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Announcements

• HW1 released last week and is due next Wednesday.
• Go to the earliest possible TA OH you can attend.
• Manage your time well! If you wait till the last TA session,
you may have a long wait to ask your question.
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Interpretations

E[(y − t)2] = (y⋆ − E[y])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

Bias/variance decomposes the expected loss into three terms:

• bias: how wrong the expected prediction is
(corresponds to under-fitting)

• variance: the amount of variability in the predictions
(corresponds to over-fitting)

• Bayes error: the inherent unpredictability of the targets

Often loosely use “bias” for “under-fitting” and “variance” for
“over-fitting”.
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Overly Simple Model

An overly simple model (e.g. KNN with large k) might have

• high bias
(cannot capture the structure in the data)

• low variance
(enough data to get stable estimates)
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Overly Complex Model

An overly complex model (e.g. KNN with k = 1) might have

• low bias
(learns all the relevant structure)

• high variance
(fits the quirks of the data you happened to sample)
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Bagging Motivation

• Sample m independent training sets from psample.
• Compute the prediction yi using each training set.
• Compute the average prediction y = 1

m

∑m
i=1 yi.

• How does this affect the three terms of the expected loss?
! Bias: unchanged,

since the averaged prediction has the same expectation

E[y] = E
[
1

m

m∑

i=1

yi

]
= E[yi]

! Variance: reduced,
since we are averaging over independent predictions

Var[y] = Var

[
1

m

m∑

i=1

yi

]
=

1

m2

m∑

i=1

Var[yi] =
1

m
Var[yi].

! Bayes error: unchanged,
since we have no control over it
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Bagging: The Idea

• In practice, psample is often expensive to sample from. So training
separate models on independently sampled datasets is very
wasteful of data!

• Given training set D, use the empirical distribution pD as a proxy
for psample. This is called bootstrap aggregation or bagging .

! Take a dataset D with n examples.
! Generate m new datasets (“resamples” or “bootstrap samples”)
! Each dataset has n examples sampled from D with replacement.
! Average the predictions of models trained on the m datasets.

• One of the most important ideas in statistics!
! Intuition: As |D|→∞, we have pD → psample.
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Bagging Example 1/2

Create m = 3 datasets by sampling from D with replacement.
Each dataset contains n = 7 examples.
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Bagging Example 2/2

Generate prediction yi using dataset Di.
Average the predictions.
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Aggregating Predictions for Binary Classification

• Classifier i outputs a prediction yi

• yi can be real-valued yi ∈ [0, 1] or a binary value yi ∈ {0, 1}
• Average the predictions and apply a threshold.

ybagged = I
(

1

m

m∑

i=1

yi > 0.5

)

• Same as majority vote.
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Bagging Properties

• A bagged classifier can be stronger than the average model.
! E.g. on “Who Wants to be a Millionaire”, “Ask the Audience”

is much more effective than “Phone a Friend”.

• But, if m datasets are NOT independent, don’t get
the 1

m variance reduction.

• Reduce correlation between datasets by introducing
additional variability

! Invest in a diversified portfolio, not just one stock.
! Average over multiple algorithms,

or multiple configurations of the same algorithm.
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Random Forests

• A trick to reduce correlation between bagged decision trees:
For each node, choose a random subset of features
and consider splits on these features only.

• Probably the best black-box machine learning algorithm.
! works well with no tuning.
! widely used in Kaggle competitions.
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Bagging Summary

Reduces over-fitting by averaging predictions.

In most competition winners.
A small ensemble often better than a single great model.

Limitations:

• Does not reduce bias in case of squared error.

• Correlation between classifiers means less variance reduction.
Add more randomness in Random Forests.

• Weighting members equally may not be the best.
Weighted ensembling often leads to better results if members are
very different.
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Step 1 : Task - supervised learning.

Step2 : Model

y =
v+x +6

Assume the
model predictions are

Gear functions of input

Step 3 : Goodness of fit
e .g Regression
a(yi+ i) = ((yi +2)

= 5 (w, b)= (
Step 4 : Optimize

Y ↳ IterativeDirect solution.

min 5(1 , 6) by take small
-

gradient
setting JJ(w ,

6) =0
steps.

