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Abstract

In many recent object recognition systems, feature ex-

traction stages are generally composed of a filter bank, a

non-linear transformation, and some sort of feature pooling

layer. Most systems use only one stage of feature extrac-

tion in which the filters are hard-wired, or two stages where

the filters in one or both stages are learned in supervised

or unsupervised mode. This paper addresses three ques-

tions: 1. How does the non-linearities that follow the filter

banks influence the recognition accuracy? 2. does learn-

ing the filter banks in an unsupervised or supervised man-

ner improve the performance over random filters or hard-

wired filters? 3. Is there any advantage to using an ar-

chitecture with two stages of feature extraction, rather than

one? We show that using non-linearities that include recti-

fication and local contrast normalization is the single most

important ingredient for good accuracy on object recogni-

tion benchmarks. We show that two stages of feature ex-

traction yield better accuracy than one. Most surprisingly,

we show that a two-stage system with random filters can

yield almost 63% recognition rate on Caltech-101, provided

that the proper non-linearities and pooling layers are used.

Finally, we show that with supervised refinement, the sys-

tem achieves state-of-the-art performance on NORB dataset

(5.6%) and unsupervised pre-training followed by super-

vised refinement produces good accuracy on Caltech-101

(> 65%), and the lowest known error rate on the undis-

torted, unprocessed MNIST dataset (0.53%).

1. Introduction

Over the last few years, considerable efforts have been

devoted to designing appropriate feature descriptors for ob-

ject recognition. Many recent proposals use dense features

extracted on regularly-spaced patches over the input image.

The vast majority of these systems use a feature extrac-

tion process composed of a filter bank (generally based on

oriented edge detectors), a non-linear operation (quantiza-

tion, winner-take-all, sparsification, normalization, and/or

point-wise saturation), and a pooling operation that com-

bines nearby values in real space or feature space through

a max, average, or histogramming operator. For example,

the SIFT operator applies oriented edge filters to a small

patch and determines the dominant orientation through a

winner-take-all operation. Finally, the resulting sparse vec-

tors are added (pooled) over a larger patch to form local ori-

entation histograms. Several recognition architectures use a

single stage of such features followed by a supervised clas-

sifier. Particular embodiments of the single-stage systems

use SIFT features [19, 13], HoG [6], Geometric Blur [5],

and models inspired by the architecture of the mammalian

primary visual cortex [24], to mention a few. Other models

use two or more successive stages of such feature extractors,

followed by a supervised classifier. This includes convolu-

tional networks globally trained in purely supervised mode

with gradient descent [10], convolutional networks trained

in supervised mode with an auxiliary task [3], or trained

in purely unsupervised mode [25, 11, 18]. Multi-stage sys-

tems also include HMAX-type models [28, 22] in which the

first layer is hardwired with Gabor filters, and the second

layer is trained in unsupervised mode by storing randomly-

picked output configurations from the first stage into filters

of the second stage. All of these models essentially differ

by whether they have one or two (or more) feature extrac-

tion stages, by the type of non-linearity used after the filter

banks, the method used to pick the filters (hard-wired, un-

supervised, supervised), and the top-level classifier (linear

or more sophisticated).

This paper addresses three questions: 1. How do the non-

linearities that follow the filter banks influence the recogni-

tion accuracy? 2. Does learning the filter banks in an un-

supervised or supervised manner improve the performance

over hard-wired filters or even random filters? 3. Is there

any advantage to using an architecture with two successive

stages of feature extraction, rather than with a single stage?

To address these questions, we experimented with various

combinations of architectures (with 1 or 2 stages of fea-

ture extraction), non-linearities, filter types, filter learning

methods (random, unsupervised and supervised). We use

a recently-proposed unsupervised feature learning method

called Predictive Sparse Decomposition (PSD), based on



an encoder-decoder architecture with sparsity constraints

on the feature vector [12]. Results are presented on the

well-known Caltech-101 dataset [7], on the NORB object

dataset [15], and on the MNIST dataset of handwritten dig-

its [14].

