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Abstract

We consider estimation methods for the
class of continuous-data energy based mod-
els (EBMs). Our main result shows that es-
timating the parameters of an EBM using
score matching when the conditional distri-
bution over the visible units is Gaussian cor-
responds to training a particular form of reg-
ularized autoencoder. We show how different
Gaussian EBMs lead to different autoencoder
architectures, providing deep links between
these two families of models. We compare
the score matching estimator for the mPoT
model, a particular Gaussian EBM, to several
other training methods on a variety of tasks
including image denoising and unsupervised
feature extraction. We show that the regular-
ization function induced by score matching
leads to superior classification performance
relative to a standard autoencoder. We also
show that score matching yields classifica-
tion results that are indistinguishable from
better-known stochastic approximation max-
imum likelihood estimators.

1. Introduction

In this work, we consider a rich class of probabilis-
tic models called energy based models (EBMs) (LeCun
et al., 2006; Teh et al., 2003; Hinton, 2002). These
models define a probability distribution though an ex-
ponentiated energy function. Markov Random Fields
(MRFs) and Restricted Boltzmann Machines (RBMs)
are the most common instance of such models and have
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a long history in particular application areas including
modeling natural images.

Recently, more sophisticated latent variable EBMs for
continuous data including the PoT (Welling et al.,
2003), mPoT (Ranzato et al., 2010b), mcRBM (Ran-
zato & Hinton, 2010), FoE (Schmidt et al., 2010) and
others have become popular models for learning rep-
resentations of natural images as well as other sources
of real-valued data. Such models, also called gated
MRFs, leverage latent variables to represent higher
order interactions between the input variables. In
the very active research area of deep learning (Hinton
et al., 2006), these models been employed as elemen-
tary building blocks to construct hierarchical models
that achieve very promising performance on several
perceptual tasks (Ranzato & Hinton, 2010; Bengio,
2009).

Maximum likelihood estimation is the default param-
eter estimation approach for probabilistic models due
to its optimal theoretical properties. Unfortunately,
maximum likelihood estimation is computationally in-
feasible in many EBM models due to the presence of
an intractable normalization term (the partition func-
tion) in the model probability. This term arises in
EBMs because the exponentiated energies do not au-
tomatically integrate to unity, unlike directed models
parameterized by products of locally normalized con-
ditional distributions (Bayesian networks). Several al-
ternative methods have been proposed to estimate the
parameters of an EBM without the need for comput-
ing the partition function. One particularly interest-
ing method is called score matching (SM) (Hyvärinen,
2005). The score matching objective function is con-
structed from an L2 loss on the difference between the
derivatives of the log of the model and empirical distri-
bution functions with respect to the inputs. Hyvärinen
(2005) showed that this results in a cancellation of the
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partition function. Further manipulation yields an es-
timator that can be computed analytically and is prov-
ably consistent.

Autoencoder neural networks are another class of mod-
els that are often used to model high-dimensional real-
valued data (Hinton & Zemel, 1994; Vincent et al.,
2008; Vincent, 2011; Kingma & LeCun, 2010). Both
EBMs and autoencoders are unsupervised models that
can be thought of as learning to re-represent input data
in a latent space. In contrast to probabilistic EBMs,
autoencoders are deterministic and feed-forward. As
a result, autoencoders can be trained to reconstruct
their input through one or more hidden layers, they
have fast feed-forward inference for hidden layer states,
and all common training losses lead to computation-
ally tractable model estimation methods. In order to
learn better representations, autoencoders are often
modified by tying the weights between the input and
output layers to reduce the number of parameters, in-
cluding additional terms in the objective to bias learn-
ing toward sparse hidden unit activations, and adding
noise to input data to increase robustness (Vincent
et al., 2008; Vincent, 2011). Interestingly, Vincent
(2011) showed that a particular kind of denoising au-
toencoder trained to minimize an L2 reconstruction
error can be interpreted as Gaussian RBM trained us-
ing Hyvärinen’s score matching estimator.

