CSC 311: Introduction to Machine Learning
Lecture 3 - Bagging, Linear Models |

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

@ ntroduction

e Bias-Variance Decomposition
e Bagging

@ Linear Regression

e Vectorization

e Optimization

e Feature Mappings

@ Regularization

Announcements

- HW1 released last week and is due next Wednesday.
- Go to the earliest possible TA OH you can attend.

- Manage your time well! If you wait till the last TA session,
you may have a long wait to ask your question.

Introduction

Bias-Variance Decomposition

@ Bias-Variance Decomposition

Interpretations

El(y —1)%] = (y« — Ely])® + Var(y) + Var(t)

bias variance Bayes error

Bias/variance decomposes the expected loss into three terms:

- bias: how wrong the expected prediction is
(corresponds to under-fitting)

- variance: the amount of variability in the predictions
(corresponds to over-fitting)

- Bayes error: the inherent unpredictability of the targets

Often loosely use “bias” for “under-fitting” and “variance” for
“over-fitting”.

Overly Simple Model

An overly simple model (e.g. KNN with large k) might have

- high bias

(cannot capture the structure in the data)
- low variance

(enough data to get stable estimates)

y from one
contours of training set
expected loss
residual)Z
bias’_,_,——,X\E[y}
X X

Overly Complex Model

An overly complex model (e.g. KNN with k& = 1) might have

- low bias
(learns all the relevant structure)
- high variance
(fits the quirks of the data you happened to sample)

X
|
/

contours of
expected loss

Bagging

9 Bagging

Bagging Motivation

- Sample m independent training sets from psample.
- Compute the prediction y; using each training set.
- Compute the average prediction y = = 3™ ;.
- How does this affect the three terms of the expected loss?
» Bias: unchanged,
since the averaged prediction has the same expectation

» Variance: reduced,
since we are averaging over independent predictions

m

Z%] _ 12 ZVar[y,;] = %Var[y,,;].

» Bayes error: unchanged,
since we have no control over it

Var[y] = Var

Bagging: The Idea

lc)la\Bz]—_——«?),Z .
0135k

- In practice, psample IS Often expens%eﬁgo ample from. So training
separate models on independently sampled datasets is very
wasteful of datal!

- Given training set D, use the empirical distribution pp as a proxy
for psample- This is called bootstrap aggregation or bagging .

Take a dataset D with n examples.

» Generate m new datasets (“resamples” or “bootstrap samples”)

» Each dataset has n examples sampled from D with replacement.

» Average the predictions of models trained on the m datasets.

v

- One of the most important ideas in statistics!
» Intuition: As |D| — oo, we have pp — Psample-

10

Bagging Example 1/2

Create m = 3 datasets by sampling from D with replacement.
Each dataset contains n = 7 examples.

D

Ze Te z3
® O A O A A A D1
pe
o T2 T4 Ts X2
it epacs™

P ‘ T7 Tg T3 T1 z3
X7 z &"{A....A.}D2
6

with replacement i) o

! x Tg T 7 Ie g X
With 6
T4 replace,, : { 6 3 }

n

Bagging Example 2/2

Generate prediction y; using dataset D;.
Average the predictions.

xﬁ mG 1:3 train model
{) Ty T5 T2 1 and predict for query
Prediction
m
x.7 33.6 x.g %l A %‘ D train model z /
- > >)
Q?AQ) 2 and predict for query Y yl m

i=1

1 Te L7 Te Te T3 train model /

Y3

and predict for query

12

Aggregating Predictions for Binary Classification

- Classifier 4 outputs a prediction y;
- y; can be real-valued y; € [0,1] or a binary value y; € {0,1}
- Average the predictions and apply a threshold.

|
Ybagged — I (m Z;Zh > 05)
1=

- Same as majority vote.

13

Bagging Properties

- A bagged classifier can be stronger than the average model.

» E.g. on “Who Wants to be a Millionaire”, “Ask the Audience”
is much more effective than “Phone a Friend”.

- But, if m datasets are NOT independent, don’t get
the L variance reduction.

- Reduce correlation between datasets by introducing
additional variability
» Invest in a diversified portfolio, not just one stock.
» Average over multiple algorithms,
or multiple configurations of the same algorithm.

14

Random Forests

- Atrick to reduce correlation between bagged decision trees:
For each node, choose a random subset of features
and consider splits on these features only.

- Probably the best black-box machine learning algorithm.
» works well with no tuning.
» widely used in Kaggle competitions.

