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- Announcement: HW1 (will be) released this week
- Decision Trees

» Simple but powerful learning algorithm

» Used widely in Kaggle competitions

» Lets us motivate concepts from information theory (entropy,
mutual information, etc.)

- Bias-variance decomposition
» Concept to motivate combining different classifiers.
- Ideas we will need in today’s lecture

» Trees [from algorithms]
» Expectations, marginalization, chain rule [from probability]



Decision Trees



© Decision Trees



Lemons or Oranges

Scenario: You run a sorting facility for citrus fruits

- Binary classification: lemons or oranges

- Features measured by sensor on conveyor belt: height and width



Decision Trees

- Make predictions by splitting on features according to a tree structure.
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Decision Trees—Continuous Features

- Split continuous features by checking whether that feature is greater
than or less than some threshold.

- Decision boundary is made up of axis-aligned planes.
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Decision Trees

width > 6.5cm?
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[height>9.5cm? ] [height>6.0cm? ]

Yes/\No Yes N
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- Internal nodes test a feature
- Branching is determined by the feature value

- Leaf nodes are outputs (predictions)

Question: What are the hyperparameters of this model?



Decision Trees—Classification and Regression

- Each path from root to a leaf defines a region @ |1 @
R,, of input space N
put sp 5;',, ®
- Let {(z(m) ¢(m)) . (2(m) (k)] be the
training examples that fall into R, @ ..

- m = 4 on the right



Decision Trees—Classification and Regression

- Each path from root to a leaf defines a region P |1 @
R,, of input space N
putsp e ®
- Let {(z(m) ¢(m)) . (2(m) (k)] be the
training examples that fall into R, @ ..

m = 4 on the right

- Regression tree:

» continuous output

» leaf value y™ typically set to the mean value in {¢t(m1) .. ¢(me)}
- Classification tree (we will focus on this):

» discrete output

» leaf value y™ typically set to the most common value in
{ttma) . ¢me)}



Decision Trees—Discrete Features

- Will | eat at this restaurant?

Patrons?

None ome Full

[ WaitEstimate? |

Alternate?
No Yes

| Reservation? || Fri/Sat? I
No Yes No Yes

No Yes
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Decision Trees—Discrete Features

- Split discrete features into a partition of possible values.

Example Input Attributes Goal

Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est WillWait
X1 Yes| No| No | Yes| Some| $$$ | No | Yes| French| 0-10 | y1 = Yes
Xo Yes| No | No | Yes Full 3 No | No Thai 30-60 | y, = No
X3 No | Yes No | No | Some $ No | No | Burger| 0-10 | y3 = Yes
Xy Yes| No | Yes| Yes Full 3 Yes | No Thai 10-30 | y4 = Yes
X5 Yes | No | Yes| No Full | $3$ | No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 38 = Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 | y;= No
Xg No| No | No | Yes| Some| 38  Yes| Yes| Thai 0-10 | yg = Yes
Xg No | Yes| Yes| No Full $ Yes | No | Burger| >60 y9 = No
X10 Yes | Yes| Yes| Yes| Full | $$8 | No | Yes| ltalian | 10-30 | yio = No
X11 No | No| No| No  None 3 No | No Thai 0-10 | yu = No
X192 Yes | Yes| Yes| Yes Full 3 No No | Burger | 30-60 || yi12 = Yes

Alternate: whether there is a suitable alternative restaurant nearby.

Bar: whether the restaurant has a comfortable bar area to wait in.

Fri/Sat: true on Fridays and Saturdays.

Hungry: whether we are hungry.

Patrons: how many people are in the restaurant (values are None, Some, and Full)
Price: the restaurant's price range ($, $$, $$$).

Raining: whether it is raining outside.

Reservation: whether we made a reservation

O @ I S [ S R [

Type: the kind of restaurant (French, Italian, Thai or Burger)

WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

n

o

Features:



Implementing Decision Trees

- Step 1: Understand the problem (is it prediction, learning a good
representation). Regression or classification

- Step 2: Formulate the problem mathematically (create notation
for your inputs and outcomes and model). similar to KNN -
vectorize inputs and labels

- Step 3: Formulate an objective function that represents success
for your model.

- Let D = {(x!,th),..., (xV,tV)} be the training set, T be the space
of valid decision trees and y(x) be the label predicted by running
the decision tree on an input.

- Objective: £ = miny SN | [y # /] is to minimize the number of
misclassifications.

- Why is this difficult?

12



Hardness of learning Decision Trees

- Decision trees are universal function approximators.