In this paper, we apply score matching to a number
of latent variable EBMs where the conditional distri-
bution of the visible units given the hidden units is
Gaussian. We show that the resulting estimation al-
gorithms can be interpreted as minimizing a regular-
ized L2 reconstruction error on the visible units. For
Gaussian-binary RBMs, the reconstruction term cor-
responds to a standard autoencoder with tied weights.
For the mPoT and mcRBM models, the reconstruc-
tion terms correspond to new autoencoder architec-
tures that take into account the covariance structure
of the inputs. This suggests a new way to derive novel
autoencoder training criteria by applying score match-
ing to the free energy of an EBM. We further generalize
score matching to arbitrary EBMs with real-valued in-
put units and show that this view leads to an intuitive
interpretation for the regularization terms that appear
in the score matching objective function.

2. Score Matching for Latent Energy
Based Models

A latent variable energy based model defines a prob-
ability distribution over real valued data vectors v ∈

V ⊆ Rnv as follows:

P (v, h; θ) =
exp(−Eθ(v, h))

Z(θ)
, (1)

where h ∈ H ⊆ Rnh are the latent variables, Eθ(v, h)
is an energy function parameterized by θ ∈ Θ, and
Z(θ) is the partition function. We refer to these mod-
els as latent energy based models. This general la-
tent energy based model subsumes many specific mod-
els for real-valued data such as Boltzmann machines,
exponential-family harmoniums (Welling et al., 2005),
factored RBMs and Product of Student’s T (PoT)
models (Memisevic & Hinton, 2009; Ranzato & Hin-
ton, 2010; Ranzato et al., 2010a;b).

The marginal distribution in terms of the free energy
Fθ(v) is obtained by integrating out the hidden vari-
ables as seen below. Typically, but not always, this
marginalization can be carried out analytically.

P (v; θ) =
exp(−Fθ(v))

Z(θ)
. (2)

Maximum likelihood parameter estimation is difficult
when Z(θ) is intractable. In EBMs the intractabil-
ity of Z(θ) arises due to the fact that it is a very
high-dimensional integral that often lacks a closed
form solution. In such cases, stochastic algorithms
can be applied to approximately maximize the likeli-
hood and a variety of algorithms have been described
and evaluated (Swersky et al., 2010; Marlin et al.,
2010) in the literature including contrastive divergence
(CD) (Hinton, 2002), persistent contrastive divergence
(PCD) (Younes, 1989; Tieleman, 2008), and fast per-
sistent contrastive divergence (FPCD) (Tieleman &
Hinton, 2009). However, these methods often require
very careful hand-tuning of optimization-related pa-
rameters like step size, momentum, batch size and
weight decay, which is complicated by the fact that
the objective function can not be computed.

The score matching estimator was proposed by
Hyvärinen (2005) to overcome the intractability of
Z(θ) when dealing with continuous data. The score
matching objective function is defined through a score
function applied to the empirical p̃(v) and model pθ(v)
distributions. The score function for a generic dis-

tribution p(v) is given by ψi(p(v)) = ∂ log p(v)
∂vi

=

−∂Fθ(v)∂vi
=
∫
h
−∂Eθ(v,h)∂vi

pθ(h|v)dh. The full objective
function is given below.