At first glance, one may think that training a complete

system in a purely supervised manner (using gradient de-

scent) is bound to fail on dataset with small number of la-

beled samples such as Caltech-101, because the number of

parameters greatly outstrips the number of samples. One

may also think that the filters need to be carefully hand-

picked (or trained) to produce good performance, and that

the details of the non-linearity play a somewhat secondary

role. These intuitions, as it turns out, are wrong.

1.1. Modules for dense feature extraction

A common choice for the filter bank of the first stage is

Gabor Wavelets [28, 22, 24]. Other proposals use simple

oriented edge detection filters such as gradient operators,

including SIFT [19], and HoG [6]. Another set of meth-

ods learn the filters by adapting them to the statistics of the

input data with unsupervised learning [25, 11, 18]. When

trained on natural images these filters are Gabor-like edge

detectors. The advantage of learning methods is that they

provide a way to learn the filters in the subsequent stages

of the feature hierarchy. While prior knowledge about im-

age statistics point to the usefulness of oriented edge de-

tectors at the first stage, there is no similar prior knowl-

edge that would allow to design sensible filters for the sec-

ond stage in the hierarchy. Hence the second stage must

be learned. A number of methods have been proposed to

learn filters in a multi-stage vision system. The simplest

method, which is a kind of patch memorization, is to set

the filters to randomly-picked configurations of outputs of

the previous stage [28, 22]. One of the oldest methods is

to simply learn the filters in a supervised fashion using gra-

dient descent [14, 10, 3]. The main issue with the purely

supervised global training approach is that the number of

parameters to be adjusted is very large, perhaps too large

relative to the available number of training samples for most

applications. Finally, one can train the filters in an unsuper-

vised fashion by following the so-called “deep belief net-

work” strategy [8, 4, 26, 9, 25, 17]: the filters are trained

so that representations at one stage can be reconstructed

from the representation at the next stage under sparsity con-

straints [25, 11] or using the so-called contrastive diver-

gence method [18]. The main problem with the unsuper-

vised approach is that the filters are learned independently

of the task, although a few authors have proposed methods

that combine unsupervised and supervised criteria to allevi-

ate the problem [21, 27, 4].

The second ingredient of a feature extraction system

is the non-linearity. Convolutional networks use a sim-

ple point-wise sigmoid function after the filter banks [14],

while models that are strongly inspired by biology have

included rectifying non-linearities, such as positive part,

absolute value, or squaring functions [24], often followed

by a local contrast normalization [24], which is inspired

by divisive normalization models [20]. SIFT uses a recti-

fication followed by winner-take-all operation over orien-

tation, which is an extreme form of normalization. The

last step is the pooling layer that can be applied over

space [14, 13, 25, 3], over scale and space [28, 22, 24], or

over similar feature types and space [11]. This layer builds

robustness to small distortions by computing an average or

a max of the filter responses within the pool.

The accuracy of single-stage systems on the Caltech-101

dataset, after training on 30 labeled samples per category

varies with the details of the architecture and the filters.

SIFT-based systems yield accuracies around 50% when fed

to linear classifiers [11], and around 65% when using more

sophisticated classifiers such as the Pyramid Match Ker-

nel SVM (PMK-SVM) [13, 31, 11]. The V1-like model

of Pinto et al. yields around 60% with a linear classifier fol-

lowing PCA [24]. These methods are similar in the fact that

they use hand-crafted oriented edge filters.

In recent years, a few authors have experimented with

filter-learning methods on Caltech-101. Kavukcuoglu et

al. [11] report recognition rates similar to SIFT using a

single-stage feature extractor fed to either a linear classi-

fier or a PMK-SVM. Several authors have proposed sys-

tems with two stages of learned feature extractors, each

of which comprises filter banks, non-linearities, and pool-

ing. This includes convolutional networks using supervised

training [10] and unsupervised training [25] yielding recog-

nition rates in the mid 50’s, and supervised training us-

ing auxiliary “pseudo-tasks” to regularize the system [3]

yielding 67.2% recognition rate. HMAX-type architectures

have yielded rates in the mid-40’s to mid-50’s [28, 22],

and stacked Restricted Boltzmann Machines [17, 18] have

yielded 65.4% with a PMK-SVM classifier on top. While

the best results on Caltech-101 have been obtained by com-

bining a large number of different feature families [29], the

present study concerns systems with a single feature family,

hence results will be compared with other work in which a

single feature family is used. Better absolute numbers can

be obtained by combining the features presented here with

others, as described in [29].

