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Abstract
Given prior knowledge on the conditional inde-
pendence structure of observed variables, often in
the form of Bayesian networks or directed acyclic
graphs, it is beneficial to encode such structure
into neural networks during learning. This is par-
ticularly advantageous in tasks such as density
estimation and generative modelling when data
is scarce. We propose the Structured Neural Net-
work (StrNN), which masks specific pathways in
a neural network. We design the masks by explor-
ing a novel relationship between neural network
architectures and binary matrix factorization, en-
suring the desired conditional independencies are
respected and predefined objectives are explicitly
optimized. We devise and study practical algo-
rithms for this otherwise NP-hard problem. We
demonstrate the utility of StrNN in by applying
StrNN to binary and Gaussian density estimation
tasks. Our work opens up new avenues for appli-
cations such as data-efficient generative modeling
with autoregressive flows and causal inference.

1. Introduction
The incorporation of (inferred or known) structure into a
machine learning model can mitigate the learning of spu-
rious associations, and in turn provide benefits for model
generalization, learning efficiency, and interpretability. The
improvements are particularly salient when learning from
small amounts of data. This idea has found use in reinforce-
ment learning (Ok et al., 2018), computational healthcare
(Cui et al., 2020), time series analysis (Curi et al., 2020),
causal inference (Balazadeh et al., 2022), and satellite data
processing (Katzfuss et al., 2020).

This work focuses on the problem of density estimation of
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Figure 1. StrNN injects structure by masking the weights of a
neural network. Top: StrNN connections (green) compared to a
fully connected network (gray). Bottom: Binary factorization of
an adjacency matrix yields weight masks. Masked weights are
shown in gray. We use θ to denote network outputs representing
the parameters of the marginal conditional distributions for X ,
and h to represent hidden units.

high-dimensional data which has been approached through
a variety of lenses. Latent variable models like variational
autoencoders (Kingma & Welling, 2013) model data as the
marginal over an unobserved latent variable. Normalizing
flows (Tabak & Turner, 2013; Rezende & Mohamed, 2015)
model data by transforming a base distribution through a
series of invertible transformations. Masked autoencoders
(MADE) (Germain et al., 2015) model the joint distribution
via an autoregressive factorization of the random variables.
The factorization is enforced by integrating structure in the
neural network of the autoencoder. Specifically, the MADE
architecture zeros out weights in a neural network such
that each output dimension has an autoregressive depen-
dence of the input dimensions. In practice, this may lead
to over-fitting and harm generalization. When knowledge
of a Bayesian network and the associated conditional in-
dependencies exist, it is desirable to inject this knowledge
directly into the network to improve density estimation. In
this work, we extend the concept of weight masking, as in
MADEs, beyond autoregressive dependencies of the output
on the input.
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We propose the Structured Neural Network (StrNN), a
weight masked neural network capable of enforcing pre-
scribed conditional independencies between variables; see
Figure 1. Any set of conditional independencies (e.g. in a
Bayesian network) may be represented via an binary adja-
cency matrix. StrNN performs binary matrix factorization to
generate a set of weight masks that respect a given indepen-
dence structure. There are two key challenges we overcome.
First, the general problem of binary matrix factorization in
this context is under-specified i.e. there exist many valid
masks whose matrix product realizes a given adjacency ma-
trix. To this end, we propose the idea of path maximization
as a strategy to guide the generation of valid masks. Second,
binary matrix factorization is NP-hard in general. Hence,
we propose and study practical solutions that generate valid
mask matrices.

Our main contribution is StrNN, a weight-masked neural
network which allows injection of prior domain knowledge
in the form of Bayesian networks. We formalize the weight
masking as an optimization problem, where we can pick
the objective based on desired neural architectures. We pro-
pose an efficient binary matrix factorization algorithm to
mask neural networks of arbitrary sizes. In Appendix B,
we introduce a natural application of StrNN: leveraging the
structured neural network as the conditioner in an autore-
gressive normalizing flow, Structured Autoregressive Flows
(StrAF) performs well in density estimation and sample
generation tasks.

2. Background
Masked Autoencoders for Density Estimation (MADE):
Masked neural networks were introduced for density esti-
mation on binary-valued data (Germain et al., 2015). Given
x = (x1, ..., xd), MADE factorizes p(x) as the product of
the outputs of a neural network. Writing the j-th output as
the conditional probability x̂j := p(xj = 1|x<j), the joint
distribution can be rewritten exactly as the binary cross-
entropy loss. As long as the neural network outputs are
autoregressive in relation to its inputs, we can minimize the
cross-entropy loss for density estimation. To enforce the
autoregressive property for a neural network y = f(x) with
a single hidden layer and d-dimensional inputs and outputs,
MADE multiplies the weight matrices element-wise with
binary masks MW and MV in the hidden layer as follows:

h(x) = g((W ⊙MW )x+ b) (1)

y = f((V ⊙MV )h(x) + c)

The autoregressive property is satisfied as long as the prod-
uct of the masks, MV MW ∈ Rd×d, is lower triangu-
lar. The MADE masking algorithm (2) can be extended
to neural networks with an arbitrary number of hidden
layers and hidden sizes. For Gaussian data, the MADE

model can be extended as Rd → R2d, (x1, ...xd) →
(µ̂1, ..., µ̂d, log(σ̂1), ..., log(σ̂d)). The mask between last
two layers of the neural network must be duplicated to en-
sure µj and σj only depend on x<j . MADE can also be
used as the conditioner in an autoregressive flow to model
general data, as seen in Papamakarios et al. (2017).