J(θ) = Ep̃(v)

[
nv∑
i=1

(ψi(p̃(v))− ψi(pθ(v)))
2

]
. (3)
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The benefit of optimizing J(θ) is that Z(θ) cancels
off in the derivative of log pθ(v) since it is constant
with respect to each vi. However, in the above form,
J(θ) is still intractable due to the dependence on p̃(v).
Hyvärinen, shows that under weak regularity condi-
tions J(θ) can be expressed in the following form,
which can be tractably approximated by replacing the
expectation over the empirical distribution by an em-
pirical average over the training set:

J(θ) = Ep̃(v)

[
nv∑
i=1

1

2
(ψi(pθ(v)))

2
+
∂ψi(pθ(v))

∂vi

]
. (4)

In theoretical situations where the regularity condi-
tions on the derivatives of the empirical distribution
are not satisfied, or in practical situations where a
finite sample approximation to the expectation over
the empirical distribution is used, a smoothed version
of the score matching estimator may be of interest.
Consider smoothing p̃(v) using a probabilistic kernel
qβ(v|v′) with bandwidth parameter β > 0. We obtain
a new distribution qβ(v) =

∫
qβ(v|v′)p̃(v′)dv′. Vincent

(2011) showed that applying score matching to qβ(v)
is equivalent to the following objective function where
qβ(v, v′) = qβ(v|v′)p̃(v′):

Q(θ) =Eqβ(v,v′)

[
nv∑
i=1

(ψi(qβ(v|v′))− ψi(pθ(v)))
2

]
.

(5)

For the case where qβ(v|v′) = N
(
v|v′, β2

)
i.e. a Gaus-

sian smoothing kernel with variance β2, this is equiv-
alent to the regularized score matching objective pro-
posed in (Kingma & LeCun, 2010). We refer to the ob-
jective given by Equation 5 as denoising score match-
ing (SMD). Although SMD is intractable to evaluate
analytically, we can again replace the integral over v′

by an empirical average over a finite sample of training
data. We can then replace the integral over v by an
empirical average over samples v, which can be easily
drawn from qβ(v|v′) for each training sample v′.

Compared to PCD and CD, SM and SMD give
tractable objective functions that can be used to mon-
itor training progress. While SMD is not consistent,
it does have significant computational advantages rel-
ative to SM (Vincent, 2011).

3. Applying and Interpreting Score
Matching For Latent EBMs

We now derive score matching objectives for several
commonly used EBMs. In order to apply score match-
ing to a particular EBM, one simply needs an expres-
sion for the corresponding free energy.

Example 1 Score Matching for Gaussian-
binary RBMs: Here, the energy Eθ(v, h) is given
by:

−
nv∑
i=1

nh∑
j=1

vi
σi
Wijhj −

nh∑
j=1

bjhj +
1

2

nv∑
i=1

(ci − vi)2

σ2
i

, (6)

where the parameters are θ = (W,σ, b, c) and hj ∈
{0, 1}. This leads to the free energy Fθ(v):

1

2

nv∑
i=1

(ci − vi)2

σ2
i

−
nh∑
j=1

log

(
1 + exp

(
nv∑
i=1

vi
σi
Wij + bj

))
,

(7)

The corresponding score matching objective is:

J(θ) =
1

N

N∑
n=1

nv∑
i=1

1

2

vin
σ2
i

− ci
σ2
i

−
nh∑
j=1

Wij

σi
ĥjn

2

− 1

σ2
i

+

nh∑
j=1

W 2
ij

σ2
i

ĥjn

(
1− ĥjn

) , (8)

where ĥjn := sigm
(∑nv

i=1
vin
σi
Wij + bj

)
and sigm(x) :=

1
1+exp(−x) .

For a standardized Normal model, with c = 0 and
σ = 1, this objective reduces to:

J(θ) =
1

N

N∑
n=1

nv∑
i=1

1

2

vin − nh∑
j=1

Wij ĥjn

2

−1 +

nh∑
j=1

W 2
ij ĥjn

(
1− ĥjn

) , (9)

The first term corresponds to the quadratic recon-
struction error of an autoencoder with tied weights.
From this we can see that this type of of autoencoder,
which researchers have previously treated as a differ-
ent model, can in fact be explained by the application
of the score matching estimation principle to Gaussian
RBMs.

