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- So far in the course we have adopted a modular perspective, in
which the model, loss function, optimizer, and regularizer are
specified separately.

- Today we begin putting together a probabilistic interpretation of
our model and loss, and introduce the concept of maximum
likelihood estimation.



Probabilistic Modeling of Data
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Example: A Biased Coin

You flip a coin N = 100 times and get outcomes {x1,...,zN}
where x; € {0,1} and z; = 1 is interpreted as heads H.

Suppose you had Ny = 55 heads and Np = 45 tails.
We want to create a model to predict the outcome of the next coin

flip. That is, we want to answer this question:

What is the probability it will come up heads if we flip again?



The coin may be biased. Let's assume that one coin flip outcome z is
a Bernoulli random variable for a currently unknown parameter
6 € [0,1].

p(x=1/0) =0 and p(z=00) =1—-146
or more succinctly p(z|) = 6%(1 — §)1~

Assume that {z1,...,znx} are independent and identically distributed
(i.i.d.). Thus, the joint probability of the outcome {x1,..., 2y} is

N
p(ml, ,xNIH) - H@xz<1 o 9)1_xi

i=1



The likelihood function is the probability of observing the data as a
function of the parameters -

N
L) =67 -6
i=1

We usually work with log-likelihoods (why?):

N
00) = wilogf+ (1 — a)log(1 — 6)

i=1



Maximum Likelihood Estimation

How can we choose #? Good values of § should assign high
probability to the observed data.

The maximum likelihood criterion says that we should pick the
parameters that maximize the likelihood.

[ N— arg max £(0)
0e[0,1]

We can find the optimal solution by setting derivatives to zero.

N
e d | | _ Ny Np
W= <;leog9+ (1 —x;)log(1 9)) =3 10

where Ng =), z;and Nr =N — > z;.

Setting this to zero gives the maximum likelihood estimate:
Ny

Ny + Np’

éML =



Maximum Likelihood Estimation

- define a model that assigns a probability (or has a probability
density at) to a dataset

- maximize the likelihood (or minimize the neg. log-likelihood).



Discriminative and Generative
Classifiers
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Spam Classification

For a large company that runs an email service, one of the important
predictive problems is the automated detection of spam email.

M B4

Dear Karim,

2= e '/"//i/ = I think we should postpone the board meeting to be held

// e after Thanksgiving.

Regards,
Anna

Dear Toby,

=ty o | have an incredible opportunity for mining 2 Bitcoin a day. Please
o o Contact me at the earliest at +1 123 321 1555. You won’t want to miss

L/ BN out on this opportunity.

Regards,
Ark

n



Discriminative Classifiers

Discriminative classifiers try to learn mappings directly from the
space of inputs X to class labels {0,1,2,..., K}

Features Class probability
x p(ylz)
,,//, e x\' postpone, board, meeting, Not spam
W% N Thanksgiving
= J
. ( A
he o mining, Bitcoin, contact, Spam
A \\ opportunity
\ y,
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Generative Classifiers

Generative classifiers try to build a model of “what data for a class
looks like”, i.e. model p(x,y). If we know p(y) we can easily compute

p(x[y).
Classification via Bayes rule (thus also called Bayes classifiers)

Probability of feature given label Class label
)\
p(zly) Y

—————————— ( '
: /7 s <\ postpone, board, meeting, Not spam
v N Thanksgiving
- \ J

= ( '
= / = . = mining, Bitcoin, contact, Spam
[ SN opportunity
: \. J
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Generative vs Discriminative

- Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

» Model p(t|x) directly (logistic regression models)
» Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)
» Tries to solve: How do | separate the classes?
- Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).
» Model p(x]t)
» Apply Bayes Rule to derive p(t|x).
» Tries to solve: What does each class "look” like?

- Key difference: is there a distributional assumption over inputs?
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Naive Bayes Models
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Example: Spam Detection

- Classify email into spam (¢ = 1) or non-spam (¢ = 0).
- Binary features x = [z1,...,xp],z; € {0,1} saying
whether each of D words appears in the e-mail.

Example email: “You are one of the very few who have been selected
as a winner for the free $1000 Gift Card.”

