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Today

• So far in this course: supervised learning
• Today we start unsupervised learning

▶ No labels, so the purpose is to find patterns in data
▶ Need to specify what kind of patterns to look for

• This week: dimensionality reduction
▶ Linear dimensionality reduction (Principal Component Analysis)

▶ Matrix completion (needed for the project) is closely related to PCA.
▶ Nonlinear dimensionality reduction (autoencoders)

• Last Week : clustering
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Motivating Examples

Energy disaggregation

Kolter and Johnson, “REDD: A public data set for energy disaggregation research”
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Motivating Examples

Modeling the change in scientific topics over time

Griffiths and Steyvers, “Finding scientific topics”
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Motivating Examples

Modeling the change in scientific topics over time

Griffiths and Steyvers, “Finding scientific topics”
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Motivating Examples

The models for those tasks are fairly complicated. In this course, we’ll
focus on two simpler instances of unsupervised learning:

Clustering Dimensionality Reduction
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Linear Dimensionality Reduction

• We’ll start with a simpler form of dimensionality reduction: linear
dimensionality reduction

• Example: suppose you’re a psychologist interested in modeling
the variation in human personality

▶ You’ve asked lots of participants to take a survey with lots of
personality questions.

▶ By figuring out which questions are highly correlated with each
other, you can uncover the main factors describing human
personality.

• A linear dimensionality reduction model called factor analysis
found five key personality traits called the Big Five:

▶ extraversion, agreeableness, openness to experience,
conscientiousness, neuroticism

• In this lecture, we’ll consider a different but closely related model
called Principal Component Analysis (PCA).

7

X : NXD Z : NXK KD



PCA: Overview

• Principal Component Analysis (PCA) is our first unsupervised
learning algorithm, and an example of linear dimensionality
reduction.

• Dimensionality reduction: map data to a lower dimensional
space

▶ Save computation/memory
▶ Reduce overfitting, achieve better generalization
▶ Visualize in 2 dimensions

• Since PCA is a linear model, this mapping will be a projection.

Image credit: Elements of Statistical Learning
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Recall

· Every symmetric matrix admits a Spectral Decomposition
A = Q1Q where the columns at Q

Av =du are eigenvectors 2 the diagonal elements
atI are eigenvalues.

· Recall a symmetmatrix is an operator -> it transforms points
from IR*-> IR". The range at the points in the space

· The eigenvectors form a basis for 112
*

· The eigenvalues describe how much points are stretched
in the direction of the eigenvalue.

Lets start by thinking of how can project data outa
a subspace.
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Euclidean projection

Projection onto a 1-D subspace
x
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• Subspace S is the line along the
unit vector u

▶ {u} is a basis for S : any point in
S can be written as zu for some
z.

• Projection of x on S is denoted by ProjS(x)
• Recall: x⊤u = ∥x∥∥u∥ cos(θ) = ∥x∥ cos(θ)
• ProjS(x) = x⊤u" ######$#######%

length of proj

⋅ u"$%
direction of proj

= ∥x̃∥u
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General subspaces

• How to project onto a K-dimensional subspace?
▶ Idea: choose an orthonormal basis {u1,u2,⋯,uK} for S (i.e. all

unit vectors and orthogonal to each other)
▶ Project onto each unit vector individually (as in previous slide),

and sum together the projections.
• Mathematically, the projection is given as:

ProjS(x) = K

∑
i=1

ziui where zi = x
⊤
ui.

• In vector form:

ProjS(x) = Uz where z = U
⊤
x
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Projection onto a Subspace

• So far, we assumed the subspace passes through 0.
• In mathematical terminology, the “subspaces” we want to project
onto are really affine spaces, and can have an arbitrary origin µ̂.

z = U
⊤(x − µ̂)

• In machine learning, x̃ is also called the reconstruction of x.
• z is its representation, or code.
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Projection onto a Subspace

• If we have a K-dimensional subspace in a
D-dimensional input space, then x ∈ RD

and z ∈ RK .
• If the data points x all lie close to their
reconstructions, then we can approximate
distances, etc. in terms of these same
operations on the code vectors z.

• If K ≪ D, then it’s much cheaper to work
with z than x.

• A mapping to a space that’s easier to
manipulate or visualize is called a
representation, and learning such a
mapping is representation learning.

• Mapping data to a low-dimensional space
is called dimensionality reduction.
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Learning a Subspace

• How to choose a good subspace S?
▶ Origin µ̂ is the empirical mean of the data
▶ Need to choose a D ×K matrix U with orthonormal columns.