2. Model Architecture

This section describes how to build a hierarchical feature

extraction and classification system with fast (feed-forward)

processing. The hierarchy stacks one or several feature ex-

traction stages, each of which consists of filter bank layer,

non-linear transformation layers, and a pooling layer that

combines filter responses over local neighborhoods using

an average or max operation, thereby achieving invariance

to small distortions.



Filter Bank Layer - FCSG: the input of a filter bank

layer is a 3D array with n1 2D feature maps of size n2×n3.

Each component is denoted xijk, and each feature map is

denoted xi. The output is also a 3D array, y composed of

m1 feature maps of size m2 ×m3. A filter in the filter bank

kij has size l1 × l2 and connects input feature map xi to

output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the

2D discrete convolution operator and gj is a trainable scalar

coefficient. By taking into account the borders effect, we

have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is

denoted by FCSG because it is composed of a set of convo-

lution filters (C), a sigmoid/tanh non-linearity (S), and gain

coefficients (G). In the following, superscripts are used to

denote the size of the filters. For instance, a filter bank layer

with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.

Rectification Layer - Rabs: This module simply applies

the absolute value function to all the components of its in-

put: yijk = |xijk|. Several rectifying non-linearities were

tried, including the positive part, and produced similar re-

sults.

Local Contrast Normalization Layer - N : This module

performs local subtractive and divisive normalizations, en-

forcing a sort of local competition between adjacent fea-

tures in a feature map, and between features at the same

spatial location in different feature maps. The subtrac-

tive normalization operation for a given site xijk com-

putes: vijk = xijk −
∑

ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-

iments) normalized so that
∑

ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c, σjk) where

σjk = (
∑

ipq wpq.v
2
i,j+p,k+q)

1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The

denominator is the weighted standard deviation of all fea-

tures over a spatial neighborhood. The local contrast nor-

malization layer is inspired by computational neuroscience

models [24, 20].

Average Pooling and Subsampling Layer - PA: The pur-

pose of this layer is to build robustness to small distor-

tions, playing the same role as the complex cells in mod-

els of visual perception. Each output value is yijk =∑
pq wpq.xi,j+p,k+q, where wpq is a uniform weighting

window (“boxcar filter”). Each output feature map is then

subsampled spatially by a factor S horizontally and verti-

cally. In this work, we do not consider pooling over fea-

ture types, but only over the spatial dimensions. Therefore,

the numbers of input and output feature maps are identical,

while the spatial resolution is decreased. Disregarding the

border effects in the boxcar averaging, the spatial resolution

is decreased by the down-sampling ratio S in both direc-

tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed

through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4

A .

Max-Pooling and Subsampling Layer - PM : building lo-

cal invariance to shift can be performed with any symmetric

pooling operation. The max-pooling module is similar to

the average pooling, except that the average operation is re-

placed by a max operation. In our experiments, the pooling

windows were non-overlapping. A max-pooling layer with

4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-

ture is composed of one or two stages of feature extraction,

each of which is formed by cascading a filtering layer with

different combinations of rectification, normalization, and

pooling. Recognition architectures are composed of one or

two such stages, followed by a classifier, generally a multi-

nomial logistic regression.

FCSG − PA This is the basic building block of tra-

ditional convolutional networks, alternating tanh-squashed

filter banks with average down-sampling layers [14, 10].

A complete convolutional network would have several se-

quences of “FCSG - PA” followed by by a linear classifier.

FCSG − Rabs − PA The tanh-squashed filter bank is

followed by an absolute value non-linearity, and by an av-

erage down-sampling layer.

FCSG − Rabs − N − PA The tanh-squashed filter bank

is followed by an absolute value non-linearity, by a lo-

cal contrast normalization layer and by an average down-

sampling layer.