Feature vector for this email:
“card”: 1

“winners”: 1
“winter”: 0

“you”: 1



Bayesian Classifier

Given features x = [x1, 2, -+ ,zp]T
want to compute class probabilities using Bayes Rule:

Pr. feature given class

. Pxld w0

SN—— p(X)
Pr. class given feature

In words,

Pr. of feature given class x Prior for class
Pr. of feature

Posterior for class =

To compute p(c|x) we need: p(x|c) and p(c).



Motivation for Compact Representation

- Two classes: ¢ € {0,1}.
- Binary features x = [z1,...,zpl,z; € {0,1}

- Define a joint distribution p(c, z1,...,zp).
How many probabilities do we need to specify this joint dist.?

- Let's impose structure on the distribution so that
the representation is compact and
allows for efficient learning and inference



Naive Bayes Independence Assumption

Naive assumption:
the features z; are conditionally independent given the class c.

- Allows us to decompose the joint distribution:
p(¢,z1,...,xp) = p(c) p(z1]c) - - - p(zplc).
Compact representation of the joint distribution

- Prior probability of class:
p(c=1) = (e.g. prob of spam)

- Conditional probability of feature given class:
p(zj = 1|c) = 6, (e.g. prob of word appearing in spam)
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Bayesian Network for a Naive Bayes Model

We can form a graphical model.

- Which probabilities do we need to specify this dist.?
- How many probabilities do we need to specify this dist.?

20



Decomposing the Log-Likelihood

Decompose the log-likelihood into independent terms.

Optimize each term independently.

N N
00) = Z log p(c®,x®) = Z log {p(x(z)]c(l))p(c(l))}

i=1 i=1
N D

= > tog {p(c™) [T (e}’ |}
i=1 j=1
N D

=" [logp(c?) + 3 logp(al” | D)
i=1 j=1

D N

= logp(c™)+ Y "logp(a;” | V)
i=1 j=1 i=1
Log-likelihood Log-likelihood

of labels for feature x; 5
1



Learning the Prior over Class

- To learn the prior, we maximize "% | log p(¢(?)
- Define m = p(c® = 1)

- Pr. 4-th email: p(c®) = 7 (1 — 7)1=<,

- Log-likelihood of the dataset:

Zlogp Zc log7r+z l—c )log(1 — )

=1

- Maximum likelihood estimate of the prior 7
is the fraction of spams in dataset.

S 1[c® =1]  #spams in dataset

= N ~ total # samples
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Learning Pr. Feature Given Class

- To learn p($§i) —1]¢), we maximize SN 1ogp(x§.i)| )
- Define §;. = p(z\” = 1]c).
{9 (@)
- Pr. of i-th email: p(e!” |¢) = 637 (1 —;0)' ™" .
. Log—likelihood of the dataset:

Zlogp 2 Z( { Z 10g9]1+(1*$(l))10g(1*931)}

—i—Zl—c { log9jo+(1—a:(l))log(l—ﬁjo)}

- Maximum l||<el|hood estimate of 6;.
is the fraction of word j occurrances in each class in the dataset.

D> ﬂ[w? =1& 9 = wre—1 Hword j appears in class ¢
e S 1@ = (] - # class c in dataset
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Predicting the Most Likely Class

- We predict the class by performing inference in the model.
- Apply Bayes' Rule:

¢) ()H] 1 p(zj]c)
PO T p(e) [0 (s )

’:]c

- For input x, predict ¢ with the largest p(c) | | p(z; | ¢)
J=1

(the most likely class).

)

(c]x) x p(c H (zjc)

Jj=1

2%



Naive Bayes Properties

- An amazingly cheap learning algorithm!
- Training time: estimate parameters using maximum likelihood

» Compute co-occurrence counts of each feature with the labels.
» Requires only one pass through the data!

- Test time: apply Bayes’ Rule
» Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)

- Analysis easily extends to prob. distributions other than Bernoulli.

- Less accurate in practice compared to discriminative models
due to its “naive” independence assumption.
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Bayesian Parameter Estimation




e Bayesian Parameter Estimation
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Data Sparsity

Maximum likelihood can overfit if there is too little data.