3. Methodology: Sturctured Neural Networks
(strNN)

For data x = (x1, ..., xd), a lower-triangular adjacency ma-
trix A ∈ {0, 1}d×d represents the underlying dependence
structure of the individual elements. In other words, Aij = 0
for j < i if and only if xi ⊥ xj |x{1,...,i}\j and Aij = 1
otherwise. This matrix encodes the same information as a
Bayesian network DAG of the variables. In the fully autore-
gressive case, matrix A is a dense lower triangular matrix
with all ones under the diagonal, which is the only case the
authors of (Germain et al., 2015) addressed. Their proposed
MADE algorithm (Appendix A.1) only encodes the struc-
ture of dense adjacency matrices into neural networks, and
cannot incorporate additional conditional independencies
between variables.

We extend the idea of masked autoregressive neural net-
works to directly encode the independence structure repre-
sented by an adjacency matrix A that is lower triangular but
also has added sparsity. We observe that a masked neural
network satisfies the structural constraints prescribed in A
if the product of the masks for each hidden layer has the
same locations of zero and non-zero entries as A. Therefore,
given the conditional independence structure of the underly-
ing data generating process, we can encode structure into an
autoregressive neural network by factoring the adjacency
matrix into binary mask matrices for each hidden layer.

More specifically, given an adjacency matrix A ∈ {0, 1}d×d

and a neural network with L hidden layers, each with
h1, h2, ..., hL hidden units (≥ d), we seek mask matri-
ces M1 ∈ {0, 1}h1×d,M2 ∈ {0, 1}h2×h1 , . . . ,ML ∈
{0, 1}d×hL such that A′ ∼ A,where A′ := ML ···M2 ·M1.
We use A′ ∼ A to denote that matrices A′ and A share the
same sparsity pattern, i.e., both matrices have the same
locations of zeros and non-zeros. Note that here A is a
binary adjacency matrix, and A′ is an integer-valued ma-
trix. We then mask the neural network’s hidden layers using
M1,M2, ...,ML as per (1) to obtain a Structured Neural
Network (StrNN), which respects the prescribed indepen-
dence constraints.

Finding a solution to this problem itself is NP-hard since
binary matrix factorization can be reduced to the biclique
covering problem (Miettinen & Neumann, 2020; Ravan-
bakhsh et al., 2016; Orlin, 1977). Furthermore, most exist-
ing works focus on deconstructing a given matrix A into
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low-rank factors while minimizing (but not eliminating) re-
construction error (Dan et al., 2015; Fomin et al., 2020).
In our application, we should not allow any reconstruction
error since it would break the independence structure we
want to enforce in our masked neural network. Hence, ex-
isting efficient algorithms for approximate binary matrix
factorization are outside the scope of our paper. We instead
consider the problem of finding factors that reproduce the
adjacency matrix exactly.

We note that the sparsity of the adjacency matrix A satis-
fying the conditional independence properties of x will in
general depend on the ordering of the variables. In this
work, we do not address the problem of seeking a variable
ordering that yields the sparsest adjacency matrix A and
resulting masks. We refer the reader to (Cundy et al., 2021)
for a recent contributions in this direction within the context
of learning directed acyclic graphs.

Optimization Objectives. Identifiability of the masks re-
mains an issue even when we eliminate reconstruction error.
Given an adjacency matrix A, there can be multiple solu-
tions for factoring A into per-layer masks that satisfy the
constraints, especially if the dimensions of the hidden lay-
ers are much larger than d. Since the masks dictate which
connections remain in the neural network, the chosen mask
factorization algorithm directly impacts the neural network
architecture. Hence, it is natural to explicitly specify a
relevant objective to the neural network’s approximation
error during the matrix factorization step, such as the test
log-likelihood.

Given that the approximation error is inaccessible when
selecting the architecture, we were inspired by the Lottery
Ticket Hypothesis (Frankle & Carbin, 2018) and other prun-
ing strategies (Srivastava et al., 2014; Gal & Ghahramani,
2016) that identify a subset of valuable model connections.
Our hypothesis is that given the same data and prior knowl-
edge on independence structure, the masked neural network
with more connections is more expressive, and will thus
be able to learn the data better and/or more quickly. To
find such models, we consider two objectives: Equation (2)
that maximizes the number of input/outputs connections in
the neural network while respecting the conditional inde-
pendence statements dictated by the adjacency matrix, and
Equation (3) that maximizes connections while penalizing
any pair of variables from having too many connections at
the cost of the others. That is,

max
A′∼A

d∑
i=1

d∑
j=1

A′
ij (2)

max
A′∼A

d∑
i=1

i∑
j=1

A′
ij − var(A′) (3)

where var(A′) is the variance across all entries in A′. While
we focus on these two objectives, future work will find opti-

mal architectures by identifying other objectives to improve
approximation error.

Factorization Algorithms. Having defined the desired ob-
jectives for the mask factorization problem, we consider
both exact and approximate algorithms to solve it. We can
solve for all the masks jointly, or recursively layer by layer,
with some sacrifice on the overall objective. For efficiency,
we choose to apply the factorization algorithm one layer
at a time. For each objective, we can obtain per-layer ex-
act solutions with integer programming algorithms. While
the Gurobi optimizer (Gurobi Optimization, LLC, 2023)
can be used for small d, this approach was found to be too
computationally expensive for d greater than 20, which is
a severe limitation for real-world datasets and models. We
hereby propose a greedy algorithm (shown in Algorithm 1)
that approximates the solution to the maximum connections
objective in Equation (2). For each layer, the algorithm first
replicates the structure given in the adjacency matrix A by
copying its rows into the first mask. It then maximizes the
number of neural network connections by filling in the sec-
ond mask with as many ones as possible while respecting
the sparsity in A. See Appendix A.2 for a visual explanation
of the algorithm. For a network with d-dimensional inputs
and outputs and one hidden layer with h units, this algo-
rithm runs in O(dh) time. If each of the L hidden layers
contains O(d) units, the overall runtime is O(d2L), which
is much more efficient than the integer programming solu-
tions. From our experiments, the greedy algorithm executes
nearly instantaneously for dimensions in the thousands.