15

Bagging Summary

Reduces over-fitting by averaging predictions.

In most competition winners.
A small ensemble often better than a single great model.

Limitations:
- Does not reduce bias in case of squared error.

- Correlation between classifiers means less variance reduction.
Add more randomness in Random Forests.

- Weighting members equally may not be the best.
Weighted ensembling often leads to better results if members are
very different.

Linear Regression

Step |2 Tosk - uparined Lerm\\wb .
Qhepd i Modd

- © kb
fssume he model rﬂd;dtoms o
Oneow funduors of o} wpu
8\193 &oo&M%s O% g\t

e Linear Regression o Paawesmm
ALy t°) - / (\/«é]
¢
- t
5;\) gw:r&') an ;;' A(y ' /
h - Optmize
LNy
Dt((’_&l’ 50 (o . j‘gxu}lv! QU
pin I (w0, 6] by Juke o
cetting. TI(W,6) -0 6”;‘1’“‘:*
Skep S /&gujawr?c (tterote éﬁﬁm{ b#ey

Step 1 & 2: Linear Regression

- Define the task and a strategy on solving it
- Task: predict scalar-valued targets (e.g. stock prices)
- Architecture: linear function of the inputs

Step 3: A Modular Approach to ML

- choose a model describing relationships between variables

- define a loss function quantifying how well the model fits the
data

- choose a regularizer expressing preference over different models

- fit a model that minimizes the loss function and satisfies the
regularizer’s constraint/penalty, possibly using an optimization
algorithm

Mixing and matching these modular components give us a lot of
different ML methods.

19

Supervised Learning Setup

- Input x € X (a vector of features)

- Targett € T

- Data D = {(x®,t®) fori=1,2,.., N}

- Objective: learn a function f : X — T based on the data
such thatt ~y = f(x)

20

Model: a linear function of the features x = (z1,...,zp) € RP
to make prediction y € R of the target ¢t € R:

y=f(x) =) wjz; +b={w!x b
j

- (Parameters are weights@wand the bias/interceptd
- Want the prediction to be close to the target: y ~ t.
- Highly interpretable model, useful for debugging.

21

H .

AEEE ﬁ :
N—gl \\‘(‘\ ﬁ T P m
— 1
* ' Y ’54—“—1-\-0-&—\;{—(—\

= |
\

t -5
Ay, € = 1 (30 —:&)l
o~

2 28/, 212

Loss function L(y,t) defines how badly the algorithm'’s prediction y
fits the target ¢ for some example x.

Squared error loss function: £(y,t) = 1(y —t)?

- y —t is the residual, and we want to minimize this magnitude
- % makes calculations convenient.

Cost function: loss function averaged over all training examples
also called empirical or average loss.

1 L, 1 I 2
S = 3 3 (-1 = (0 0-10)
=1 =1

22

Vectorization

© Vectorization

23

Loops v.s. Vectorized Code

- We can compute prediction for one data point using a for loop:
y=»>b
for j in range(M):
y += wljl * x[j]

- But, excessive super/sub scripts are hard to work with, and
Python loops are slow.

- Instead, we express algorithms using vectors and matrices.
w = (wi,...,wp) " x = (21,...,2p)"
y=w'x+b
- This is simpler and executes much faster:

y = np.dot(w, x) + Db

2%

Benefits of Vectorization

Why vectorize?

- The code is simpler and more readable. No more dummy
variables/indices!

- Vectorized code is much faster

» Cut down on Python interpreter overhead
» Use highly optimized linear algebra libraries (hardware support)
» Matrix multiplication very fast on GPU

You will practice switching in and out of vectorized form.

- Some derivations are easier to do element-wise

- Some algorithms are easier to write/understand using for-loops
and vectorize later for performance

25

Predictions for the Dataset

- Put training examples into a design matrix X.
- Put targets into the target vector t.
- We can compute the predictions for the whole dataset.

Xw+bl =y
1
I'ED2; w1 1 y(l)
w 1
:EP .2 b _ f
: (N)
2 | \wp 1 d

26

Computing Squared Error Cost

We can compute the squared error cost across the whole dataset.
y = Xw + bl
J = 7||y — |

Sometimes we may use J = 1|ly — t||%, without a normalizer.

This would correspond to the sum of losses, and not the averaged

loss.
The minimizer does not depend on N (but optimization might!).

27

Combining Bias and Weights

We can combine the bias and the weights and
add a column of 1's to design matrix.