Step 5 : RegularizeLiterate to find bettersolutions,



Step 1 & 2: Linear Regression

• Define the task and a strategy on solving it
• Task: predict scalar-valued targets (e.g. stock prices)
• Architecture: linear function of the inputs
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Step 3: A Modular Approach to ML

• choose a model describing relationships between variables
• define a loss function quantifying how well the model fits the
data

• choose a regularizer expressing preference over different models
• fit a model that minimizes the loss function and satisfies the
regularizer’s constraint/penalty, possibly using an optimization
algorithm

Mixing and matching these modular components give us a lot of
different ML methods.
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Supervised Learning Setup

• Input x ∈ X (a vector of features)
• Target t ∈ T
• Data D = {(x(i), t(i)) for i = 1, 2, ..., N}
• Objective: learn a function f : X → T based on the data
such that t ≈ y = f(x)
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Model

Model: a linear function of the features x = (x1, . . . , xD) ∈ RD

to make prediction y ∈ R of the target t ∈ R:

y =f(x) =
∑

j

wjxj + b = w⊤x+ b

• Parameters are weights w and the bias/intercept b
• Want the prediction to be close to the target: y ≈ t.
• Highly interpretable model, useful for debugging.
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4 :

W b

~
D

y = 3 + 14 +
0 + 12+ 1

= 17
12

=
29 + 1 = 30

t =25
2

h(y , i) = + (30
-25)

- 25/2 = 12 .5



Loss Function

Loss function L(y, t) defines how badly the algorithm’s prediction y
fits the target t for some example x.

Squared error loss function: L(y, t) = 1
2(y − t)2

• y − t is the residual, and we want to minimize this magnitude
• 1

2 makes calculations convenient.

Cost function: loss function averaged over all training examples
also called empirical or average loss.

J (w, b) =
1

2N

N∑

i=1

(
y(i) − t(i)

)2
=

1

2N

N∑

i=1

(
w⊤x(i) + b− t(i)

)2
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Loops v.s. Vectorized Code

• We can compute prediction for one data point using a for loop:
y = b
for j in range(M):

y += w[j] * x[j]
• But, excessive super/sub scripts are hard to work with, and
Python loops are slow.

• Instead, we express algorithms using vectors and matrices.

w = (w1, . . . , wD)
⊤ x = (x1, . . . , xD)

⊤

y = w⊤x+ b

• This is simpler and executes much faster:
y = np.dot(w, x) + b
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Benefits of Vectorization

Why vectorize?

• The code is simpler and more readable. No more dummy
variables/indices!

• Vectorized code is much faster
! Cut down on Python interpreter overhead
! Use highly optimized linear algebra libraries (hardware support)
! Matrix multiplication very fast on GPU

You will practice switching in and out of vectorized form.

• Some derivations are easier to do element-wise
• Some algorithms are easier to write/understand using for-loops
and vectorize later for performance
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Predictions for the Dataset

• Put training examples into a design matrix X.
• Put targets into the target vector t.
• We can compute the predictions for the whole dataset.

Xw + b1 = y

⎛

⎜⎜⎜⎜⎝

x(1)1 x(1)2 . . . x(1)D

x(2)1 x(2)2 . . . x(2)D
...

...
...

x(N)
1 x(N)

2 . . . x(N)
D

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

w1

w2
...

wD

⎞

⎟⎟⎟⎠
+ b

⎛

⎜⎜⎜⎝

1
1
...
1

⎞

⎟⎟⎟⎠
=

⎛

⎜⎝
y(1)

...
y(N)

⎞

⎟⎠
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Computing Squared Error Cost

We can compute the squared error cost across the whole dataset.

y = Xw + b1

J =
1

2N
∥y − t∥2

Sometimes we may use J = 1
2∥y − t∥2, without a normalizer.

This would correspond to the sum of losses, and not the averaged
loss.
The minimizer does not depend on N (but optimization might!).
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Combining Bias and Weights

We can combine the bias and the weights and
add a column of 1’s to design matrix.

Our predictions become

y = Xw.

X =

⎡

⎢⎣
1 [x(1)]⊤

1 [x(2)]⊤

1
...

⎤

⎥⎦ ∈ RN×(D+1) and w =

⎡

⎢⎢⎢⎣

b
w1

w2
...

