMoE performs almost as well as
a fully-connected network (DNN) with the same number of parameters, even though this network
imposes fewer constraints on its structure.

In Fig. 2, we show the mean assignment to each expert (i.e. the mean gating output), both by input
translation and by class. The first layer assigns experts according to translation, while assignment is
uniform by class. Conversely, the second layer assigns experts by class, but is uniform according to
translation. This shows that the two layers of experts are indeed being used in complementary ways,
so that all combinations of experts are effective. The first layer experts become selective to where
the digit appears, regardless of its membership class, while the second layer experts are selective to
what the digit class is, irrespective of the digit’s location.

Finally, Fig. 3 shows the nine test examples with highest gating value for each expert combination.
First-layer assignments run over the rows, while the second-layer runs over columns. Note the
translation of each digit varies by rows but is constant over columns, while the opposite is true for
the class of the digit. Furthermore, easily confused classes tend to be grouped together, e.g. 3 and 5.

Test Set Error: Jittered MNIST
Model Gate Hids Single Expert DMoE Concat Layer2 DNN
4× 100− 4× 100 50− 50 1.33 1.42 1.30 1.30
4× 100− 4× 20 50− 50 1.58 1.50 1.30 1.41
4× 100− 4× 20 50− 20 1.41 1.39 1.30 1.40
4× 50− 4× 20 20− 20 1.63 1.77 1.50 1.67
4× 100 (one layer) 50 2.86 1.72 1.69 –

Training Set Error: Jittered MNIST
Model Gate Hids Single Expert DMoE Concat Layer2 DNN
4× 100− 4× 100 50− 50 0.85 0.91 0.77 0.60
4× 100− 4× 20 50− 50 1.05 0.96 0.85 0.90
4× 100− 4× 20 50− 20 1.04 0.98 0.87 0.87
4× 50− 4× 20 20− 20 1.60 1.41 1.33 1.32
4× 100 (one layer) 50 2.99 1.78 1.59 –

Table 1: Comparison of DMoE for MNIST with random translations, against baselines (i) using
only one second layer expert, (ii) concatenating all second layer experts, and (iii) a DNN with same
total number of parameters. For both (i) and (ii), experts in the first layer are mixed to form z1.
Models are annotated with “# experts × # hidden units” for each layer.

4

Jittered MNIST: Two-Layer Deep Model
by Translation by Class

Layer 1

Layer 2

1-Layer
MoE

without
jitters

—

Figure 2: Mean gating output for the first and second layers, both by translation and by class. Color
indicates gating weight. The distributions by translation show the mean gating assignment to each of
the four experts for each of the 9× 9 possible translations. The distributions by class show the mean
gating assignment to each of the four experts (rows) for each of the ten classes (columns). Note
the first layer produces assignments exclusively by translation, while the second assigns experts by
class. For comparison, we show assignments by class of a standard MoE trained on MNIST without
jitters, using 5 experts × 20 hidden units.

5.2 Monophone Speech

Table 2 shows the error on the training and test sets. As was the case for MNIST, the mixture’s error
on the training set falls between the two baselines. In this case, however, test set performance is
about the same for both baselines as well as the mixture.

Fig. 4 shows the 16 test examples with highest gating value for each expert combination (we show
only 4 experts at the second layer due to space considerations). As before, first-layer assignments
run over the rows, while the second-layer runs over columns. While not as interpretable as for
MNIST, each expert combination appears to handle a distinct portion of the input. This is further
bolstered by Fig. 5, where we plot the average number of assignments to each expert combination.
Here, the choice of second-layer expert depends little on the choice of first-layer expert.

Test Set Phone Error: Monophone Speech
Model Gate Hids Single Expert Mixed Experts Concat Layer2
4× 128− 16× 128 64− 64 0.55 0.55 0.56
4× 128 (one layer) 64 0.58 0.55 0.55

Training Set Phone Error: Monophone Speech
Model Gate Hids Single Expert Mixed Experts Concat Layer2
4× 128− 16× 128 64− 64 0.47 0.42 0.40
4× 128 (one layer) 64 0.56 0.50 0.50

Table 2: Comparison of DMoE for monophone speech data. Here as well, we compare against
baselines using only one second layer expert, or concatenating all second layer experts.

5

Figure 3: The nine test examples with highest gating value for each combination of experts, for the jittered
mnist dataset. First-layer experts are in rows, while second-layer are in columns.

6 Conclusion

The Deep Mixture of Experts model we examine is a promising step towards developing large,
sparse models that compute only a subset of themselves for any given input. We see precisely the
gating assignments required to make effective use of all expert combinations: for jittered MNIST,
a factorization into translation and class, and distinctive use of each combination for monophone
speech data. However, we still use a continuous mixture of the experts’ outputs rather than restricting
to the top few — such an extension is necessary to fulfill our goal of using only a small part of the
model for each input. A method that accomplishes this for a single layer has been described by
Collobert et al. [4], which could possibly be adapted to our multilayer case; we hope to address this
in future work.

Acknowledgements

The authors would like to thank Matthiew Zeiler for his contributions on enforcing balancing con-
straints during training.

6

Figure 4: The 16 test examples with highest gating value for each combination of experts for the monophone
speech data. First-layer experts are in rows, while second-layer are in columns. Each sample is represented by
its 40 frequency values (vertical axis) and 11 consecutive frames (horizontal axis). For this figure, we use four
experts in each layer.

Monophone Speech: Conditional Assignments

Figure 5: Joint assignment counts for the monophone speech dataset. Here we plot the average
product of first and second layer gating weights for each expert combination. We normalize each
row, to produce a conditional distribution: This shows the average gating assignments in the second
layer given a first layer assignment. Note the joint assignments are well mixed: Choice of second
layer expert is not very dependent on the choice of first layer expert. Colors range from dark blue
(0) to dark red (0.125).

7

References
[1] Y. Bengio. Deep learning of representations: Looking forward. CoRR, abs/1305.0445, 2013.

2
[2] Y. Bengio, N. Léonard, and A. C. Courville. Estimating or propagating gradients through

stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. 2
[3] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. Flexible, high

performance convolutional neural networks for image classification. In IJCAI, 2011. 1
[4] R. Collobert, Y. Bengio, and S. Bengio. Scaling large learning problems with hard parallel

mixtures. International Journal on Pattern Recognition and Artificial Intelligence (IJPRAI),
17(3):349–365, 2003. 6

[5] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural net-
works. In ICASSP, 2013. 1

[6] G. E. Hinton. Products of experts. ICANN, 1:1–6, 1999. 2
[7] R. A. Jacobs, M. I. Jordan, S. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.

Neural Computation, 3:1–12, 1991. 1, 2
[8] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke. Application of pretrained deep neural

networks to large vocabulary speech recognition. Interspeech, 2012. 4
[9] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural

Computation, 6:181–214, 1994. 2
[10] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with deep convolutional

neural networks. In NIPS, 2012. 1

8