Example 2 Score matching for mcRBM: The
energy Eθ(v, h

m, hc) of the mcRBM model for each
data point includes mean Bernoulli hidden units hmj ∈
{0, 1} and covariance Bernoulli hidden units hck ∈
{0, 1}. The latter allow one to model correlations in
the data v (Ranzato & Hinton, 2010; Ranzato et al.,
2010a). To ease the notation, we will ignore the index
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n over the data. The energy for this model is:

− 1

2

nf∑
f=1

nhc∑
k=1

Pfkh
c
k(

nv∑
i=1

Cifvi)
2 −

nhm∑
j=1

nv∑
i=1

Wijh
m
j vi

−
nhm∑
j=1

bmj h
m
j −

nhc∑
k=1

bckh
c
k −

nv∑
i=1

bvi vi +
1

2

nv∑
i=1

v2i , (10)

where θ = (bv, bm, bc, P,W,C). This leads to the free
energy Fθ(v):

−
nhc∑
k=1

log(1 + eφ
c
k)

−
nhm∑
j=1

log(1 + eφ
m
j )−

nv∑
i=1

bvi vi +
1

2

nv∑
i=1

v2i , (11)

where φck = 1
2

∑nf
f=1 Pfk(

∑nv
i=1 Cifvi)

2 + bck and φmj =∑nv
i=1Wijvi + bmj . The corresponding score matching

objective is:

J(θ) =

[
nv∑
i=1

1

2
ψi(pθ(v))2

+

nhc∑
k=1

(
ρ(ĥck)D2

ik + ĥckKik

)

+

nhm∑
j=1

(
ĥmj (1− ĥmj )W 2

ij

)
− 1

 (12)

ψi(pθ(v)) =

nhc∑
k=1

ĥckDik +

nhm∑
j=1

ĥmj Wij + bvi − vi

Kik =

nf∑
f=1

PfkC
2
if

Dik =

nf∑
f=1

(
Pfk

(
nv∑
i′=1

Ci′fvi′

)
Cif

)
ĥck =sigm (φck)

ĥmj =sigm
(
φmj
)

ρ(x) :=x(1− x).

Example 3 Score matching for mPoT The en-
ergy Eθ(v, h

m, hc) of the mPoT model is:

nhc∑
k=1

[
hck(1 +

1

2
(

nv∑
i=1

Cikvi)
2) + (1− γ) log(hck)

]

+
1

2

nv∑
i=1

v2i −
∑
i

bvi vi −
nv∑
i=1

nhm∑
j=1

hmj Wijvi −
nhm∑
j=1

bmj h
m
j ,

(13)

where θ = (γ,W,C, bv, bm) and hc is a vector of
Gamma covariance latent variables, C is a filter bank

and γ is a scalar parameter. This leads to the free
energy Fθ(v):

nhc∑
k=1

γ log(1 +
1

2
(φck)2)

−
nhm∑
j=1

log(1 + eφ
m
j )−

nv∑
i=1

bvi vi +
1

2

nv∑
i=1

v2i , (14)

where φck =
∑nv
i=1 Cikvi and φmj =

∑nv
i=1Wijvi + bmj .

The corresponding score matching objective J(θ) is
equivalent to the objective given in Equation 12 with
the following redefinition of terms:

P =− Inhc
ĥck =γϕ(φck) (15)

ĥmj =sigm(φmj ) (16)

ϕ(x) :=
1

1 + 1
2 (x)2

ρ(x) :=x2,

where Inhc is the nhc × nhc identity matrix.

In each of these examples, we see that an objective
emerges which seeks to minimize a form of regular-
ized reconstruction error, and that the forms of these
regularizers can end up being quite different. Rather
than trying to interpret score matching on a case by
case basis, we provide a general theorem for all latent
EBMs on which score matching can be applied:

Theorem 1 The score matching objective, Equa-
tion (4), for a latent energy based model can be ex-
pressed succinctly in terms of either the free energy or
expectations of the energy with respect to the condi-
tional distribution p(h|v). Specifically,

J(θ) =Ep̃(v)

[
nv∑
i=1

1

2
(ψi(p̃(v))− ψi(pθ(v)))

2
+
∂ψi(pθ(v))

∂vi

]

=Ep̃(v)

[
nv∑
i=1

1

2

(
Epθ(h|v)

[
∂Eθ(v, h)

∂vi

])2

+ varpθ(h|v)

[
∂Eθ(v, h)

∂vi

]
− Epθ(h|v)

[
∂2Eθ(v, h)

∂v2i

]]
.