FCSG − PM This is also a typical building block of con-

volutional networks, as well as the basis of the HMAX and

other architectures [28, 25], which alternate tanh-squashed

filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is

identified by a letter R,U,R+, or U+. A single letter (e.g.

R) indicates an architecture with a single stage of feature

extraction, followed by a classifier, while a double letter

(e.g. RR) indicates an architecture with two stages of fea-

ture extraction followed by a classifier:

Random Features and Supervised Classifier - R and

RR: The filters in the feature extraction stages are set to

random values and kept fixed (no feature learning takes

place), and the classifier stage is trained in supervised mode.



Unsupervised Features, Supervised Classifier - U and

UU. The filters of the feature extraction stages are trained

using the unsupervised PSD algorithm, described in sec-

tion 3.1, and kept fixed. The classifier stage is trained in

supervised mode.

Random Features, Global Supervised Refinement - R
+

and R
+
R

+. The filters in the feature extractor stages are

initialized with random values, and the entire system (fea-

ture stages + classifier) is trained in supervised mode by

gradient descent. The gradients are computed using back-

propagation, and all the filters are adjusted by stochastic on-

line updates. This is identical to the usual method for train-

ing supervised convolutional networks.

Unsupervised Feature, Global Supervised Refinement -

U
+ and U

+
U

+. The filters in the feature extractor stages

are initialized with the PSD unsupervised learning algo-

rithm, and the entire system (feature stages + classifier) is

then trained (refined) in supervised mode by gradient de-

scent. The system is trained the same way as random fea-

tures with global refinement using online stochastic updates.

This is reminiscent of the “deep belief network” strategy in

which the stages are first trained in unsupervised mode one

after the other, and then globally refined using supervised

learning [8, 4, 26]

For instance, a traditional convolutional network with a

single stage initialized at random [14] would be denoted by

an architecture motif like “FCSG − PA”, and the training

protocol would be denoted by R+. The stages of a con-

volutional network with max-pooling would be denoted by

“FCSG − PM ”. A system with two such stages trained in

unsupervised mode, and the classifier (only) trained in su-

pervised mode, as in [25], is denoted UU .

3.1. Unsupervised Training of Filter Banks using
Predictive Sparse Decomposition

In order to learn the filter coefficients (g, k) in the fil-

ter bank layers (see eq. 1), an unsupervised learning al-

gorithm is required. We used the Predictive Sparse De-

composition algorithm of [12], which has the following

characteristics: 1. it produces efficient, feed-forward fil-

ter banks that include a point-wise non-linearity; 2. the

training procedure is deterministic (no sampling required,

as with Restricted Boltzmann Machines); 3. it learns to pro-

duce high-dimensional sparse features, which are suitable

for subsequent pooling, and which enhance class discrim-

inability. Although the filter banks are eventually applied

to entire images, the PSD algorithm trains them on individ-

ual patches (or stacks of patches from multiple input feature

maps) whose size is equal to the size of the filters. The start-

ing point of PSD is the well-known sparse coding algorithm

proposed by Olshausen and Field [23] which, unfortunately

does not produce direct filters, but “reverse” filters (or dic-

tionary elements). Inputs are approximated as a sparse lin-

ear combination of these dictionary elements. The coef-

ficients constitute the feature representation. The method

learns the optimal dictionary that can be used to reconstruct

a set of training samples under sparsity constraints on the

feature vector. For a given input X (a vectorized patch or

stack of patches), and a matrix W whose columns are the

dictionary elements, feature vector Z∗ is obtained by mini-

mizing the following energy function:

EOF (X,Z,W ) = ‖X − WZ‖2
2 + λ‖Z‖1 (2)

Z∗ = arg min
Z

EOF (X,Z,W ) (3)

where λ is a sparsity hyper-parameter. Given a set of train-

ing samples Xi, i = 1 . . . P , learning proceeds by minimiz-

ing the loss LOF (W ) = 1/P
∑P

i=1
minzEOF (Xi, Z,W )

using stochastic gradient descent or a similar procedure.