Algorithm 1 Greedy Mask Factorization
Input: A ∈ {0, 1}d1×d2 , hidden size h.
Output: MV ∈ {0, 1}d2×h, MW ∈ {0, 1}h×d1 . nz ←
non-zero rows in A
Fill MW with nz; repeat until full
Fill MV with ones
for i-th row in MV do
C ← indices of 0’s in i-th row ofA
T ← cols. of MW whose index ∈ C
R← indices of non-zero rows of T

end for
for r in R do

Set MV
i,r to zero

end for
In Appendix A, we include detailed results from investigat-
ing the link between the neural network’s generalization
performance and the choice of mask factorization algorithm.
We observe that while the exact solution to objective (2)
achieves a higher objective value than the greedy approach,
it has no clear advantage in density estimation performance.
Moreover, we found that models trained with the two objec-
tives, (2) and (3), provide similar performance. However,
some datasets might be more sensitive to the exact objec-
tive. For example, problems with anisotropic non-Gaussian
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structure may require neural architectures with more expres-
sivity in some variables that may be favored with certain
objectives. While we adopted objective (2) and the efficient
greedy algorithm in the remainder of our experiments, de-
signing and comparing different factorization objectives is
an important direction for future work.

4. Experiments
To demonstrate the efficacy of encoding structure into the
learning process, we show that using StrNN to enforce a
prescribed adjacency structure improves performance on
density estimation tasks. Comparing to the fully autore-
gressive MADE baseline, we experiment on both synthetic
data generated from known structure equations and MNIST
image data. Details on data generation for all synthetic
experiments can be found in Appendix C.

4.1. Density Estimation on Binary Data

Synthetic Tabular Data We generate binary tabular data
through structural equations from known Bayesian networks.
The results are shown in Figure 2 (left). We find that StrNN
performs better than MADE, especially in the low data
regime, as demonstrated on the left hand side of each chart.

MNIST Image Data To study the effect of incorporat-
ing structure when modeling images, we use the bina-
rized MNIST dataset considered in (Germain et al., 2015;
Salakhutdinov & Murray, 2008). (Germain et al., 2015)
treated each 28-by-28-pixel image as a 784-dimensional
data vector with full autoregressive dependence. This is a
domain for which we do not know the ground truth struc-
ture. For StrNN we rely on a local autoregressive depen-
dence on a square of a pixels determined by the hyper-
parameter nbr size. By changing the hyperparameter we
can increase the context window used to model each pixel.
StrNN is equivalent to MADE for this experiment when we
set nbr size=28. We first find the best nbr size for
each label via grid search. For labels 0 and 2, the optimal
nbr size is 10, and per-label density estimation results
can be found in Figure 2 (right). StrNN outperforms MADE
for both labels, more significantly when sample size is small.
Samples of handwritten digits generated from both StrNN
and MADE can be found in Appendix C.3.

4.2. Density Estimation on Gaussian Data

These experiments compare the performances of StrNN and
MADE on synthetic Gaussian data generated from known
structure equation models where each xi is strictly Gaus-
sian. We plot the results in Figure 3. StrNN achieves lower
test loss than MADE on average, although the error bars
are not necessarily disjoint. When the sample size is low,
however, StrNN significantly outperforms MADE, similar

to the binary case. In conclusion, across all binary and
Gaussian experiments, encoding structure makes StrNN sig-
nificantly more accurate at density estimation than the fully
autoregressive MADE baseline.

5. Conclusion & Future Work
In this work, we introduce StrNN, which allows neural net-
works to encode structure in the form of Bayesian networks
using weight masking. For density estimation tasks where
the true structure is known, we show that StrNN outper-
forms the fully autoregressive MADE model on synthetic
and MNIST data. The mask factorization algorithm used
by StrNN can incorporate different objectives in addition to
ensuring the matrices satisfy a sparsity constraint. In section
3, we proposed two such objectives and in Appendix A we
demonstrated that they can impact model generalization.
StrNN provides a framework with which it is possible to
explore other objectives to impose desirable properties on
neural network architectures. Investigating the effect of
sparse structure on faster and easier training is a valuable
future direction (Frankle & Carbin, 2018). Moreover, a nat-
ural step is to demonstrate the utility of our framework with
structured networks for other applications such as causal
effect estimation and variational inference.
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A. Mask Algorithms and Binary Matrix Factorization
A.1. MADE Algorithm and Limitations

As mentioned in the main text, the central idea of masking neural network weights to inject variable dependence was inspired
by the work of Germain et al. (Germain et al., 2015). In their paper, the authors proposed Algorithm 2 to ensure the outputs
of an autoencoder are autoregressive with respect to its inputs.

Algorithm 2 MADE Masking Algorithm
Input: Dimension of inputs d, Number of hidden layers L, Number of hidden units h.
Output: Masks M1, . . . ,ML+1. nz ← non-zero rows in A
% Sample ml vectors
for l = 1 to L do

for k = 1 to hl do
ml(k)← Uniform([min(ml−1), . . . , d− 1])

end for
end for
% Construct masks matrices
for l = 1 to L do
M l → 1ml≥ml−1

end for
ML+1 → 1m0>mL

As a concrete example, let us consider the case of a single hidden layer network with d inputs and h hidden units. Here,
Algorithm 2 first defines a permutation m0 ∈ Rd of the set {1, . . . , d}, and then independently samples each entry in the
vector m1 ∈ Rh with replacement from the uniform distribution over the integers from 1 to d− 1. This assignment is used
to define the two binary masks matrices M1 of size h× d and M2 of size d× h. The matrix product of the resulting masks
M2M1 ∈ Rd×d provides the network’s connectivity. In particular, the (i, j) entry of M2M1 indicates the dependence of
output i on input j.