Our predictions become

wq

1
X = |1 [xP]T| e RVXP+D and w = w, | € RPH
2
. .

28

Optimization

@ optimization

29

Step 4: Solving the Minimization Problem

Goal is to minimize the cost function J(w).

Recall: the minimum of a smooth function (if it exists) occurs at a
critical point, i.e. point where the derivative is zero.

gij

w1
Vo = o0F _ | .

ow o

wp

Solutions may be direct or iterative.

- Direct solution: set the gradient to zero and solve in closed form
— directly find provably optimal parameters.

- Iterative solution: repeatedly apply an update rule that gradually
takes us closer to the solution.

30

Minimizing 1D Function

- Consider J(w) where w is 1D.

- Seek w = w* to minimize J (w).

- The gradients can tell us where the maxima and minima of
functions lie

- Strategy: Write down an algebraic expression for V,,J (w).
Set V,,J (w) = 0. Solve for w.

y y

J(w)

31

Direct Solution for Linear Regression
O

Xuw —+l =
AU I(rw-+)
- Seek w to minimize J(w) = £||Xw — t|? Y @w—*—)
- Taking the gradient with respect to w and setting it to 0, we get:
gty AT
Vo (w) =X Xw—-X't=0 2 (
(Xw ’+)/

See course notes for derivation.
)) ~ J
- Optimal weights: ,
wh = (XTX)" Xt

- Few models (like linear regression) permit direct solution

XX «%{‘
f(gfx)?H—

Iterative Solution: Gradient Descent

- Many optimization problems don’t have a direct solution.
- A more broadly applicable strategy is gradient descent.

- Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

- We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

33

Deriving Update Rule

Observe:

- If 0J /ow; > 0, then decreasing J requires decreasing w;.
- If 0J /ow; < 0, then decreasing J requires increasing wj.

The following update always decreases the cost function

for small enough « (unless 8.7 /0w; = 0):
oJ

W, — W; — 0——
j j ,
ow;

7(w) A

/2
4 ‘ (=

° ” wy / 34
w wy

Setting Learning Rate

Gradient descent update rule:

N4

a > 0is a learning rate (or step size).

- The larger « is, the faster w changes.
- Values are typically small, e.g. 0.01 or 0.0001.
- We'll see later how to tune the learning rate.

- If minimizing total loss rather than average loss,
needs a smaller learning rate (o' = a/N).

35

Gradient Descent Intuition
Gradient descent gets its name from the gradient,

the direction of fastest increase.
8&7
ij = gi - :
w i
owp
Update rule in vector form:
oNA

W W — a—
ow

Update rule for linear regression
W~ W — — Z t(2)x®

Gradient descent updates w in the direction of fastest decrease
W —_— .

Once it converges, we get a critical point, i.e. 22 =0

36

Why Use Gradient Descent?

- Applicable to a much broader set of models.

- Easier to implement than direct solutions.

- More efficient than direct solution for regression in
high-dimensional space.
» The linear regression direction solution (XTX)™'X Tt
requires matrix inversion, which is O(D3).
» Gradient descent update costs O(ND)
or less with stochastic gradient descent.
» Huge difference if D is large.

37

Feature Mappings

a Feature Mappings

38

Steps for linear regression

Below is a categorization of ML problems that you will see time, and
time-again throughout this semester.

- Step 1: Understand the problem (is it prediction, learning a good
representation). Regression

- Step 2: Formulate the problem mathematically (create notation
for your inputs and outcomes and model).Linear function of
inputs

- Step 3: Formulate an objective function that represents success
for your model. Mean squared error

- Step 4: Find a strategy to solve the optimization problem on
pencil and paper. Direct or gradient based optimization

- Step 5: Translate the algorithm into code. Part of future
homework excercises

- Step 6: Analyze, iterate, improve design choices in your model
and algorithm

39

Feature Mapping

Can we use linear regression to model a non-linear relationship?

- Map the input features to another space ¥(x) : RP — R<.

- Treat the mapped feature (in R?) as the input of a linear
regression procedure.

40

Modeling a Non-Linear Relationship

Or

41

Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

y:wo+w1x+w2x P oc +wM:1c Zwl

* The feature mapping is ¥(z) = [1,z,2?, ..., zM]T.

-y = p(x)Twis linear in wo, w, ... >

- Use linear regression to find w. ‘Zl @
=M

Polynomial Feature Mapping with M = 0

Yy = wo
1 M=0
o)

t

O o ° O
ol 7

o)

_1.

0 1

[Pattern Recognition and Machine Learning, Christopher Bishop.]