After learning, for any input X , one needs to run a

rather expensive optimization algorithm to find Z∗ (the

so-called “basis pursuit” problem, which is convex, but

non-quadratic [16, 2]). To alleviate the problem, the PSD

method [12] trains a simple (feed-forward) regressor (or en-

coder) to approximate the sparse solution Z∗ for all X in

the training set. The regressor C(X,K) takes the form of

eq. 1 on a patch the size of the filters (K collectively de-

notes all the filter coefficients). During training, the feature

vector Z∗ is obtained by minimizing the energy function

EPSD(X,Z,W,K), defined as follows:

EPSD = ‖X − WZ‖2
2 + λ‖Z‖1 +

‖Z − C(X,K)‖2
2 (4)

Z∗ = arg min
Z

EPSD(X,Z,W,K) (5)

As with Olshausen and Field [23], learning pro-

ceeds by minimizing the loss LPSD(W,K) =

1/P
∑P

i=1
minzEPSD(Xi, Z,W,K). The learning

procedure simultaneously optimizes W (dictionary) and K
(filters). Once training is complete, the feature vector for a

given input is simply obtained with Z∗ = C(X,K), hence

the process is extremely fast (feed-forward).

4. Experiments

In this section, various architectures and training proto-

cols are compared on the Caltech 101 [7], MNIST [1] and

NORB [15] datasets. Our purpose is to determine whether

two stages are better than one stage, which non-linearities

are preferable, and which training protocol makes a differ-

ence.

Images from the Caltech-101 dataset were pre-processed

with a procedure similar to [24]. The steps are: 1) con-

verting to gray-scale (no color) and resizing to 151 × 151
pixels. 2) subtracting the image mean and dividing by the

image standard deviation, 3) applying subtractive/divisive

normalization (N layer with c = 1). 4) zero-padding the

shorter side to 143 pixels.



Single Stage System: [64.F9×9

CSG
− R/N/P5×5] - log reg

Rabs − N − PA Rabs − PA N − PM N − PA PA

U
+ 54.2% 50.0% 44.3% 18.5% 14.5%

R
+ 54.8% 47.0% 38.0% 16.3% 14.3%

U 52.2% 43.3%(±1.6) 44.0% 17.2% 13.4%

R 53.3% 31.7% 32.1% 15.3% 12.1%(±2.2)

G 52.3%

Two Stage System: [64.F9×9

CSG
− R/N/P5×5] − [256.F9×9

CSG
− R/N/P4×4] - log reg

Rabs − N − PA Rabs − PA N − PM N − PA PA

U
+
U

+ 65.5% 60.5% 61.0% 34.0% 32.0%

R
+
R

+ 64.7% 59.5% 60.0% 31.0% 29.7%

UU 63.7% 46.7% 56.0% 23.1% 9.1%

RR 62.9% 33.7%(±1.5) 37.6%(±1.9) 19.6% 8.8%

GT 55.8%

Single Stage: [64.F9×9

CSG
− Rabs/N/P5×5

A
] - PMK-SVM

U 64.0%

Two Stages: [64.F9×9

CSG
− Rabs/N/P5×5

A
] − [256.F9×9

CSG
− Rabs/N] - PMK-SVM

UU 52.8%

Table 1. Average recognition rates on Caltech-101 with 30 training samples per class. Each row contains results for one of the training

protocols, and each column for one type of architecture. All columns use an FCSG as the first module, followed by the modules shown in

the column label. The error bars for all experiments are within 1%, except where noted.

All results are recognition rates averaged over classes,

after training with 30 samples per class, and averaged over

5 drawings of the training set. To adjust hyperparameters,

a validation set of 5 samples per class was taken out of the

training sets. The hyper-parameters were selected to maxi-

mize the performance on the validation set. Then, the sys-

tem was trained over the entire training set. The final error

value is computed as the average error over categories to

account for differences in the number of instances per cat-

egory (as is standard protocol for Caltech-101). The back-

ground category was also included.