There are several key limitations of the MADE algorithm:

1. As mentioned in Section 3, the MADE algorithm can only mask neural networks such that they respect the autoregressive
property. It is not capable of enforcing additional conditional independence statements as prescribed by an arbitrary
Bayesian network. For a general probability distribution that does not satisfy any conditional independence properties,
we expect each marginal conditional in the factorization of the density p(x) =

∏d
k=1 p(xk|x<k) to depend on all

previous inputs. As a result, the matrix product M2M1 should be fully lower-triangular, meaning that output k depends
on all inputs 1, . . . , k − 1. If there is conditional independence structure, however, the MADE algorithm does not
provide a mechanism to define mask matrices such that their matrix product is sparse and hence the corresponding
MADE network enforces these constraints on the variable dependence.

2. The non-deterministic MADE masking algorithm presented in (Germain et al., 2015), the resulting mask matrices are
not always capable of representing any distribution. In particular, the random algorithm can yield some mask matrices
where the lower-triangular part of their matrix product is arbitrarily sparse, i.e., there exists some k < k′ such that
(M2M1)k,k′ = 0. As a result, the MADE network with these masks enforces additional conditional independencies
that are not necessarily present in the underlying data distribution. Proposition A.1 formalizes this point.

Proposition A.1. There is a non-zero probability that Algorithm 2 will yield masks that enforce unwanted conditional
independencies.

Proof. For a single hidden layer (L = 1) neural network with h units, there is a probability 1/dh > 0 of sampling m1 = 1,
i.e., each entry is independently sampled to be 1. This vector yields a mask matrix M1 that only has one non-zero column of
ones at the index k where m0(k) = 1. As a result, the matrix product M2M1 also has only one non-zero column at index
k, meaning that all outputs k′ > k depend only on xk and not on other input variables. Therefore, these mask matrices
enforce the constraints Xk′ ⊥⊥ X<k|Xk for all k′. Equivalently, a distribution that does not satisfy these constraint can not
be represented using this MADE network.
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In our work, we adopt a weight masking scheme by solving a binary matrix factorization problem that overcomes these
limitations. Both the globally optimal and approximate solutions proposed in our paper are deterministic. Thus, we enforce
all conditional independence properties exactly and ensure unwanted variable independence statement do not appear in our
neural networks.

A.2. Mask Factorization: Integer Programming and Greedy Algorithm

In Section 3, we showed that finding the weight masks for each neural network layer is equivalent to factoring the adjacency
matrix that represents the input and output connectivity of these layers. We can find exact solutions to this problem by
solving the optimization problem given in (2). This problem can be formalized as the following integer programming
problem:

Inputs: A ∈ {0, 1}d×d (4)

Outputs: MV ∈ {0, 1}d×h,MW ∈ {0, 1}h×d

max

d∑
i=1

d∑
j=1

viwj

such that viwj > 0 if Aij = 1

viwj = 0 if Aij = 0

where MV =


v1
v2
...
vd

 and vi ∈ {0, 1}1×h

and MW =
(
w1 w2 ... wd

)
and wj ∈ {0, 1}h×1

To formulate a similar problem for the objective given in (3) instead, we simply replace the integer programming objective
with

max (

d∑
i=1

d∑
j=1

viwj − Vari,j(viwj)). (5)

We used the Gurobi optimizer (Gurobi Optimization, LLC, 2023) to solve the above integer programming problems in our
experiments, and found that exact solutions are found reasonably quickly for up to d = 20. For dimensions larger than 20,
however, directly solving the integer programming problem becomes prohibitively expensive even on computing clusters
with multiple GPUs, so it is intractable to seek exact solutions to these problems for most real-world datasets. Therefore, in
this work we propose Algorithm 1, a greedy method that gives an approximate solution to the problem 4 very efficiently.
Figure 4 provides a visual example of the steps performed by Algorithm 1.

To estimate how well the greedy algorithm approximates the solution to problem 4, we randomly sample lower triangular
adjacency matrices, setting entries to 0 or 1 based on a given sparsity threshold between 0 and 1. In other words, for the
threshold 0.1, the random adjacency matrix is very dense, and when the threshold is 0.9, it is very sparse. For fixed input
and output dimensions, we sample 10 such random adjacency matrices for each sparsity threshold ranging from 0.1 to
0.9, and take the average of the

∑d
i=1

∑d
j=1 viwj objective value obtained by each factorization algorithm. Results for

d = 10-dimensional adjacency matrices are shown in Figure 5. We see that the exact integer programming solution achieves
higher objective values compared to the greedy algorithm we propose in Algorithm 1, but it remains to further evaluate the
resulting masks from both algorithms on their performance for a downstream density estimation task.

A.3. Mask Algorithms and Generalization

To that end, we evaluate the density estimation performance of masked neural networks on 20-dimensional synthetic binary
data, using the following four mask factorization methods:
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(a) Step 1: Given the adjacency matrix A, we first populate the first layer mask MW by copying over non-zero rows in A, and
repeating until all rows of MW are full.

(b) Step 2: Next, we populate the second layer mask MV . Let us take the last row of MV for an example: to respect all conditional
independence statements given by A, we need the product of the last row of MV and the MW matrix to have the same zero and
non-zero locations as the last row of A. Since there are zeros in the first and last column of A’s last row, we need the products of the
last row of MV with the first and last columns of MW to be zero.

(c) Step 3: We find the unique ones in the first and last columns of MW and set the corresponding positions in the last row of MV to
zero.

(d) Step 4: Everything else in the last row of MV is set to 1 to maximize the number of connections in the resulting neural network
for the optimization objective in (2).

Figure 4. A visual example of Algorithm 1 being applied on the adjacency matrix A for a neural network with d = 5 inputs, d = 5
outputs, and one single hidden layer containing h = 7 hidden units.
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(a) Randomly generated adjacency structures of 10 dimensions.

(b) Randomly generated adjacency structures of 15 dimensions.

Figure 5. Comparing objective value (Equation 2) achieved by greedy and exact integer programming (IP) methods. IP gives better
objective values when the adjacency matrix is very sparse. As the number of neurons involved goes up, the difference in these methods
also increases.