43

Polynomial Feature Mapping with M =1

Y = wo + wix

[Pattern Recognition and Machine Learning, Christopher Bishop.]

44

Polynomial Feature Mapping with M = 3

y = wo + w1z + wex?® + wyz>

[Pattern Recognition and Machine Learning, Christopher Bishop.]

45

Polynomial Feature Mapping with M = 9

Y = wo + w1z + wax? + w3z’ + . .. + wyz”

[Pattern Recognition and Machine Learning, Christopher Bishop.]

46

Model Complexity and Generalization

0 . 1

Under-fitting Good model Over-fitting
(M =0): (M = 3): (M =9):
Model is too simple, ~ Small test error, Model is too complex,

doesn’t fit data well. generalizes well. fits data perfectly. 4

Model Complexity and Generalization

1

—©— Training
—6— Test

05¢}

Erwms

M

48

Model Complexity and Generalization

M=0 M=1 M=3 M =9

wg | 019 082 031 035
w} 2127 7.99 232.37

wh -25.43 -5321.83 °
w} 17.37 48568.31
wy -231639.30

wh 640042.26

wy -1061800.52 _,
wk 1042400.18

wy -557682.99

wy 125201.43

- As M increases, the magnitude of coefficients gets larger.
- For M =9, the coefficients have become finely tuned to the data.
- Between data points, the function exhibits large oscillations.

49

Regularization

@ Regularization

50

Controlling Model Complexity

How can we control the model complexity?

- A crude approach: restrict # of parameters / basis functions.
For polynomial expansion, tune M using a validation set.

- Another approach: regularize the model.
Regularizer is a function that quantifies how much we prefer one
hypothesis vs. another.

51

L? (or ¢,) Regularization

- Encourage the weights to be small
by choosing the /5, penalty as our regularizer.

1
R(w) = §liwl =5 3w
J

- The regularized cost function makes a trade-off
between the fit to the data and the norm of the weights.

Treg(W) = T (W) + AR(w) Z w;

- If the model fits training data poorly, J is large.
If the weights are large in magnitude, R is large.

- Large X\ penalizes weight values more.

- Tune hyperparameter A with a validation set.

52

L? Regularization Picture

loss

regularizer

53

L? Regularized Least Squares: Ridge regression

For the least squares problem, we have J(w) = 5% || Xw — t||2.
- When X > 0 (with regularization), regularized cost gives

2

i) o1
Wildge = argmin Jreg(W) = argmin — || Xw — tHQ + = ||WH2

=(XTX +ANT)"1X Tt

- X =0 (no regularization) reduces to
least squares solution!
- Can also formulate the problem as

A

1
argmin = || Xw — t||2 + = ||w/||?
w2 2

with solution

whiise — (XTX 4+ A1) 'X ¢

54

Gradient Descent under the L? Regularization

- Gradient descent update to minimize J:

Wewfoza—wj

- The gradient descent update to minimize the L? regularized cost
J + AR results in weight decay:

W<—W—aaiv(\7+)\7€)

ow ow
:w—a<g£+)\ >
:(1—a)\)w—ag—v{

55

Conclusions

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem

- solve the minimization problem
using direction solution or gradient descent.

- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using feature mappings
- improve the generalization by adding a regularizer

56

De\"tv'm} %m&x@!\‘\'& fov Qe)ﬁ‘QXu}WQ °Plf\vm Zoluwn JD!N Rid?e Qegfesswﬂ

2 A
Gt T () = _i MNKa-t)] + 34 lwll Optimigaton problom curam'm J (=)
w

AN ¢ RN
NR)
w eIl
}e {RNH
Grodient of (ost witk Yasped & wemnrs.
J T ~ An
Kewitke I () = a‘w (Ko —4) (Ko-t) [+ i W w S fa (120
i

\\,
V ‘3_6”‘3 1w - XTQ(UO—-(:) + i\l‘ Cwo Mevx
N =~

/(':1/ (%7) v movix (oolkboslk

= _LXTCXW—'L’>+§_N w
N M~ N
Residaacd = houws Sxfreront o —M?W&cﬁnf

J%VOWL ‘)J“L ﬁaef

"Diced- ﬁ'ﬂwmck
gt U, d(0D=0 2 gelwe fir w
N3G 2031 XX w + aN w - X't =0
N N N
> (X +anNT)w = %

Slw = QTRaanD) Xb | Solusor
b
Q(Jﬁjc

(h@m‘wﬂ