Using a Single Stage of Feature Extraction: The first

stage is composed of an FCSG layer with 64 filters of size

9 × 9 (64F 9×9

CSG), followed by an abs rectification (Rabs), a

local contrast normalization layer (N ) and an average pool-

ing layer with 10×10 boxcar filter and 5×5 down-sampling

(P 5×5

A ). The output of the first stage is a set of 64 features

maps of size 26 × 26. This output is then fed to a multi-

nomial logistic regression classifier that produces a 102-

dimensional output vector representing a posterior distribu-

tion over class labels. Lazebnik’s PMK-SVM classifier [13]

was also tested.

Using Two Stages of Feature Extraction: In two-stage

systems, the second-stage feature extractor is fed with the

output of the first stage. The first layer of the second stage

is an FCSG module with 256 output features maps, each of

which combines a random subset of 16 feature maps from

the previous stage using 9×9 kernels. Hence the total num-

ber of convolution kernels is 256 × 16 = 4096. The aver-

age pooling module uses a 6 × 6 boxcar filter with a 4 × 4
down-sampling step. This produces an output feature map

of size 256×4×4, which is then fed to a multinomial logis-

tic regression classifier. The PMK-SVM classifier was also

tested.

Table 1 summarizes the results for the experiments.

1. The most astonishing result is that systems with random

filters and no filter learning whatsoever achieve decent per-

formance (53.3% for R and 62.9% for RR), as long as they

include absolute value rectification and contrast normaliza-

tion (Rabs − N − PA).

2. Comparing experiments from rows R vs R+, RR vs

R+R+, U vs U+ and UU vs U+U+, we see that supervised

fine tuning consistently improves the performance, particu-

larly with weak non-linearities: 62.9% to 64.7% for RR,

63.7% to 65.5% for UU using Rabs − N − PA and 35.1%
to 59.5% for RR using Rabs − PA.

3. It appears clear that two-stage systems (UU , U+U+,

RR, R+R+) are systematically and significantly better than

their single-stage counterparts (U , U+, R, R+). For in-

stance, 54.2% obtained by U+ compared to 65.5% obtained

by U+U+ using Rabs −N −PA. However, when using PA

architecture, adding second stage without supervised refine-

ment does not seem to help. This may be due to cancellation

effects of the PA layer when rectification is not present.

4. It seems that unsupervised training (U , UU , U+, U+U+)

does not seem to significantly improve the performance

(comparing with (R, RR, R+, R+R+) if both rectification

and normalization are used (62.9% for RR versus 63.7%
for UU ). When contrast normalization is removed, the per-

formance gap becomes significant (35.1% for RR versus

47.8% for UU ). If no supervised refinement is performed, it

looks as if appropriate architectural components are a good



substitute for unsupervised training.

5. It is clear that abs rectification is a crucial component for

achieving good performance, as shown with the U+U+ pro-

tocol by comparing columns N − PA (31.0%), Rabs − PA

(60.0%), and Rabs − N − PA (65.5%). However, using

max pooling seems to alleviate the need for abs rectifica-

tion, confirming the hypothesis that average pooling with-

out rectification falls victim to cancellation effects between

neighboring filter outputs. This is an extremely important

fact for users of convolutional networks, in which rectifica-

tion has not been traditionally used.

6. A single-stage system with PMK-SVM reaches the same

performance as a two-stage system with logistic regression

(around 65%) as shown in the last two rows of Table 1. It

looks as if the pyramid match kernel is able to play the same

role as a second stage of feature extraction. Perhaps it is be-

cause PMK first performs a K-means based vector quantiza-

tion, which can be seen as an extreme form of sparse coding,

followed by local histogramming, which is a form of spa-

tial pooling. Hence, the PM kernel is conceptually similar

to a second stage based on sparse coding and pooling as re-

cently pointed out in [30]. Furthermore, these numbers are

similar to the performance of the original PMK-SVM sys-

tem which used dense SIFT features (64.6%) [13]. Again,

this is hardly surprising as the SIFT module is conceptually

very similar to our feature extraction stage. When using

features extracted using UU architecture, the performance

of PMK-SVM classifier drops significantly. This behaviour

might be caused by the very small spatial density (18× 18)

of features at second layer.