1. MADE: A fully autoregressive baseline using Algorithm 2 as proposed in (Germain et al., 2015)

2. Greedy: The proposed method in Algorithm 1

3. IP: The exact integer programming solution to Problem 4

4. IP-var: The exact integer programming solution to Problem 4, but with the objective in (5)

The experiment setup and grid of hyperparameters used for these experiments are the same as those in all binary and Gaussian
experiments in this work, as detailed in Appendix C. Specifically, the adjacency structures used in these experiments are
explained and visualized in C.1. The results for the negative log-likelihood of a test dataset are reported in Table 1. We
see that all three methods proposed in this work—Greedy, IP, and IP-var—outperform the MADE baseline, but there is no
clear winner based on overlapping error ranges. IP does not perform significantly better than Greedy based on the higher
objective value achieved for (2). Meanwhile, there is no significant difference between the objective that maximizes the total
connections (Equation 2 and the objective with the added variance penalty (Equation 3) when comparing the performance of
IP versus IP-var. Hence, for efficiency and overall performance, we choose to adopt the Greedy mask factorization algorithm
for the rest of the experiments in this paper.

B. Application: Structured Autoregressive Flows (StrAF)
StrNN can be applied to neural network-based density estimation in various contexts. Where conditional independence
properties are known a priori, we showed in Section 4 that StrNN can be used to estimate parameters of binary or
Gaussian data distributions while keeping specified variables conditionally independent. In order to model real-valued
data distributions, we further integrate StrNNs into an autoregressive normalizing flow (Papamakarios et al., 2017; Huang
et al., 2018) to form the Structured Autoregressive Flow (StrAF). The StrAF model uses the StrNN as a normalizing
flow conditioner network, which respects a given adjacency structure within each flow layer. The StrAF preserves variable
orderings between chained layers, allowing the adjacency structure (i.e., the prescribed conditional independence structure
by the adjacency matrix) to be respected throughout the entire flow.
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Table 1. Density estimation results on 20-dimensional synthetic datasets, reported using the negative log-likelihood on a held-out test set
(lower is better). The error reported is the sample variance across the test set. The three methods, Greedy, IP, and IP-var perform better
than the MADE baseline, but similarly to each other.

Dataset Random Sparse Previous 3
n = 5000 n = 2000 n = 5000 n = 2000

MADE 7.790± 0.140 7.788± 0.142 8.767± 0.132 8.816± 0.134

Greedy 7.758± 0.137 7.778± 0.142 8.757± 0.131 8.768 ± 0.130
IP 7.758± 0.138 7.769± 0.140 8.755 ± 0.132 8.769± 0.129
IP-var 7.757 ± 0.137 7.768 ± 0.140 8.758± 0.132 8.770± 0.131

Dataset Every Other
n = 5000 n = 2000

MADE 8.373 ± 0.120 8.364 ± 0.124

Greedy 8.334 ± 0.125 8.315 ± 0.123
IP 8.333 ± 0.129 8.314 ± 0.123
IP-var 8.331 ± 0.126 8.314 ± 0.124

B.1. Background on Autoregressive Flows

Normalizing Flows: Normalizing flows (Rezende & Mohamed, 2015) model complex data distributions and have been
applied in many scenarios (Papamakarios et al., 2021). Given data x ∈ Rd, a normalizing flow T : Rd → Rd takes x to
latent variables z ∈ Rd that are distributed according to a simple base distribution pz, such as the standard normal. The
transformation T must be a diffeomorphism (i.e., differentiable and invertible) so that we can compute the density of x via
the change-of-variables formula: px(x) = pz(T(x))|det JT(x)|. We can compose multiple diffeomorphic transformations
Tk to form the flow T = T1 ◦ · · · ◦TK since diffeomorphisms are closed under composition. The flows are trained by
maximizing the log-likelihood of the observed data under the density px(x). The log-likelihood can be evaluated efficiently
when it is tractable to compute the Jacobian determinant of T; for example when Tk is a lower triangular function (Marzouk
et al., 2016). Given the map, we can easily generate i.i.d. samples from the learned distribution by sampling from the base
distribution zi ∼ pz and evaluating the flow T−1(zi).

Density Estimation with Autoregressive Flows: One special case of normalizing flows considers a single layer where
the Jacobian matrix is lower triangular, in which case its determinant is simply the product of its diagonal entries (Huang
et al., 2018). This gives rise to the autoregressive flow formulation: given an ordering π of the d variables in the data vector
x, the jth component of the flow T has the form: xj = τj(zj ; cj(x<π(j))) where each τj is an invertible transformer and
each cj is a conditioner that only depends on the variables that come before xj in the ordering π. As a result, the map
components define an autoregressive model that factors the density over a random variable x as: p(x) =

∏d
j=1 p(xj |x<j)

where x<j = (x1, . . . , xj−1).

Under mild conditions, any arbitrary distribution px can be transformed into a base distribution with a lower triangular
Jacobian matrix (Rezende & Mohamed, 2015). That is, autoregressive flows are arbitrarily expressive given the target
distribution. One common choice of invertible functions for the transformer are monotonic neural networks (Wehenkel &
Louppe, 2019).

B.2. Related Works on Structured Normalizing Flows

Given a Bayesian network adjacency matrix, Wehenkel & Louppe (2021) introduced graphical conditioners to the autoregres-
sive flows architecture through input masking. They demonstrated that unifying normalizing flows with Bayesian networks
showed promise in injecting domain knowledge while promoting interpretability, as even single-step graphical flows yielded
competitive results in density estimation. Our work follows the same idea of introducing prior domain knowledge into
autoregressive flows, but we instead use a masking scheme similar to methods in Germain et al. (2015).

Silvestri et al. (2021) proposed embedded-model flows, which alternates between traditional normalizing flows layers and
gated structured layers that a) encode parent nodes based on the graphical model, and b) include a trainable parameter that
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determines how strongly the current node depends on its parent nodes, which alleviates error when the assumed graphical
model is not entirely correct. In comparison, our work encodes conditional independence more directly in the masking step,
improving accuracy when the assumption in the probabilistic graphical structure is strong.

