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Multi-class Classification

Task is to predict a discrete(> 2)-valued target.
It is very hard to say what makes a 2         Some examples from an earlier version of the net 
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Targets in Multi-class Classification

• Targets form a discrete set {1, . . . ,K}.
• Represent targets as one-hot vectors or one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

∈ RK
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Linear Function of Inputs

Vectorized form:

z = Wx+ b or
z = Wx with dummy x0 = 1

Non-vectorized form:

zk =
D∑

j=1

wkjxj + bk for k = 1, 2, ...,K

• W: K x D matrix.
• x: D x 1 vector.
• b: K x 1 vector.
• z: K x 1 vector.
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Generating a Prediction

Interpret zk as how much the model prefers the k-th prediction.

yi =

{
1, if i = argmax

k
zk

0, otherwise

How does the K = 2 case relate to the binary linear classifiers?
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Softmax Regression

• Soften the predictions for optimization.
• A natural activation function is the softmax function,
a generalization of the logistic function:

yk = softmax(z1, . . . , zK)k =
ezk∑
k′ e

zk′

• Inputs zk are called the logits.
• Interpret outputs as probabilities.
• If zk is much larger than the others,
then softmax(z)k ≈ 1 and it behaves like argmax.

What does the K = 2 case look like?
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Cross-Entropy as Loss Function

Use cross-entropy as the loss function.

LCE(y, t) = −
K∑

k=1

tk log yk = −t⊤(log y),

where the log is applied element-wise.

Often use a combined softmax-cross-entropy function.
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Gradient Descent Updates for Softmax Regression

Softmax Regression:

z = Wx

y = softmax(z)

LCE = −t⊤(log y)

Gradient Descent Updates:

∂LCE

∂wk
=
∂LCE

∂zk
· ∂zk
∂wk

= (yk − tk) · x

wk ← wk − α
1

N

N∑

i=1

(y(i)k − t(i)k )x(i)
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Progress During Learning

• Track progress during learning by plotting training curves.
• Chose the training criterion (e.g. squared error, cross-entropy)
partly to be easy to optimize.

• May wish to track other metrics to measure performance
(even if we can’t directly optimize them).
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Tracking Accuracy for Binary Classification

We can track accuracy, or fraction correctly classified.

• Equivalent to the average 0–1 loss, the error rate,
or fraction incorrectly classified.

• Useful metric to track even if we couldn’t optimize it.

Another way to break down the accuracy:

Acc =
TP + TN

P +N
=

TP + TN

(TP + FN) + (TN + FP )

• P : num positive; N : num negative;
• TP : true positives; TN : true negatives
• FP : false positive or a type I error
• FN : false negative or a type II error
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Accuracy is Highly Sensitive to Class Imbalance

Suppose you are screening patients for a particular disease.
It’s known that 1% of patients have that disease.

• What is the simplest model that can achieve 99% accuracy?
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Sensitivity and Specificity

Useful metrics even under class imbalance!

Sensitivity = TP
TP+FN [True positive rate]

Specificity = TN
TN+FP [True negative rate]

What happens if our problem is not linearly separable?
How do we pick a threshold for y = σ(x)?
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Designing Diagnostic Tests

• A binary model to predict whether someone has a disease.
• What happens to sensitivity and specificity
as you slide the threshold from left to right?
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Tradeoff between Sensitivity and Specificity

As we increase the criterion value (i.e. move from left to right),
how do the sensitivity and specificity change?
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Receiver Operating Characteristic (ROC) Curve

Area under the ROC curve (AUC) can quantify if a binary classifier
achieves a good tradeoff between sensitivity and specificity.
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Confusion Matrix for Multi-Class classification

• Visualizes how frequently certain classes are confused.
• K ×K matrix; rows are true labels, columns are predicted labels,
entries are frequencies

• What does the confusion matrix for a perfect classifier look like?
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Limits of Linear Classification
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XOR is Not Linearly Separable

Some datasets are not linearly separable, e.g. XOR.

Visually obvious, but how can we prove this formally?
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Proof That XOR is Not Linearly Separable

Proof by Contradiction:

• Half-spaces are convex. That is, if two points lie in a half-space,
the line segment connecting them also lie in the same half-space.

• Suppose that the problem is feasible.
• If the positive examples are in the positive half-space,
then the green line segment must be as well.

• Similarly, the red line segment must lie in the negative half-space.
• But, the intersection can’t lie in both half-spaces. Contradiction!
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Classifying XOR Using Feature Maps

Sometimes, we can overcome this limitation using feature maps,
e.g., for XOR.

ψ(x) =

⎛

⎝
x1
x2

x1x2

⎞

⎠

x1 x2 ψ1(x) ψ2(x) ψ3(x) t
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

• This is linearly separable. (Try it!)
• Designing feature maps can be hard. Can we learn them?
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Introducing Neural Networks
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Neurons in the Brain

Neurons receive input signals and accumulate voltage.
After some threshold, they will fire spiking responses.