7. The last row of single stage system represents FCSG ker-

nels that are initialized with Gabor functions (G). The last

row of two stage system represents first layer gabor func-

tions, followed by a second layer where kernels are initial-

ized with templates from first layer outputs (GT) as in the

HMAX model [28, 22]. Suprisingly, the performance is

considerably worse than with random filters.

4.1. NORB Dataset

Caltech-101 is very peculiar in that many objects have

distinctive textures and few pose variations. More impor-

tantly, the particularly small size of the training set favors

methods that minimize the role learning and maximize the

role of clever engineering. A diametrically opposed object

dataset is NORB [15]. The “Small NORB” dataset has 5 ob-

ject categories (humans, airplanes, cars, trucks, animals) 5

Figure 2. Several examples from NORB dataset
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Figure 3. Test Error rate vs. number of training samples per class

on NORB Dataset. Although pure random features perform sur-

prisingly good when training data is very scarce, for large number

of training data learning improves the performance significantly.

Absolute value rectification (Rabs) and local normalization (N ) is

shown to improve the performance in all cases.

object instances for training, and 5 different object instances

for test. Each object instance has 972 samples (18 azimuths,

9 elevations, and 6 illuminations), for a total of 24300 train-

ing samples and 24300 test samples (4860 per class). Each

image is 96 × 96 pixels, grayscale. Experiments were con-

ducted to elucidate the importance of the non-linearity, and

the performance of random filter systems when many la-

beled samples are available.

Only the RR and R+R+ protocols were used with 8 fea-

ture maps with 5 × 5 filters at the first stage, 4 × 4 average

pooling followed by 24 feature maps with 6×6 filters, each

of which combines input from 4 randomly picked stage-1

feature maps, followed by 3 × 3 average pooling. The last

stage is a 5-way multinomial logistic regressor.

Several systems with various non-linearities were trained

on subsets of the training set with 20, 50, 100, 200, 500,

1000, 2000, and 4860 training samples per class. The re-

sults are shown in figure 3 in log-log scale. The green curve

(bottom) uses abs and normalization, while the blue curve

(middle) uses neither. Both are trained in purely supervised

mode from random initial conditions (R+R+). It appears

that the use of abs and normalization makes a big difference

when labeled samples are scarce, but the difference dimin-

ishes as the number of training samples increases. Training

seems to compensate for architectural simplicity, or con-

versely architectural sophistication seems to compensate for

lack of training. Still the error rate when trained on the full

training set is 5.6% with abs and normalization, but 6.9%

with neither ([15] reported 6.6%).

More interesting is the behavior of the system with ran-

dom filters: While its error rate is comparable to that of the

network trained in supervised mode for small training sets

(in the “Caltech-101 regime”), the error rate remains high

as samples are added. Hence, while random filters perform

well on Caltech-101, they would most likely not perform as

well as learned filters on tasks with more labeled samples.



Figure 4. Left: random stage-1 filters, and corresponding optimal inputs that maximize the response of each corresponding complex cell in

a FCSG−Rabs−N −PA architecture. The small asymmetry in the random filters is sufficient to make them orientation selective. Middle:

same for PSD filters. The optimal input patterns contain several periods since they maximize the output of a complete stage that contains

rectification, local normalization, and average pooling with down-sampling. Shifted versions of each pattern yield similar activations.

Right panel: subset of stage-2 filters obtained after PSD and supervised refinement on Caltech-101. Some structure is apparent.

4.2. Random Filter Performance

Perhaps the most astonishing result is the surprisingly

good performance obtained with random filters with few la-

beled samples. The NORB experiments show that random

filters yield sub-par performance when labeled samples are

abundant. But the experiments also show that random filters

seem to require the presence of abs and normalization. To

explore why random filters work at all, we used gradient de-

scent to find the optimal input patterns that maximize each

complex cell (after pooling) in a FCSG − Rabs − N − PA

stage. The surprising finding is that the optimal stimuli for

random filters are oriented gratings (albeit a noisy and faint

ones), similar to the optimal stimuli for trained filters. As

shown in fig 4, it appears that random weights, combined

with the abs/norm/pooling creates a spontaneous orienta-

tion selectivity.