» For any training set we can construct a decision tree that has
exactly the one leaf for every training point, but it probably won't
generalize.

» Example - If all D features were binary, and we had N = 2P unique
training examples, a Full Binary Tree would have one leaf per
example.

- Finding the smallest decision tree that correctly classifies a training set
is NP complete.

» If you are interested, check: Hyafil & Rivest'76.

- So, how do we construct a useful decision tree?

13



Learning Decision Trees

- Resort to a greedy heuristic:

Intuition: Do the sensible thing locally and then repeat!

Start with the whole training set and an empty decision tree.
Pick a feature and candidate split that would most reduce a loss
Split on that feature and recurse on subpartitions.

vV vyVvYy

- What is a loss?

» When learning a model, we use a scalar number to assess whether
we're on track
» Scalar value: low is good, high is bad

- Which loss should we use?

14



Choosing a Good Split

- Consider the following data. Let’s split on width.
- Classify by majority.

> o
N N

® oranges
A lemons

height

width
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Choosing a Good Split

- Which is the best split? Vote!
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Probability in review

Three concepts you should page into memory for the next fifteen minutes:

- Expectation: E;[f(z)] = >, cx p(x) f(x)
- Chain rule of probabilities: p(y|x)p(z) = p(x,y)
* Marginalization of joint probabilities: p(z) = >, p(z,y)



Choosing a Good Split

- A feels like a better split, because the left-hand region is very
certain about whether the fruit is an orange.

- Can we quantify this?
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Choosing a Good Split

- How can we quantify uncertainty in prediction for a given leaf node?

» If all examples in leaf have same class: good, low uncertainty
» If each class has same amount of examples in leaf: bad, high
uncertainty

- Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

- A brief detour through information theory...

19



Entropy - Quantifying uncertainty

- You may have encountered the term entropy quantifying the state of
chaos in chemical and physical systems,

- In statistics, it is a property of a random variable,

- The entropy of a discrete random variable is a number that quantifies
the uncertainty inherent in its possible outcomes.

- The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated axiomatically.

» If you're interested, check: Information Theory by Robert Ash or
Elements of Information Theory by Cover and Thomas.

- To explain entropy, consider flipping two different coins...

20



We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1:
P00100000000000100 ... 7

Sequence 2:
1010111010011 0101...7

21



We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1:
P00100000000000100 ... 7

Sequence 2:
1010111010011 0101...7
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Quantifying Uncertainty

- The entropy of a loaded coin with probability p of heads is given by
—plogy(p) — (1 — p)logy(1 — p)
8/9

49 9
-
— 0 1
0 1
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- Notice: the coin whose outcomes are more certain has a lower entropy.

- In the extreme case p =0 or p = 1, we were certain of the outcome
before observing. So, we gained no certainty by observing it, i.e., entropy
is 0.

22



Quantifying Uncertainty

- Can also think of entropy as the expected information content of a
random draw from a probability distribution.

entropy

1.0
0.8+
0.6+
0.4+

0.2+

. . I L robability p of heads
0.2 0.4 0.6 0.8 1.0 . U=

- Claude Shannon showed: you cannot store the outcome of a random
draw using fewer expected bits than the entropy without losing
information.

- So units of entropy are bits; a fair coin flip has 1 bit of entropy. 23



- More generally, the entropy of a discrete random variable Y is given by

— Y py)logs ply

yey

- “High Entropy"™:
» Variable has a uniform like distribution over many outcomes
» Flat histogram
» Values sampled from it are less predictable

[Slide credit: Vibhav Gogate] o



- More generally, the entropy of a discrete random variable Y is given by

— Y py)logs ply

yey

- “High Entropy"™:
» Variable has a uniform like distribution over many outcomes
» Flat histogram
» Values sampled from it are less predictable

- “Low Entropy”

» Distribution is concentrated on only a few outcomes
» Histogram is concentrated in a few areas
» Values sampled from it are more predictable

[Slide credit: Vibhav Gogate] o



- Suppose we observe partial information X about a random variable Y
» For example, X = sign(Y).

- We want to work towards a definition of the expected amount of
information that will be conveyed about Y by observing X.

» Or equivalently, the expected reduction in our uncertainty about Y’
after observing X.

25



Entropy of a Joint Distribution

- Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

HX,)Y) = => Y pla,y)log, p(x,y)
zeX yey
24 24 1 1 25 95 50 50

S ey e gy e ] ~ 2 e,
100 °%2700 100 22700 100 %2700 100 22 100

1.56bits

Q
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Conditional Entropy

- Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [ Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

- What is the entropy of cloudiness Y, given that it is raining?