[Pic credit: www.moleculardevices.com]
25



A Simpler Neuron

For neural nets, we use a much simpler model for neuron, or unit:

• Similar to logistic regression: y = σ(w⊤x+ b)

• By throwing together lots of these simple neuron-like processing
units, we can do some powerful computations!
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A Feed-Forward Neural Network

• A directed acyclic graph
(DAG)

• Units are grouped into
layers
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Multilayer Perceptrons

• A multi-layer network consists of fully connected layers.
• In a fully connected layer, all input units are connected to
all output units.

• Each hidden layer i connects Ni−1 input units to Ni output units.
Weight matrix is Ni x Ni−1.

• The outputs are a function of the input units:
y = f(x) = φ (Wx+ b)

φ is applied component-wise.
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Some Activation Functions

Identity

y = z

Rectified Linear Unit
(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez
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More Activation Functions

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic Tangent
(tanh)

y =
ez − e−z

ez + e−z
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Computation in Each Layer
Each layer computes a function.

h(1) = f (1)(x) = φ(W(1)x+ b(1))

h(2) = f (2)(h(1)) = φ(W(2)h(1) + b(2))

...
y = f (L)(h(L−1))

If task is regression: choose
y = f (L)(h(L−1)) = (w(L))⊤h(L−1) + b(L)

If task is binary classification: choose
y = f (L)(h(L−1)) = σ((w(L))⊤h(L−1) + b(L))
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A Composition of Functions

The network computes
a composition of functions.

y = f (L) ◦ · · · ◦ f (1)(x).

Modularity: We can implement each layer’s
computations as a black box.
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Feature Learning

Neural nets can be viewed as a way of learning features:

The goal:
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Feature Learning

• Suppose we’re trying to classify images of handwritten digits.
• Each image is represented as a vector of 28× 28 = 784 pixel
values.

• Each hidden unit in the first layer acts as a feature detector.
• We can visualize w by reshaping it into an image.
Below is an example that responds to a diagonal stroke.
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Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit
classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.
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Expressivity of a Neural Network
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Expressivity

• A hypothesis space H is the set of functions that can be
represented by some model.

• Consider two models A and B with hypothesis spaces HA,HB .
• If HB ⊆ HA, then A is more expressive than B.
A can represent any function f in HB .

• Some functions (XOR) can’t be represented by linear classifiers.
Are deep networks more expressive?
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Expressive Power of Linear Networks

• Consider a linear layer: the activation function was the identity.
The layer just computes an affine transformation of the input.

• Any sequence of linear layers is equivalent to a single linear layer.

y = W(3)W(2)W(1)
︸ ︷︷ ︸

!W′

x

• Deep linear networks can only represent linear functions
— no more expressive than linear regression.
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Expressive Power of Non-linear Networks

• Multi-layer feed-forward neural networks
with non-linear activation functions

• Universal Function Approximators:
They can approximate any function arbitrarily well,
i.e., for any f : X → T there is a sequence fi ∈ H with fi → f .

• True for various activation functions
(e.g. thresholds, logistic, ReLU, etc.)
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Designing a Network to Classify XOR

Assume a hard threshold activation function.

40



Designing a Network to Classify XOR

h1 computes x1 ∨ x2

I[x1 + x2 − 0.5 > 0]

h2 computes x1 ∧ x2

I[x1 + x2 − 1.5 > 0]

y computes h1 ∧ (¬h2) = x1 ⊕ x2

I[h1 − h2 − 0.5 > 0]

≡ I[h1 + (1− h2)− 1.5 > 0]
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Universality for Binary Inputs and Targets

• Hard threshold hidden units, linear output
• Strategy: 2D hidden units, each of which responds to one
particular input configuration

• Only requires one hidden layer, though it is extremely wide.
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Expressivity of the Logistic Activation Function

• What about the logistic activation function?
• Approximate a hard threshold by scaling up w and b.

y = σ(x) y = σ(5x)

• Logistic units are differentiable, so we can learn weights with
gradient descent.
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What is Expressivity Good For?

• May need a very large network to represent a function.
• Non-trivial to learn the weights that represent a function.
• If you can learn any function, over-fitting is potentially
a serious concern!

For the polynomial feature mappings, expressivity increases with
the degree M , eventually allowing multiple perfect fits to the
training data. This motivated L2 regularization.

• Do neural networks over-fit and how can we regularize them?
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Regularization and Over-fitting for Neural Networks

• The topic of over-fitting (when & how it happens, how to
regularize, etc.) for neural networks is not well-understood, even
by researchers!

! In principle, you can always apply L2 regularization.
! You will learn more in CSC413.

• A common approach is early stopping, or stopping training early,
because over-fitting typically increases as training progresses.

• Don’t add an explicit R(θ) term to our cost.
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Conclusion

• Multi-class classification
• Selecting good metrics to track performance in models
• From linear to non-linear models
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