4.3. Handwritten Digits Recognition

As a sanity check for the overall training procedures and

architectures, experiments were run on the MNIST dataset,

which contains 60,000 gray-scale 28x28 pixel digit images

for training and 10,000 images for testing. An architec-

ture with two stages of feature extraction was used: the first

stage produces 32 feature maps using 5× 5 filters, followed

by 2x2 average pooling and down-sampling. The second

stage produces 64 feature maps, each of which combines

16 feature maps from stage 1 with 5 × 5 filters (1024 filters

total), followed by 2× 2 pooling/down-sampling. The clas-

sifier is a 2-layer fully-connected neural network with 200

hidden units, and 10 outputs. The loss function is equiva-

lent to that of a 10-way multinomial logistic regression (also

known as cross-entropy loss). The two feature stages use

abs rectification and normalization.

The parameters for the two feature extraction stages are

first trained with PSD as explained in Section 3.1. The

classifier is initialized randomly. The whole system is fine-

tuned in supervised mode (the protocol could be described

as (U+U+R+R+). A validation set of size 10,000 was set

apart from the training set to tune the only hyper-parameter:

the sparsity constant λ. Nine different values were tested

between 0.1 and 1.6 and the best value was found to be 0.2.

The system was trained with a form of stochastic gradient

descent on the 50,000 non-validation training samples un-

til the best error rate on the validation set was reached (this

took 30 epochs). It was then tuned for another 3 epochs on

the whole training set. A test error rate of 0.53% was ob-

tained. To our knowledge, this is the best error rate ever

reported on the original MNIST dataset, without distortions

or preprocessing. The best previously reported error rate

was 0.60% [26].

5. Conclusions

This paper addressed the following three questions:

1. how do the non-linearities that follow the filter banks in-

fluence the recognition accuracy. The surprising answer is

that using a rectifying non-linearity is the single most im-

portant factor in improving the performance of a recogni-

tion system. This might be due to several reasons: a) the

polarity of features is often irrelevant to recognize objects,

b) the rectification eliminates cancellations between neigh-

boring filter outputs when combined with average pooling.

Without a rectification what is propagated by the average

down-sampling is just the noise in the input. Also introduc-

ing a local normalization layer improves the performance.

It appears to make supervised learning considerably faster,

perhaps because all variables have similar variances (akin

to the advantages introduced by whitening and other decor-

relation methods)

2. does learning the filter banks in an unsupervised or

supervised manner improve the performance over hard-

wired filters or even random filters: the most surprising re-

sult is that random filters used in a two-stage system with

the proper non-linearities yield 62.9% recognition rate on

Caltech-101. Experiments on NORB show that this sur-

prising performance is only seen in the limit of very small

training set sizes. We have also shown that the optimal in-

put patterns for a randomly initialized stage are very simi-

lar to the optimal inputs for a stage that use learned filters.

The second important result is that global supervised learn-

ing of the filters yields good recognition rate if the proper

non-linearities are used. It was thought that the dismal per-

formance of supervised convolutional networks on Caltech-

101 was due to overparameterization, but it seems to be due



to an inadequate non-linear layer. The last interesting point

is that unsupervised pre-training followed by supervised re-

finement yields the best overall accuracy, although the im-

provement over purely supervised is rather small.

3. is there any advantage to using an architecture with two

successive stages of feature extraction, rather than with a

single stage: the experiments clearly show that two stages

are better than one. The performance of our two-stage sys-

tem is similar to that of the best single-stage systems based

on SIFT and PMK-SVM, perhaps because the PM Kernel is

conceptually similar to our feature extractions stage.

There are reasons to hope that better learning meth-

ods with refined architectures and more powerful classifiers

may yield even better accuracy. The ability to learn a hierar-

chy of filters allows us to apply the method to any signal or

image type with strong local dependencies without having

to rely on expert knowledge to produce appropriate filters.
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