Corollary 1 If the energy function of a latent EBM
Eθ(v, h) takes the following form:

Eθ(v, h) =
1

2
(v − µ(h))TΩ(h)(v − µ(h)) + g(h),

where µ(h) is an arbitrary vector-valued function of
length nv, g(h) is an arbitrary scalar function, and
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Ω(h) is an nv×nv positive-definite matrix-valued func-
tion, then the vector-valued score function ψ(pθ(v))
will be: Epθ(h|v) [Ω(h)(v − µ(h))]. As a result, the
score matching objective can be expressed as:

J(θ) =Ep̃(v)
[ nv∑
i=1

1

2

(
Epθ(h|v) [Ω(h)(v − µ(h))]i

)2
+varpθ(h|v) [Ω(h)(v − µ(h))]i

−Epθ(h|v) [Ω(h)]ii

]
.

The proofs of Theorem 1 and Corollary 1 are straight-
forward, and can be found in an online appendix to
this paper.1 Corollary 1 states that score matching
applied to a Gaussian latent EBM will always result
in a quadratic reconstruction term with penalties to
minimize the variance of the reconstruction and to
maximize the expected curvature of the energy with
respect to v. This shows that we can develop new au-
toencoder architectures in a principled way by simply
starting with an EBM and applying score matching.

One further connection between the two models is that
one step of gradient descent on the free energy Fθ(v)
of an EBM corresponds to one feed-forward step of an
autoencoder. To see this, consider the mPoT model.
If we start at some visible configuration v and update
a single dimension i:

v
(t+1)
i = v

(t)
i − η

∂Fθ(v)

∂vi

= v
(t)
i + η

(
nhc∑
k=1

ĥckDik

+

nhm∑
j=1

ĥmj Wij + bvi − v
(t)
i

 .

Then setting η = 1, the v
(t)
i terms cancel and we get:

v
(t+1)
i =

nhc∑
k=1

ĥckDik +

nhm∑
j=1

ĥmj Wij + bvi . (17)

This corresponds to the reconstruction produced by
mPoT in its score matching objective. In general, an
autoencoder reconstruction can be produced by taking
a single step of gradient descent along the free energy
of its corresponding EBM.

1http://www.cs.ubc.ca/~nando/papers/
smpaper-appendix.pdf

4. Experiments

In this section, we study several estimation methods
applied to the mPoT model including SM, SMD, CD,
PCD, and FPCD with the goal of uncovering differ-
ences in the characteristics of trained models due to
variations in training methods. For our experiments,
we used two datasets of images.

The first dataset consists of 128,000 color image
patches of size 16x16 pixels randomly extracted from
the Berkeley segmentation dataset2. We subtracted
the per-patch means and applied PCA whitening. We
retained 99% of the variance, corresponding to 105
eigenvectors. All estimation methods were applied to
the mPoT model by training on mini-batches of size
128 for 100 epochs of stochastic gradient descent.

The second dataset, named CIFAR 10 (Krizhevsky,
2009), consists of color images of size 32x32 pixels
belonging to one of 10 categories. The task is to
classify a set of 10,000 test images. CIFAR 10 is a
subset of a larger dataset of tiny images (Torralba
et al., 2008). Using a protocol established in previ-
ous work (Krizhevsky, 2009; Ranzato & Hinton, 2010)
we built a training dataset of 8x8 color image patches
from this larger dataset, ensuring there was no over-
lap with CIFAR 10. The preprocessing of the data is
exactly the same as for the Berkeley dataset, but here
we use approximately 800,000 image patches and per-
form only 10 epochs of training. For our experiments,
we used the Theano package3, and mPoT4 code from
(Ranzato et al., 2010b).