Mouton & Kroon (2022) applied a similar idea to residual flows by masking the residual blocks’ weight matrices prior to
the spectral normalization step according to the assumed Bayesian network. Similarly, Weilbach et al. (2020) introduced
graphical structure to continuous normalizing flows, masking the weight matrices in the neural network used to parameterize
the time derivative of the flow. Our work also uses weight masking, but in autoregressive flows. Furthermore, our approach
permits explicit optimization of different objectives during the adjacency matrix factorization step. We investigate the
efficacy of factorization schemes and resulting neural architectures in our work.

Flows have garnered increasing interest in the context of causal inference, with applications spanning various problem
domains. Ilse et al. (2021) parameterized causal model with normalizing flows in the general continuous setting to learn
from combined observational and interventional data. Melnychuk et al. (2022) used flows as a parametric method for
estimating the density of potential outcomes from observational data. Flows have also been employed in causal discovery
(Brouillard et al., 2020; Khemakhem et al., 2021) as well as in various causal applications (Ding et al., 2023; Wang et al.,
2021). In particular, Balgi et al. (2022b) also considered embedding the true causal DAG in flows for interventional and
counterfactual inference, but they do so via the framework of Graphical Normalizing Flows (Wehenkel & Louppe, 2021).
Balgi et al. (2022a) used CAREFL on a real-world social sciences dataset leveraging a theorized Bayesian network.

B.3. Structured Autoregressive Flows Experiments

B.3.1. SYNTHETIC DATA GENERATION

We use randomly generated non-linear and multi-modal dataset with sparse conditional dependencies between variables
for autoregressive flow evaluation. The adjacency matrix used is visualized in Figure 6. This adjacency matrix is used to
generate masks for StrAF, and is provided to GNF as the ground truth adjacency matrix for its input masking scheme.

The objective is to generate a d = 15-dimensional multi-modal and non-linear dataset. We create the ground truth adjacency
matrix A ∈ {0, 1}15×15 by sampling each entry in the matrix independently from the Uniform(0, 1) distribution. Each
element is converted to a binary value using a sparsity threshold of 0.8. Moreover, upper triangular elements are then zeroed
out. This results in a sparse binary adjacency matrix for which values of one indicate conditional dependence, and zeros
indicate conditional independence.

In our data generating process, variables with conditional dependencies are generated as a weighted sum of its preceding
dependent variables. We generate a second matrix W ∈ R15×15 containing these weights, where each element is sampled
from the Uniform(−3, 3) distribution. This matrix W is then multiplied element-wise by A to zero out pairs of variables
that are conditionally independent. If we denote entries of W as wij , each dependent pair of variables is generated by the
following process:

xt =

√√√√t−1∑
j=1

(wtjxj)2 + ε, ε ∼ N (0, 1). (6)

Variables which are conditionally independent (e.g., x1) are generated using a mixture of three Gaussians. For each variable
and each Gaussian mixture component, we sample its mean from the Uniform(−8, 8) distribution, and its standard deviation
from the Uniform(0.01, 2) distribution. We draw the mixture weights from the Dirichlet(1, 1, 1) distribution. At sampling
time, we use this mixture weight vector to determine the number of samples to draw from each Gaussian mixture component.
For our experiments, we draw 5000 samples using this data generating process, and use a [0.6, 0.2, 0.2] ratio for training /
validation / testing splits.

B.3.2. EXPERIMENTAL RESULTS

We evaluate StrAF on density estimation against baselines on the d = 15 tri-modal and non-linear synthetic dataset for
experimental evaluation. We use 5000 samples and a [0.6, 0.2, 0.2] train / validation / test split.

Experimental Setup We select the fully auto-regressive flow (ARF-10) and the Graphical Normalizing Flow (GNF)
(Wehenkel & Louppe, 2021) as the most relevant baselines for comparison. While other structured flows exist and have
been examined in Appendix B.2, they do not represent latent variables in an autoregressive structure and are less directly
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Adjacency: Multimodal

Figure 6. Adjacency matrices used to generate the multi-modal non-linear synthetic dataset used in Section B.3.1. The matrix is also used
to generate StrAF masks and for GNF masking. Conditionally dependent variables are shown in yellow.

comparable. Both StrAF and GNF are provided the true adjacency matrix in their conditioners. As GNF permutes variables
between flow steps, it only respects a prescribed adjacency when using a single flow step. This limits performance in density
estimation, and we highlight this trade-off by comparing single step and ten step models (denoted with -1 and -10). All
models use a UMNN (Wehenkel & Louppe, 2019) transformer and we grid-search other hyperparameters in Appendix
B.3.3.

We evaluate density estimation performance using the negative log-likelihood (NLL) on test data. We evaluate sample
quality by computing the maximum mean discrepancy (MMD) using an RBF kernel (γ = 0.1) between 640 model generated
samples and the ground truth distribution. For each method, we select hyperparameters based on the validation loss, and
then train eight runs using random initialization. We then report the mean and 95% CI of each metric using these runs.

Figure 7. Model generated samples are shown in blue dots for randomly selected dimensions. The ground truth density is visualized by
the orange contours. Samples from methods that respect the prescribed structure throughout the entire flow (GNF-1, StrAF-10) match the
true distribution better than those that do not.