• Two criteria:
▶ Minimize the reconstruction error:

min
U

1
N

N

∑
i=1

∥x(i) − x̃
(i)∥2

▶ Maximize the variance of reconstructions: Find a subspace where
data has the most variability.

max
U

1
N

∑
i

∥x̃(i) − µ̂∥2

▶ Note: The data and its reconstruction have the same means
(exercise)!
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Learning a Subspace

• These two criteria are equivalent! I.e., we’ll show

1
N

N

∑
i=1

∥x(i) − x̃
(i)∥2 = const − 1

N
∑
i

∥x̃(i) − µ̂∥2

• Recall x̃(i) = µ̂ +Uz(i) and z(i) = U⊤(x(i) − µ̂).
• Observation 1: Because the columns of U are orthogonal, U⊤U = I, so

∥x̃ − µ̂∥2 = ∥Uz∥2 = z
⊤
U

⊤
Uz = z

⊤
z = ∥z∥2

.

⟹ norm of centered reconstruction is equal to norm of
representation.
(If you draw it, this is obvious).
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Pythagorean Theorem

• Observation 1: ∥x̃(i) − µ̂∥2 = ∥z(i)∥2

▶ Variance of reconstructions is equal to variance of code vectors:
1
N
∑i ∥x̃(i) − µ̂∥2 = 1

N
∑i ∥z(i)∥2 (exercise 1

N
∑i z

(i) = 0)

• Observation 2: orthogonality of x̃(i) − µ̂ and x̃(i) − x(i)
(Two vectors a,b are orthogonal ⟺ a⊤b = 0)

• Recall x̃(i) = µ̂ +UU⊤(x(i) − µ̂).
(x̃(i) − µ̂)⊤(x̃(i) − x

(i))
= (x(i) − µ̂)⊤UU

⊤(µ̂ − x
(i) +UU

⊤(x(i) − µ̂))
=(x(i)−µ̂)⊤UU

⊤(µ̂−x
(i)) + (x(i)−µ̂)⊤UU

⊤(x(i)−µ̂)
= 0
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Pythagorean Theorem

The Pythagorean Theorem tells us:
∥x̃(i) − µ̂∥2 + ∥x(i) − x̃

(i)∥2 = ∥x(i) − µ̂∥2 for each i

By averaging over data and from observation 2, we obtain

1
N

N

∑
i=1

∥x̃(i) − µ̂∥2

" ########################################################$######################################################## %
projected variance

+
1
N

N

∑
i=1

∥x(i) − x̃
(i)∥2

" ###############################################################$###############################################################%
reconstruction error

= 1
N

N

∑
i=1

∥x(i) − µ̂∥2

" ########################################################$######################################################## %
constant

Therefore,
projected variance = constant − reconstruction error

Maximizing the variance is equivalent to minimizing the reconstruction
error!
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize
the reconstruction error, is called principal component analysis (PCA).

• Consider the empirical covariance matrix:

Σ̂ = 1
N

N

∑
i=1

(x(i) − µ̂)(x(i) − µ̂)⊤
• Recall: Σ̂ is symmetric and positive semidefinite.
• The optimal PCA subspace is spanned
by the top K eigenvectors of Σ̂.

▶ More precisely, choose the first K of
any orthonormal eigenbasis for Σ̂.

▶ The general case is tricky, but we’ll
show this for K = 1.

• These eigenvectors are called
principal components, analogous to
the principal axes of an ellipse. 17



Deriving PCA

• For K = 1, we are fitting a unit vector u, and the code is a scalar
z(i) = u⊤(x(i) − µ̂). Let’s maximize the projected variance. From
observation 1, we have

1
N

∑
i

∥x̃(i) − µ̂∥2 = 1
N

∑
i

[z(i)]2 = 1
N

∑
i

(u⊤(x(i) − µ̂))2

= 1
N

N

∑
i=1

u
⊤(x(i) − µ̂)(x(i) − µ̂)⊤u (a⊤

b)2 = a
⊤
bb

⊤
a

= u
⊤ [ 1

N

N

∑
i=1

(x(i) − µ̂)(x(i) − µ̂)⊤]u
= u

⊤
Σ̂u

= u
⊤
QΛQ

⊤
u Spectral Decomposition Σ̂ = QΛQ

⊤

= a
⊤
Λa for a = Q

⊤
u

=
D

∑
j=1

λja
2
j
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Deriving PCA

• Maximize a⊤Λa = ∑D
j=1 λja

2
j for a = Q⊤u.

▶ This is a change-of-basis to the eigenbasis of Σ.
• Assume the λi are in sorted order, λ1 ≥ λ2,≥ ...

• Observation: since u is a unit vector, then by unitarity, a is also a
unit vector: a⊤a = u⊤QQ⊤u = u⊤u, i.e., ∑j a

2
j = 1.

• By inspection, set a1 = ±1 and aj = 0 for j ≠ 1.
• Hence, u = Qa = q1 (the top eigenvector).

• A similar argument shows that the kth principal component is the
kth eigenvector of Σ.
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Recap

Recap:

• Dimensionality reduction aims to find a low-dimensional
representation of the data.

• PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction
error.

• The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

• PCA gives a set of decorrelated features.
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Applying PCA to faces

• Consider running PCA on 2429 19x19 grayscale images (CBCL data)

• Can get good reconstructions with only 3 components

• PCA for pre-processing: can apply classifier to latent representation
▶ Original data is 361 dimensional
▶ For face recognition PCA with 3 components obtains 79% accuracy

on face/non-face discrimination on test data vs. 76.8% for a
Gaussian mixture model (GMM) with 84 states. (We’ll cover GMMs
later in the course.)

• Can also be good for visualization
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Applying PCA to faces: Learned basis

Principal components of face images (“eigenfaces”)
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Lets apply PCA to thefollowing dataset
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Applying PCA to digits
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization
2. Autoencoder
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Some recommender systems in action

Ideally recommendations should combine global and seasonal interests,
look at your history if available, should adapt with time, be coherent and
diverse, etc. 25



Some recommender systems in action
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The Netflix problem

Movie recommendation: Users watch movies and rate them out of 5⭑.

User Movie Rating
Thor ⭑⭐⭐⭐⭐
Chained ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭐⭐
Chained ⭑⭑⭑⭑⭐
Bambi ⭑⭑⭑⭑⭑
Titanic ⭑⭑⭑⭐⭐
Goodfellas ⭑⭑⭑⭑⭑
Dumbo ⭑⭑⭑⭑⭑
Twilight ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭑⭑
Tangled ⭑⭐⭐⭐⭐

Because users only rate a few items, one would like to infer their
preference for unrated items
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Netflix Prize
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PCA as Matrix Factorization

• Recall PCA: each input vector x(i) ∈ RD is approximated as
µ̂ +Uz(i),

x
(i) ≈ x̃

(i) = µ̂ +Uz
(i)

where µ̂ = 1
n
∑i x

(i) is the data mean, U ∈ RD×K is the
orthogonal basis for the principal subspace, and z(i) ∈ RK is the
code vector, and x̃(i) ∈ RD is x(i)’s reconstruction or
approximation.

• Assume for simplicity that the data is centered: µ̂ = 0. Then, the
approximation looks like

x
(i) ≈ x̃

(i) = Uz
(i)
.
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PCA as Matrix Factorization
• PCA(on centered data): input vector x(i) is approximated as Uz(i)

x
(i) ≈ Uz

(i)
• Write this in matrix form, we have X ≈ ZU⊤ where X and Z are
matrices with one row per data point

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[x(1)]⊤[x(2)]⊤
⋮[x(N)]⊤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN×D and Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[z(1)]⊤[z(2)]⊤
⋮[z(N)]⊤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN×K

• Can write the squared reconstruction error as
N

∑
i=1

∥x(i) −Uz
(i)∥2 = ∥X − ZU

⊤∥2
F ,

• ∥ ⋅ ∥F denotes the Frobenius norm:

∥Y∥2
F = ∥Y⊤∥2

F = ∑
i,j

y
2
ij = ∑

i

∥y(i)∥2
.
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PCA as Matrix Factorization

• So PCA is approximating X ≈ ZU⊤, or equivalently X⊤ ≈ UZ⊤.

• Based on the sizes of the matrices, this is a rank-K
approximation.

• Since U was chosen to minimize reconstruction error, this is the
optimal rank-K approximation, in terms of error ∥X⊤ −UZ⊤∥2

F .
31



Matrix Completion

• We just saw that PCA gives the optimal low-rank matrix
factorization to a matrix X.

• Can we generalize this to the case where X is only partially
observed?

▶ A sparse 1000 × 1000 matrix with 50,000 observations (only 5%
observed).

▶ A rank 5 approximation requires only 10,000 parameters, so it’s
reasonable to fit this.

▶ Unfortunately, no closed form solution.

32
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The Netflix problem

Movie recommendation: Users watch movies and rate them as good
or bad.

User Movie Rating
Thor ⭑⭐⭐⭐⭐
Chained ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭐⭐
Chained ⭑⭑⭑⭑⭐
Bambi ⭑⭑⭑⭑⭑
Titanic ⭑⭑⭑⭐⭐
Goodfellas ⭑⭑⭑⭑⭑
Dumbo ⭑⭑⭑⭑⭑
Twilight ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭑⭑
Tangled ⭑⭐⭐⭐⭐

Because users only rate a few items, one would like to infer their
preference for unrated items
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Matrix Completion

Matrix completion problem: Transform the table into a N users by M
movies matrix R

• Data: Users rate some movies.
Ruser,movie. Very sparse

• Task: Predict missing entries,
i.e. how a user would rate a
movie they haven’t previously
rated

• Evaluation Metric: Squared
error (used by Netflix
Competition). Is this a
reasonable metric?

34



Matrix Completion

• In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
factors K inferred from the ratings patterns.