⎤

⎥⎥⎥⎦
∈ RD+1
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Step 4: Solving the Minimization Problem

Goal is to minimize the cost function J (w).

Recall: the minimum of a smooth function (if it exists) occurs at a
critical point, i.e. point where the derivative is zero.

∇wJ =
∂J
∂w

=

⎛

⎜⎝

∂J
∂w1...
∂J
∂wD

⎞

⎟⎠

Solutions may be direct or iterative.

• Direct solution: set the gradient to zero and solve in closed form
— directly find provably optimal parameters.

• Iterative solution: repeatedly apply an update rule that gradually
takes us closer to the solution.
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Minimizing 1D Function

• Consider J (w) where w is 1D.
• Seek w = w∗ to minimize J (w).
• The gradients can tell us where the maxima and minima of
functions lie

• Strategy: Write down an algebraic expression for ∇wJ (w).
Set ∇wJ (w) = 0. Solve for w.
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J (w)
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Direct Solution for Linear Regression

• Seek w to minimize J (w) = 1
2∥Xw − t∥2

• Taking the gradient with respect to w and setting it to 0, we get:

∇wJ (w) = X⊤Xw −X⊤t = 0

See course notes for derivation.
• Optimal weights:

w∗ = (X⊤X)−1X⊤t

• Few models (like linear regression) permit direct solution.
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Iterative Solution: Gradient Descent

• Many optimization problems don’t have a direct solution.
• A more broadly applicable strategy is gradient descent.
• Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

• We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.
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Deriving Update Rule

Observe:

• if ∂J /∂wj > 0, then decreasing J requires decreasing wj .
• if ∂J /∂wj < 0, then decreasing J requires increasing wj .

The following update always decreases the cost function
for small enough α (unless ∂J /∂wj = 0):

wj ← wj − α
∂J
∂wj
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Setting Learning Rate

Gradient descent update rule:

wj ← wj − α
∂J
∂wj

α > 0 is a learning rate (or step size).

• The larger α is, the faster w changes.
• Values are typically small, e.g. 0.01 or 0.0001.
• We’ll see later how to tune the learning rate.
• If minimizing total loss rather than average loss,
needs a smaller learning rate (α′ = α/N ).
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Gradient Descent Intuition

• Gradient descent gets its name from the gradient,
the direction of fastest increase.

∇wJ =
∂J
∂w

=

⎛

⎜⎝

∂J
∂w1...
∂J
∂wD

⎞

⎟⎠

• Update rule in vector form:

w← w − α
∂J
∂w

Update rule for linear regression:

w← w − α

N

N∑

i=1

(y(i) − t(i))x(i)

• Gradient descent updates w in the direction of fastest decrease.
• Once it converges, we get a critical point, i.e. ∂J

∂w = 0.
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Why Use Gradient Descent?

• Applicable to a much broader set of models.
• Easier to implement than direct solutions.
• More efficient than direct solution for regression in
high-dimensional space.

! The linear regression direction solution (X⊤X)−1X⊤t
requires matrix inversion, which is O(D3).

! Gradient descent update costs O(ND)
or less with stochastic gradient descent.

! Huge difference if D is large.
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Steps for linear regression

Below is a categorization of ML problems that you will see time, and
time-again throughout this semester.

• Step 1: Understand the problem (is it prediction, learning a good
representation). Regression

• Step 2: Formulate the problem mathematically (create notation
for your inputs and outcomes and model).Linear function of
inputs

• Step 3: Formulate an objective function that represents success
for your model. Mean squared error

• Step 4: Find a strategy to solve the optimization problem on
pencil and paper. Direct or gradient based optimization

• Step 5: Translate the algorithm into code. Part of future
homework excercises

• Step 6: Analyze, iterate, improve design choices in your model
and algorithm
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Feature Mapping

Can we use linear regression to model a non-linear relationship?

• Map the input features to another space ψ(x) : RD → Rd.
• Treat the mapped feature (in Rd) as the input of a linear
regression procedure.

40



Modeling a Non-Linear Relationship
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Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

y = w0 + w1x+ w2x
2 + ...+ wMxM =

M∑

i=0

wix
i

• The feature mapping is ψ(x) = [1, x, x2, ..., xM ]⊤.
• y = ψ(x)⊤w is linear in w0, w1, ....
• Use linear regression to find w.