StrAF improves density estimation without sacrificing sample quality. We report the experimental results in Table 2
and observe several trends. As expected, increasing the number of flow steps improves density estimation. The ability to
prescribe the ground truth adjacency structure further increases model generalization in comparison to a fully auto-regressive
model. The GNF and ARF permute variables between flow steps, hurting sample quality unless only a single flow step is
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Table 2. Evaluation of StrAF versus baselines. Number after method name indicates number of flow steps.
Test NLL (↓) MMD (↓)

GNF-1 -3.77 ± 0.18 0.016 ± 6e-4
ARF-10 -3.94 ± 0.03 0.177 ± 2e-2
GNF-10 -4.38 ± 0.03 0.173 ± 2e-2

StrAF-1 -3.66 ± 0.08 0.015 ± 5e-4
StrAF-10 -4.35 ± 0.01 0.020 ± 7e-4

used. StrAF does not permute variables between flow steps and is able to estimate the density comparably to GNF-10 while
significantly improving sample quality. We visualize model generated samples for several dimensions in Figure 7.

B.3.3. ADDITIONAL EXPERIMENT DETAILS

Method Selection. We compared the StrAF against a fully autoregressive flow (denoted ARF in the main text) and the
Graphical Normalizing Flow (GNF) (Wehenkel & Louppe, 2021). The fully autoregressive flow assumes no conditional
independencies in the data generation process, hence using a full lower triangular adjacency matrix for masking. Meanwhile,
the GNF model also encodes conditional independencies, but cannot be extended past one flow step without sacrificing
sample quality, as shown in the main text. Both models were selected as they are autoregressive flows, and we omit
comparison to other flows in Appendix B.2 as they are not autoregressive and less relevant for comparison.

Training. Each model is trained using the Adam optimizer for a maximum of 150 epochs using a batch size of 256. During
all runs, the models were trained using early stopping on the validation log-likelihood loss with a patience of 10 epochs,
after which the model state at the best epoch was selected. We consider two additional training schedules: decreasing the
learning rate by a factor of 0.1 on plateaus where the loss does not improve for five epochs (denoted Plateau), and a single
scheduled decrease by a factor of 0.1 at epoch 40 (denoted MultiStep). In addition to the standard fixed learning rate, we
select between these training schedules as a hyperparameter.

While the GNF can learn an adjacency matrix from data, we are interested in scenarios where an adjacency matrix is
prescribed. Thus, we disable the learning functionality of the adjacency in GNF by stopping gradient updates to the GNF
input mask matrix. We retain the one hot encoding network described in the GNF paper. The fully autoregressive flow is
implemented by using a GNF with a full lower triangular adjacency matrix. Latent variables are permuted in ARF and GNF,
as described by their original publications, but we do not permute variables for StrAF.

Hyperparameters. Here we report the process used to select the model hyperparameters. We use the UMNN (Wehenkel &
Louppe, 2019) as each flow’s transformer. We use 20 integration steps to compute the transformer output. The UMNN is
conditioned on values computed by the conditioner. We select the dimension of these values as a hyperparameter named
”UMNN Hidden Size”. We then determine the best hyperparameters for each method using a grid search with the values in
Table 3.

Hyperparameter Grid Values
Flow Steps [1, 5, 10]
Conditioner Net Width [50, 500]
Conditioner Net Depth [3, 4]
UMNN Hidden Size [25, 50]
UMNN Width [250, 500]
UMNN Depth [4, 6]
Learning Rate [0.001, 0.0001]
LR Scheduler [Fixed, Plateau, MultiStep]

Table 3. Hyperparameter grid: normalizing flows

Note that while we include the number of flow steps in the grid search, we also reported the results for a single flow step to
illustrate the trade off between sample quality and density estimation as a function of flow depth. We found that ten steps
always outperformed five steps, and hence we did not report the results for the five step models. The best hyperparameters
(as determined by validation loss) that were selected for each model used in the main text are reported in Table 4.
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Hyperparameter ARF-10 GNF-1 GNF-10 StrAF-1 StrAF-10
Flow Steps 10 1 10 1 10
Conditioner Net Width 50 500 50 500 500
Conditioner Net Depth 4 4 3 4 4
UMNN Hidden Size 50 25 50 50 50
UMNN Width 500 500 250 500 250
UMNN Depth 4 4 6 6 6
Learning Rate 0.001 0.001 0.001 0.001 0.001
LR Scheduler MultiStep MultiStep Plateau Plateau Plateau

Table 4. Final hyperparameters used per flow model

We fix the best hyperparameters for each model, and then re-train each model on the same data splits using eight new random
seeds. This ensemble of eight models was used to generate confidence intervals for the evaluation metrics described below.

Evaluation Metrics. We evaluate each model in two ways: density estimation, and the quality of samples generated. We
evaluate the ability for a model to estimate the density underlying the samples by reporting the negative log-likelihood on a
held-out test split. Sample quality is evaluated using the maximum mean discrepancy (MMD) (Gretton et al., 2012). We
sample from each model by taking a noise sample z ∼ N(0, I) and then transforming it to the data space using the inverted
flow (T−1) from each model: T−1(z) = x. We repeat this process 640 times, and compare the generated samples against
the true data distribution, as represented by 1000 samples from the held-out test split. Denoting the collection of model
samples using X and test split samples as Y, the MMD is computed as:

mean(K(X,X)) + mean(K(Y,Y))− 2mean(K(X,Y)) (7)

where K(·, ·) denotes the RBF kernel (γ = 0.1) between two sets of points. When reporting the MMD for each model class,
we again use the eight models re-trained using different random seeds, as described in the previous subsection, to report the
mean and 95% confidence interval (across re-training runs) of the MMD.

C. Binary & Gaussian Experiments: Data Generation, Experiment Setup, and Additional Results
C.1. Data Generation & Adjacency Structures

For the main StrNN v. MADE experiments in this paper, we consider the following datasets:

1. d = 800 synthetic binary dataset where each variable depend on every other preceding variable (”Binary every other”).

2. d = 50 synthetic binary dataset where the adjacency matrix is randomly generated based on sparsity threshold (”Binary
random sparse”).

3. d = 20 synthetic Gaussian dataset where each variable is dependent on 2 previous variables (”Gaussian prev 2”).

4. d = 20 synthetic Gaussian dataset where the adjacency matrix is randomly generated based on a sparsity threshold
(”Gaussian random sparse”).