Example: what if you flip the coin twice and get H both times?

Npg 2

=] = :1
Ng+Nr 2+0

OmL

The model assigned probability 0 to T.
This problem is known as data sparsity.
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Defining a Bayesian Model

We need to specify two distributions:

- The prior distribution p(9)
encodes our beliefs about the parameters
before we observe the data.

- The likelihood p(D | 0)
encodes the likelihood of observing the data
given the parameters.

28



The Posterior Distribution

- When we update our beliefs based on the observations,
we compute the posterior distribution using Bayes' Rule:

»(6]D) — _POPDIO)

[ p(@)p(D]6)d6"”

- Rarely ever compute the denominator explicitly.
- In general, computing the denominator is intractable.
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Revisiting Coin Flip Example

We already know the likelihood:

L(6) = p(D|9) = 67 (1 — 6)"T

It remains to specify the prior p(9).

- An uninformative prior, which assumes as little as possible.
A reasonable choice is the uniform prior.

- But, experience tells us 0.5 is more likely than 0.99.
One particularly useful prior is the beta distribution:

I'(a+b)

P09 0) = FayT0)

9&—1(1 . Q)b—l.

- We can ignore the normalization constant.
p(0;a,b) < 027 1(1 — )L,
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Beta Distribution Properties

- The expectation is E[0] = a/(a + b).
- The distribution gets more peaked when a and b are large.
- When a =0b =1, it becomes the uniform distribution.

NN e o
wu
0o
[ B T
IS4

(6,]

o

Q90 9 9 Q
nnunu
oS T T o
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Posterior for the Coin Flip Example

- Computing the posterior distribution:
p(0|D) o< p(6)p(D | 0)
o [6°71(1 - 0)"1) [6VH (1 - )]
— 9a71+NH(1 o e)bflJrNT.
A beta distribution with parameters Ng + a and Nz + b.
- The posterior expectation of 4 is:
Ng+a
Ny +Nr+a+b

- Think of a and b as pseudo-counts.
beta(a,b) = beta(1,1) + a — 1 heads + b — 1 tails.

- The prior and likelihood have the same functional form
(conjugate priors).

E[¢9| D] =
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Bayesian Inference for the Coin Flip Example

When you have enough observations, the data overwhelm the prior.

Small data setting Large data setting
Ng =2, Nr=0 Npg =55, Npr =45
> — Prior ol — Prior
2.5/ — Lkelihood — Likelihood
— Posterior 7} — Posterior
2.0 6
5
15 Al
1.0 3
2
0.5 .
0'8‘0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0
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Maximum A-Posteriori (MAP) Estimation

Finds the most likely parameters under the posterior (i.e. the mode).

3.0

— Prior
— Likelihood
— Posterior

2.5

2.0

1.5

1.0

0.5

0'8.0 0.2 0.4 0.6 0.8 1.0
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Maximum A-Posteriori Estimation

Converts the Bayesian parameter estimation problem
into @ maximization problem

OrAp = arg méix p(0|D)

= argmax p(6) p(D|6)
= arg max logp(0) + logp(D | 0)
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Maximum A-Posteriori Estimation

Joint probability of parameters and data:

log p(0, D) = logp(#) 4+ log p(D | )
= Const+ (Ng +a—1)logf + (Nr +b—1)log(1 — 0)

Maximize by finding a critical point

d Ng+a—1 Np+b-—1
- — _ =0
g logr(6. D) 7 T
Solving for 6,
Ngp+a—1

i) —
MAP = N+ Nr+ta+tb—2
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Estimate Comparison for Coin Flip Example

Formula Nyg=2,Npr=0 Ny =55, Np =45
A N 55
Oni, Nt 1 5 =0.55
Nyg+a 4 57 ~
E[6|D] 7NH+]§,IT+G+b g~ 0.67 104 = 0.548

Nig+a—1

) _ 56
Onvap N+ Nptatb—2 =0.75 = ~ 0.549

102

=~

OriAp assigns nonzero probabilities as long as a, b > 1.

37



	Probabilistic Modeling of Data
	Discriminative and Generative Classifiers
	Naïve Bayes Models
	Bayesian Parameter Estimation