42
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Polynomial Feature Mapping with M = 0

y = w0

x

t

M = 0

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Polynomial Feature Mapping with M = 1

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Polynomial Feature Mapping with M = 3

y = w0 + w1x+ w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Polynomial Feature Mapping with M = 9

y = w0 + w1x+ w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Model Complexity and Generalization

x

t

M = 0

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Under-fitting
(M = 0):
Model is too simple,
doesn’t fit data well.

Good model
(M = 3):
Small test error,
generalizes well.

Over-fitting
(M = 9):
Model is too complex,
fits data perfectly. 47



Model Complexity and Generalization
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Model Complexity and Generalization

x

t

M = 9

0 1

−1

0

1

• As M increases, the magnitude of coefficients gets larger.
• For M = 9, the coefficients have become finely tuned to the data.
• Between data points, the function exhibits large oscillations.
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Regularization
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Controlling Model Complexity

How can we control the model complexity?

• A crude approach: restrict # of parameters / basis functions.
For polynomial expansion, tune M using a validation set.

• Another approach: regularize the model.
Regularizer is a function that quantifies how much we prefer one
hypothesis vs. another.
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L2 (or ℓ2) Regularization

• Encourage the weights to be small
by choosing the ℓ2 penalty as our regularizer.

R(w) = 1
2∥w∥

2
2 =

1

2

∑

j

w2
j .

• The regularized cost function makes a trade-off
between the fit to the data and the norm of the weights.

Jreg(w) = J (w) + λR(w) = J (w) +
λ

2

∑

j

w2
j .

• If the model fits training data poorly, J is large.
If the weights are large in magnitude, R is large.

• Large λ penalizes weight values more.
• Tune hyperparameter λ with a validation set.
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L2 Regularization Picture
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L2 Regularized Least Squares: Ridge regression

For the least squares problem, we have J (w) = 1
2N ∥Xw − t∥2.

• When λ > 0 (with regularization), regularized cost gives

wRidge
λ = argmin

w
Jreg(w) = argmin

w

1

2N
∥Xw − t∥22 +

λ

2
∥w∥22

=(X⊤X+ λNI)−1X⊤t

• λ = 0 (no regularization) reduces to
least squares solution!

• Can also formulate the problem as

argmin
w

1

2
∥Xw − t∥22 +

λ

2
∥w∥22

with solution
wRidge

λ = (X⊤X+ λI)−1X⊤t.
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Gradient Descent under the L2 Regularization

• Gradient descent update to minimize J :

w← w − α
∂

∂w
J

• The gradient descent update to minimize the L2 regularized cost
J + λR results in weight decay:

w← w − α
∂

∂w
(J + λR)

= w − α

(
∂J
∂w

+ λ
∂R
∂w

)

= w − α

(
∂J
∂w

+ λw

)

= (1− αλ)w − α
∂J
∂w
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Conclusions

Linear regression exemplifies recurring themes of this course:

• choose a model and a loss function
• formulate an optimization problem
• solve the minimization problem
using direction solution or gradient descent.

• vectorize the algorithm, i.e. represent in terms of linear algebra
• make a linear model more powerful using feature mappings
• improve the generalization by adding a regularizer
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Deriving gradients for direct/iterative optimization for Ridge Regression
2

Cost J(c) = /IXw-t+ <llr1) Optimization problem argmin J(w)
2N X EIRNXD w

NX/
wEIR

NX)
+ E IR

Gradient of cost with respect to weights.
Rewrite J(w) = 1 (Xw-t)"(Xco -+) + 1Wi

"
2N 2 Eq (2

&w5(w) = + .R . X
*

(XWet) + 2 .2 . 10
matrix

cookbook
&N &

Eq (87) in matrix cookbook

=IXT (Xw-t)+dNw--- N

Residual = how different is the preduction
from theFarget



Direct Approach

set JwJ(w) = 0 & solve for w

&wew) =01XXw +-
N

=> (xX +dN)w = Xit

=> w = (XX +dNI)"X
*
t Solution

to

Ridge
Regression