5. 784-pixel MNIST handwritten digit images, binarized according to (Salakhutdinov & Murray, 2008).

In Figures 8 and 9, we visualize the adjacency matrices that were used to generate the synthetic datasets listed above.

The true underlying conditional independence structure for the MNIST dataset used in Section 4.1 is unknown, which is
also a common challenge for any real-world/image dataset. Instead, when using the StrNN masked neural network, we
aim to encode the inductive bias of locality, so that density estimation for a single pixel only depends on its surrounding
neighbourhood of pixels. For the results shown in the main text, we decided to use a neighbourhood size of 10 after an
extensive hyperparameter search for this parameter. As explained briefly in Section 4.1, the hyperparameter nbr size
specifies the radius of the square context window originating from each pixel. Each pixel is modelled to be dependent on all
previous pixels in that window, as specified by the variable ordering. For variable ordering, we use the default row-major
pixel ordering for the MNIST images. The resulting adjacency matrix is visualized in Figure 10.
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Adjacency: Binary random

Figure 8. Adjacency matrix used to generate datasets for binary experiments. Left: every other generation scheme. Note in our actual
experiments, we used a 800-dimensional version of this adjacency structure. The 50-dimensional matrix is shown here for illustration
only. Right: random sparse generation scheme. Conditionally dependent variables are shown in yellow. These adjacency matrices are also
used to generate StrNN mask matrices.

We observe that based on the autoregressive assumptions, the synthetic data generating process should draw each xi as a
Bernoulli random variable (i.e., a coin flip) based on x1, ..., xi−1, for i = 1, ..., d. Given an adjacency matrix A ∈ {0, 1}d×d,
the general structure equations are given by:

xi ∼ Bernoulli(pi), pi = Sigmoid(
i−1∑
j=1

αijxj + ci), (8)

where αij = 0 if Aij = 0, otherwise αij ∼ N (0, 1) and ci ∼ N (0, 1).

Analogous to binary synthetic data generation, for Gaussian data, we sample each variable as:

xi ∼ N (µi, σi) where µi =

i−1∑
j=1

αijxj + ci, σi ∼ N (0, 1), (9)

where αij = 0 if Aij = 0, otherwise αij ∼ N (0, 1).

C.2. Experiment Setup

In this section, we describe the experimental setup for the binary and Gaussian density estimation tasks reported in Section 4.

Method Selection. We compared StrNN using the greedy mask factorization algorithm (Algorithm 1) to the fully
autoregressive MADE baseline as proposed in (Germain et al., 2015). MADE serves as a natural baseline since both methods
use the outputs of an autoencoder to parameterize marginal probabilities, while our StrNN method has the added capability
of enforcing additional conditional independence properties.

Training. Each model is trained with the AdamW optimizer with a batch size of 200 for a maximum of 5000 epochs.

Hyperparameters. We employed a grid search to find the optimal hyperparameters for StrNN and MADE respectively,
where the grid is provided in Table 5. The number of hidden layers is varied during the hyperparameter search, and the
number of hidden units in each hidden layer is determined by the input dimension d times the hidden size multiplier of that
layer. The Best hyperparameters for each model, dataset, and sample size discussed in Sections 4.1 and 4.2 are not listed
here since there are too many combinations. Please refer to the code repositories for reproducing the results.

Evaluation Metrics. Results from binary experiments are reported in terms of the negative log-likelihood (NLL) in Figures 2
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Adjacency: Gaussian random

Figure 9. Adjacency matrices used to generate the Gaussian synthetic dataset. Matrices are also used to generate StrNN masks during
density estimation tasks. Conditionally dependent variables are shown in yellow. Left: prev 2 generation scheme Right: random generation
scheme.
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Figure 10. Adjacency matrix used to mask StrNN for the binary MNIST density estimation task, with neighbourhood size set to 10
(nbr size=10). Conditionally dependent variables are shown in yellow. Left: All variables. Right: Zoomed in view of first 36 variables
for illustrative purposes.

and 3. Note that in the binary case, the NLL can simply be rewritten as the binary cross-entropy loss:

− log p(x) =

d∑
j=1

− log p(xj |x<j) =

d∑
j=1

−xj log x̂j − (1− xj) log(1− x̂j). (10)

The results from the Gaussian experiments are also reported in NLL, which is calculated by using the neural network outputs
as the parameters in each marginal conditional of the Gaussian distribution. The error ranges for the results from these
experiments are computed as standard deviation across samples in the held-out test set.

C.3. Additional Results

To validate the sample generation quality of StrNN when trained on the MNIST dataset, we display select samples generated
by both StrNN and the MADE baseline in Figure 11. We show that even in the low data regime (models fitted on 1000
training samples), both models generate samples with reasonable quality. Hence, we observe that for the density estimation
task, injecting prior structure using a StrNN improves likelihood values for each sample under the model without sacrificing
generative quality.
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Hyperparameter Grid Values
Activation [relu]
Epsilon [1, 0.01, 1e-05]
Hidden size multiplier 1 [1, 4, 8, 12]
Hidden size multiplier 2 [1, 4, 8, 12]
Hidden size multiplier 3 [1, 4, 8, 12]
Hidden size multiplier 4 [1, 4, 8, 12]
Hidden size multiplier 5 [1, 4, 8, 12]
Number of hidden layers [1, 2, 3, 4, 5]
Learning rate [0.1, 0.05, 0.01, 0.005, 0.001]
Weight decay [0.1, 0.05, 0.01, 0.005, 0.001]

Table 5. Hyperparameter grid: StrNN vs. MADE

Top: Samples generated from trained MADE model

Bottom: Samples generated from trained StrNN model with nbr size=10.

Figure 11. Sample MNIST handwritten digits (label 2) generated by MADE and StrNN trained on 1000 data points. Both models generate
samples of reasonable quality, while StrNN achieves higher likelihoods at the test samples, as illustrated in Figure 2.