HY|X =x) = - p(yle)log,p(ylx)
yey
24 24 1, 1
= —— 5 — — — 10 e
25 8295 ~ 95 982795
~ 0.24bits

27

- We used: p(y|x) = p}gf;)/), and p(z) =3, p(z,y) (sumina row)




Conditional Entropy

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

- The expected conditional entropy:

H(Y|X)

E.[H[Y]a]
= S p@HYIX =)

zeX

= =YY p(x,y)log, plylz)

zeX yeyY

28



Conditional Entropy

- Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

- What is the entropy of cloudiness, given the knowledge of whether or
not it is raining?

HY|X) = ) p@HY|X =x)
z€X
1 . . 3 .
= ZH(cloudyhs raining) -+ iH(doudy|not raining)

~ 0.75 bits 29



Conditional Entropy

- Some useful properties:

v

H is always non-negative
» Chainrule: H(X,Y)=H(X|Y)+ H(Y)=H(Y|X)+ H(X)

» If X and Y independent, then X does not affect our uncertainty
aboutY: H(Y|X)=H(Y)

» But knowing Y makes our knowledge of Y certain: H(Y|Y) =0

» By knowing X, we can only decrease uncertainty about Y
H(Y|X) < H(Y)

30



Information Gain

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

- How much more certain am | about whether it's cloudy if I'm told
whether it is raining? My uncertainty in Y minus my expected
uncertainty that would remain in Y after seeing X.

- This is called the information gain IG(Y|X) in Y due to X, or the
mutual information of Y and X

IGY|X)=H()-H(Y|X) (1)
- If X is completely uninformative about Y: IG(Y|X) =0

- If X is completely informative about Y: IG(Y|X) = H(Y)
31



Revisiting Our Original Example

- Information gain measures the informativeness of a variable,
which is exactly what we desire in a decision tree split!

- The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split

you're on.

32



Information Gain of Split B

- What is the information gain of split B? Not terribly informative...

B
e el|e —
£ ® oranges
k= Al® P
2 emons
o A
width

- Entropy of class outcome before split:
H(Y) = —2logy(2) — 2logy(3) ~ 0.86
- Conditional entropy of class outcome after split:
H(Y|left) ~ 0.81, H(Y |right) ~ 0.92
- IG(split) ~ 0.86 — (% - 0.81 + 2 - 0.92) ~ 0.006
33



Information Gain of Split A

- What is the information gain of split A? Very informative!

A
o] e e® —
£ ® oranges
k= A O P
2 emons
o A
width

- Entropy of class outcome before split:
H(Y) = —2logy(2) — 2logy(3) ~ 0.86
- Conditional entropy of class outcome after split:
H(Y|left) =0, H(Y|right) ~ 0.97
- IG(split) ~ 0.86 — (2-0+ 2-0.97) ~ 0.17!!
34



Constructing Decision Trees

height (cm)

4 ° ® oranges Yes No Yes No
A lemons

4 6 8 10 s s
width (cm) - ‘ QR 0

- At each level, one must choose:

1. Which feature to split.
2. Possibly where to split it.

- Choose them based on how much information we would gain from the
decision! (choose feature that gives the highest gain)

35



Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node

1. pick a feature to split at a non-terminal node
2. split examples into groups based on feature value
3. for each group:

» if no examples - return majority from parent

» else if all examples in same class — return class

> else loop to step 1

- Terminates when all leaves contain only examples in the same class or
are empty.

- Questions for discussion:

» How do you choose the feature to split on?
» How do you choose the threshold for each feature?

36



Back to Our Example

Goal
WillWait
y1 = Yes
y2 = No
y3 = Yes
ys = Yes
ys = No
Yo = Yes
yr = No
ys = Yes
Yo = No
y10 = No
y11 = No
Y12 = Yes

[from: Russell & Norvig]

Example Input Attributes
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est

X1 Yes No | No| Yes| Some| $3$ | No | Yes| French| 0-10
Xo Yes | No | No | Yes Full $ No | No Thai 30-60
X3 No | Yes| No| No | Some 3 No | No | Burger| 0-10
X4 Yes | No | Yes| Yes Full $ Yes | No Thai 10-30
X5 Yes| No | Yes| No | Full | $3%3 | No | Yes| French| >60
Xg No | Yes No | Yes| Some| $$ | Yes| Yes| ltalian | 0-10
X7 No | Yes No | No | None $ Yes | No | Burger | 0-10
Xg No| No No| Yes| Some| $§ | Yes| Yes Thai 0-10
Xg No | Yes Yes| No Full $ Yes | No | Burger| >60
X10 Yes Yes | Yes| Yes| Full $$% | No | Yes| ltalian | 10-30
X11 No | No | No | No | None $ No | No Thai 0-10
X19 Yes | Yes | Yes| Yes Full 3 No | No | Burger| 30-60

1. | [ Alternate: whether there is a suitable alternative restaurant nearby.

2. | | Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4 Hungry: whether we are hungry.

5. | | Patrons: how many people are in the restaurant (values are None, Some, and Full)

6. Price: the restaurant's price range ($, $$, $$$).

7. Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. Type: the kind of restaurant (French, Italian, Thai or Burger).

Featu reS 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

37



Feature Selection

IG(Y) = H(Y) — H(Y|X)

2 2 4 4
IG(type) = 1 — {HH(YW) + 15 H(Y|e) + 75 H(Y|Thai) + 12H(Y|Bur.)] =0
2 4 6 2 4
IG(Patrons) =1 — {H(O, 1)+ EH(l,()) + EH(67 G

~ 0.541
12 )}

38



Which Tree is Better? Vote!

Patrons?

[ Reservation? ][ Fri/satz |

No Yes

39



What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle
distinctions in data

40



What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle
distinctions in data

- Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability
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What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle
distinctions in data

- Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

- “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)
» See Domingos, 1999, “The role of Occam'’s razor in knowledge
discovery”
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What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle
distinctions in data

- Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

- “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)
» See Domingos, 1999, “The role of Occam'’s razor in knowledge
discovery”

- We desire small trees with informative nodes near the root

40



Steps to building decision trees

Below is a categorization of ML problems that you will see time, and
time-again throughout this semester.

- Step 1: Understand the problem (is it prediction, learning a good
representation).

- Step 2: Formulate the problem mathematically (create notation
for your inputs and outcomes and model).

- Step 3: Formulate an objective function that represents success
for your model.

- Step 4: Find a strategy to solve the optimization problem on
pencil and paper. Greedy algorithm to construct trees node by
node

- Step 5: Translate the algorithm into code. Part of the homework
excercise to translate this idea into code

- Step 6: Analyze, iterate, improve design choices in your model
and algorithm

41



Decision Tree Miscellany

- Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

42
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» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

- Handling continuous attributes
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Decision Tree Miscellany

- Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

- Handling continuous attributes
» Split based on a threshold, chosen to maximize information gain
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Decision Tree Miscellany

- Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

- Handling continuous attributes
» Split based on a threshold, chosen to maximize information gain

- Decision trees can also be used for regression on real-valued outputs.
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Decision Tree Miscellany

- Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

- Handling continuous attributes
» Split based on a threshold, chosen to maximize information gain

- Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.

42



KNN versus Decision Trees

Advantages of decision trees over KNNs

43



KNN versus Decision Trees

Advantages of decision trees over KNNs

- Simple to deal with discrete features, missing values, and poorly scaled
data

- Fast at test time

- More interpretable

43



KNN versus Decision Trees

Advantages of decision trees over KNNs

- Simple to deal with discrete features, missing values, and poorly scaled
data

- Fast at test time

- More interpretable

Advantages of KNNs over decision trees
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KNN versus Decision Trees

Advantages of decision trees over KNNs

- Simple to deal with discrete features, missing values, and poorly scaled
data

- Fast at test time

- More interpretable
Advantages of KNNs over decision trees

- Few hyperparameters

- Can incorporate interesting distance measures (e.g. shape contexts)

43



- We've seen many classification algorithms.

- We can combine multiple classifiers into an ensemble, which is a set of
predictors whose individual decisions are combined in some way to
classify new examples

» Eg, (possibly weighted) majority vote
- For this to be nontrivial, the classifiers must differ somehow, e.g.

Different algorithm

Different choice of hyperparameters

Trained on different data

Trained with different weighting of the training examples

vy v VvYy

- Next lecture, we will study some specific ensembling techniques.

44



Bias-Variance Decomposition




© Bias-variance Decomposition

45



- Today, we deepen our understanding of generalization
through a bias-variance decomposition.

» This will help us understand ensembling methods.
- What is generalization?

» Ability of a model to correctly classify/predict from unseen
examples (from the same distribution that the training data was
drawn from).

» Why does this matter? Gives us confidence that the model has
correctly captured the right patterns in the training data and will
work when deployed.

46



Bias-Variance Decomposition

- Overly simple models underfit the data,
and overly complex models overfit.

- We can quantify underfitting and overfitting
in terms of the bias/variance decomposition.