• That is, we seek representations for movies and users as vectors
in RK that can ultimately be translated to ratings.

• For simplicity, we can associate these factors (i.e. the dimensions
of the vectors) with idealized concepts like

▶ comedy
▶ drama
▶ action
▶ But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?
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Matrix Completion

• Let the representation of user i in the K-dimensional space be ui and
the representation of movie j be zj

▶ Intuition: maybe the first entry of ui says how much the user likes
horror films, and the first entry of zj says how much movie j is a
horror film.

• Assume the rating user i gives to movie j is given by a dot product:
Rij ≈ u⊤

i zj

• In matrix form, if:

U =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
— u⊤

1 —
⋮

— u⊤
N —

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Z

⊤ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∣ ∣
z1 . . . zM∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
then: R ≈ UZ⊤

• This is a matrix factorization problem!
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Matrix Completion

• Recall PCA: To enforce X⊤ ≈ UZ⊤, we minimized

min
U,Z

∥X⊤ −UZ
⊤∥2

F = ∑
i,j

(xji − u
⊤
i zj)2

where ui and zi are the i-th rows of matrices U and Z,
respectively.

• What’s different about the Netflix problem?
▶ Most entries are missing!
▶ We only want to count the error for the observed entries.
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Matrix Completion

• Let O = {(n,m) ∶ entry (n,m) of matrix R is observed}
• Using the squared error loss, matrix completion requires solving

min
U,Z

1
2

∑
(i,j)∈O

(Rij − u
⊤
i zj)2

• The objective is non-convex in U and Z jointly, and in fact it’s generally
NP-hard to minimize the above cost function exactly.

• As a function of either U or Z individually, the problem is convex and
easy to optimize. We can use coordinate descent, just like with K-means
and mixture models!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix U and
optimize Z, and so on until convergence.
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Alternating Least Squares

• Want to minimize the squared error cost with respect to the
factor U. (The case of Z is exactly symmetric.)

• We can decompose the cost into a sum of independent terms:

∑
(i,j)∈O

(Rij − u
⊤
i zj)2 = ∑

i

∑
j∶(i,j)∈O

(Rij − u
⊤
i zj)2

# $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$&
only depends on ui

This can be minimized independently for each ui.
• This is a linear regression problem in disguise. Its optimal
solution is:

ui =
⎛⎜⎝ ∑
j∶(i,j)∈O

zjz
⊤
j

⎞⎟⎠
−1

∑
j∶(i,j)∈O

Rijzj

39
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Alternating Least Squares

ALS for Matrix Completion problem

1. Initialize U and Z randomly

2. repeat until convergence

3. for i = 1, .., N do

4. ui = (∑j∶(i,j)∈O zjz
⊤
j )−1 ∑j∶(i,j)∈O Rijzj

5. for j = 1, ..,M do

6. zj = (∑i∶(i,j)∈O uiu
⊤
i )−1 ∑i∶(i,j)∈O Rijui
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization
2. Autoencoder
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Autoencoders

• An autoencoder is a feed-forward neural net whose job is to take
an input x and predict x.

• To make this non-trivial, we need to add a bottleneck layer
whose dimension is much smaller than the input.
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Linear Autoencoders

Why autoencoders?

• Map high-dimensional data to two dimensions for visualization
• Learn abstract features in an unsupervised way so you can apply
them to a supervised task

▶ Unlabled data can be much more plentiful than labeled data
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Linear Autoencoders

• The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss.

L(x, x̃) = ∥x − x̃∥2

• This network computes x̃ = W2W1x, which
is a linear function.

• If K ≥ D, we can choose W2 and W1 such
that W2W1 is the identity matrix. This isn’t
very interesting.

• But suppose K < D:
▶ W1 maps x to a K-dimensional space, so it’s doing dimensionality

reduction.
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Linear Autoencoders

• Observe that the output of the autoencoder must lie in a
K-dimensional subspace spanned by the columns of W2. This is
because x̃ = W2z

• We saw that the best possible (min error) K-dimensional linear
subspace in terms of reconstruction error is the PCA subspace.

• The autoencoder can achieve this by setting W1 = U⊤ and
W2 = U.

• Therefore, the optimal weights for a linear autoencoder are just
the principal components!
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Nonlinear Autoencoders

• Deep nonlinear autoencoders learn to project the data, not onto
a subspace, but onto a nonlinear manifold

• This manifold is the image of the decoder.
• This is a kind of nonlinear dimensionality reduction.
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Nonlinear Autoencoders

• Nonlinear autoencoders can learn more powerful codes for a
given dimensionality, compared with linear autoencoders (PCA)
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Nonlinear Autoencoders

Here’s a 2-dimensional autoencoder representation of newsgroup
articles. They’re color-coded by topic, but the algorithm wasn’t given
the labels.
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