4.1. Objective Function Analysis

From Corollary 1, we know that we can interpret score
matching for mPoT as trading off reconstruction error,
reconstruction variance and the expected curvature of
the energy function with respect to the visible units.
This experiment, using the Berkeley dataset, is de-
signed to determine how these terms evolve over the
course of training and to what degree their changes
impact the final model. Figures 1(a) and 1(b) show
the values of the three terms using non-noisy inputs
on each training epoch, as well as the overall objec-
tive function (the sum of the 3 terms). Surprisingly,
these results show that most of the training is involved
with maximizing the expected curvature (correspond-
ing to a lower negative curvature). In SM, each point

2http://www.cs.berkeley.edu/projects/vision/
grouping/segbench/

3http://deeplearning.net/software/theano/
4http://www.cs.toronto.edu/~ranzato/

publications/mPoT/mPoT.html
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(a) SM terms (×104)
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(b) SMD terms
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(c) Autoencoder terms
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(d) Free energy difference
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(e) Mean-field denoising
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Figure 1. (a), (b), (c) Expected reconstruction error, reconstruction variance, and energy curvature for SM, SMD, and
AE. Total represents the sum of these terms. (d) Difference of free energy between noisy and test images. (e) MSE of
denoised test images using mean-field. (f) MSE of denoised test images using Bayesian MAP.

is relatively isolated in v-space meaning that the ob-
jective will try to make the distribution very peaked.
In SMD, each point exists near a cloud of points and
so the distribution must be broader. From this per-
spective, SMD can be seen as a regularized version of
SM that puts less emphasis on changing the expected
curvature. This also seems to give SMD some room to
reduce the reconstruction error.

To examine the impact of regularization, we trained
an autoencoder (AE) based on the mPoT model us-
ing the reconstruction given by Equation 17, which
corresponds to SM without the variance and curva-
ture terms. Figure 1(c) shows that simply optimizing
the reconstruction leaves the curvature almost invari-
ant, which agrees with the findings of (Ranzato et al.,
2007).

4.2. Denoising

In our next set of experiments, we compare models
learned by each of the score matching estimators with
models learned by the more commonly used stochastic
estimators. For these experiments, we trained mPoT
models corresponding to SM, SMD, FPCD, PCD, and
CD. We compare the models in terms of the average
free energy difference between natural image patches

and patches corrupted by Gaussian noise. We also
consider denoising natural image patches.5

During training, we hope that the probability of nat-
ural images will increase while that of other images
decreases. The free energy difference between natu-
ral and other images is equivalent to the log of their
probability ratio, so we expect the free energy differ-
ence to increase during training as well. Figure 1(d)
shows the difference in free energy between a test set of
10,000 image patches from the Berkeley dataset, and
the energy of the same images corrupted by noise. For
most estimators, the free energy difference improves
as training proceeds, as expected. Interestingly, SM
and SMD exhibit completely opposite behaviors. SM
seems to significantly increase the free energy differ-
ence relative to nearby noisy images, corresponding to
a distribution that is peaked around natural images.
SMD, on the other hand, actually decreases the free
energy difference relative to nearby noisy images.

In the next experiment, we consider an image denois-
ing task. We take an image patch v and add Gaussian
white noise, obtaining a noisy patch v′. We then ap-

5Note that for convenience, both tasks were performed
in the PCA domain. We use a standard deviation of 1 for
the Gaussian noise in all cases.
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(a) Mean filters (b) Covariance filters

Figure 2. mPoT filters learned using different estimation methods: (a) “mean” filters, (b) “covariance” filters.

ply each model to denoise each patch v′, obtaining a
reconstruction v̂. The first denoising method, shown
in Figure 1(e), computes a reconstruction v̂ by simu-
lating one step of a Markov chain using a mean-field
approximation. That is, we first compute hck and hmj
by Equations 15 and 16 using v′ as the input. The re-
construction is the expectation of the conditional dis-
tribution Pθ(v|hck, hmj ). The second method, shown in
Figure 1(f), is the Bayesian MAP estimator:

v̂ = arg min
v

Fθ(v) +
λ

2
‖v − v′‖2 , (18)

where λ is a scalar representing how close the re-
construction should remain to the noisy input. We
select λ by cross-validation. The results show that
score matching achieves the minimum error using both
denoising approaches, however it quickly overfits as
training proceeds. FPCD and PCD do not match the
minimum error of SM and also overfit, albeit to a lesser
extent. CD and SMD do not appear to overfit. How-
ever, we note that the minimum error obtained by
SMD is significantly higher than the minimum error
obtained by SM using both denoising methods. This
is quite intuitive since SMD is equivalent to estimating
the model using a smoothed training distribution that
shifts mass onto nearby noisy images.

4.3. Feature Extraction and Classification

One of the primary uses for latent EBMs is to gener-
ate discriminative features. Table 1 shows the result of
using each method to extract features on the bench-
mark CIFAR 10 dataset. We follow the protocol of
(Ranzato & Hinton, 2010) with early stopping. We
use a validation set to select regularization parame-

Table 1. Recognition accuracy on CIFAR 10.

CD PCD FPCD SM SMD AE

64.6% 64.7% 65.5% 65.0% 64.7% 57.6%

ters. With the exception of AE, all methods appear
to do well and the differences between them are not
statistically significant. AE, on the other hand, does
significantly worse.

Finally, we show examples of filters learned by each
method. Figure 2(a) shows a random subset of “mean”
filters corresponding to the columns of W , while Fig-
ure 2(b) shows a random subset of “covariance” filters
corresponding to the columns of C. Interestingly, only
FPCD and PCD show structure in the learned mean
filters. In the covariance units, all methods except AE
learn localized Gabor-like filters. It is well known that
obtaining nice looking filters will usually correlate with
good performance, but it is not always clear what leads
to these filters.

We have shown here that one way to obtain good qual-
itative and quantitative performance is to focus on ap-
propriately modeling the curvature of the energy with
respect to v. In this context, the SM reconstruction
and variance terms serve to ensure that the peaks of
the distribution occur around the training cases.

5. Conclusion

By applying score matching to the energy space of a
latent EBM, as opposed to the free energy space, we
gain an intuitive interpretation of the score matching
objective. We can always break the objective down
into three terms corresponding to expectations under
the conditional distribution of the hidden units: recon-
struction, reconstruction variance, and curvature. We
have determined that for the Gaussian-binary RBM,
the reconstruction term will always correspond to an
autoencoder with tied weights. While autoencoders
and RBMs were previously considered to be related,
but separate models, this analysis shows that they
can be interpreted as different estimators applied to
the same underlying model. We also showed that
one can derive novel autoencoders by applying score
matching to more complex EBMs. This allows us to
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think about models in terms of EBMs before creating
a corresponding autoencoder to leverage fast inference.
Furthermore, this framework provides guidance on se-
lecting principled regularization functions for autoen-
coder training, leading to improved representations.

Our experiments show that not only does score match-
ing yield similar performance to existing estimation
methods when applied to classification, but that shap-
ing the curvature of the energy appropriately may be
important for generating good features. While this
seems obvious for probabilistic EBMs, it has previ-
ously been difficult to apply to autoencoders because
they were not thought of as having a corresponding en-
ergy function. Now that we know which statistics may
be important to monitor during training, it would be
interesting to see what happens when other heuristics,
such as sparsity, are applied to help generate inter-
pretable features.
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