(]

(8

)

A\(
// il

g
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Aside: Quick review of sampling

- Sampling is the process of drawing random variables from a
distribution that describes its behavior.

-« & ~ N(0,1) (univariate sampling from a standard normal
distribution). Empirical samples: {z!,22,..., 2V}, 2 € R

- x ~ N(0,%) (multivariate sampling from a normal distribution
with covariance ¥). Empirical samples: {x!,x2,...,x"V}, x! € R?

-« y ~ N (5z +12,1) (univariate sampling from a conditional
distribution whose mean is conditional on input). Empirical
(conditional) samples: {y',42,...,y™} given {z!,22,... 2N},
iyt € R

48



Aside: Quick review

- Previously, we knew what the distribution was and how they were
parameterized.

- The samples are independent and identically distributed.
- For many phenomena, we may not know how data is distributed.

- Make assumptions on how data are distributed, we'll use ideas
from statistics to better understand our model’s generalization
error.

49



Basic Setup for Classification

* Dsample IS @ data generating distribution.
For lemons and oranges, psample(Z,t) Characterizes the true
heights, widths, and labels.

- Think of this as the (true, but unknown) distribution of heights
and widths of oranges and lemons in nature.

- Similarly we have the (true, but unknown) distribution of the

target (orange or lemon) conditional on the heights and widths of
the fruit nature: pearget (t|).

- We assume that the training set D consists of pairs (x;, t;)
sampled

independent and identically distributed (i.i.d.) from psampe.
- We can sample lots of training sets independently from psample-

50



Basic Setup for Classification

- How do we use the idea of a data generating distribution to
understand generalization?

- Generalization is about model performance on a new point - lets
pick one!

- Pick a fixed query point x (denoted with a green x).
We want to get a prediction y at x.

51



Basic Setup for Classification
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Basic Setup for Classification

- Run our (deterministic) learning algorithm on each training set,
and compute its prediction y at the query point x.

- We can view y as a random variable, where the randomness
comes from the choice of training set.

- The classification accuracy is determined by the distribution of y.

- Since y is a random variable, we can compute its expectation,
variance, etc.
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sic Setup for Regression

fit to dataset 1 fit to dataset 2 fit to dataset 3

N\

query location lots of fits histogram of y

h
H
H
1
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Basic Setup

- For a fixed query point x, repeat:

Sample a random training set D i.i.d. from psample

Run the learning algorithm on D to get a prediction y at x.
Sample the (true) target from the conditional distribution p(¢x).
Compute the loss L(y, t).

v

v vy

Comments:

- The random variable corresponding to the prediction y is
independent of the t - Why?
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Basic Setup

- For a fixed query point x, repeat:

Sample a random training set D i.i.d. from psample

Run the learning algorithm on D to get a prediction y at x.
Sample the (true) target from the conditional distribution p(¢x).
Compute the loss L(y, t).

v

v vy

Comments:

- The random variable corresponding to the prediction y is
independent of the t - Why?

- The above algorithm gives a distribution over the loss at x, with
expectation Louery = Ep[E, | x)[L(y, 1) | X]].
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Basic Setup

- For a fixed query point x, repeat:

Sample a random training set D i.i.d. from psample

Run the learning algorithm on D to get a prediction y at x.
Sample the (true) target from the conditional distribution p(¢x).
Compute the loss L(y, t).

v

v vy

Comments:

- The random variable corresponding to the prediction y is
independent of the t - Why?

- The above algorithm gives a distribution over the loss at x, with
expectation Louery = Ep[E, | x)[L(y, 1) | X]].

- We've made progress! We've precisely written down a
mathematical expression corresponding to the generalization
error that we incur!
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Basic Setup

- For a fixed query point x, repeat:

Sample a random training set D i.i.d. from psample

Run the learning algorithm on D to get a prediction y at x.
Sample the (true) target from the conditional distribution p(¢x).
Compute the loss L(y, t).

v

v vy

Comments:

- The random variable corresponding to the prediction y is
independent of the t - Why?

- The above algorithm gives a distribution over the loss at x, with
expectation Louery = Ep[E, | x)[L(y, 1) | X]].

- We've made progress! We've precisely written down a
mathematical expression corresponding to the generalization
error that we incur!

- If our model has generalized, then it means the expected loss is
low. When does this happen?
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Choosing a prediction y

- For convenience we'll work in regression and assumed the following
function to quantify the error in our prediction (square loss),

L(y,t) = 5(y — t)*
- Imagine that we knew the conditional distribution pyarget (t | x).
What value of y should we predict?

» Treat ¢ as a random variable and choose y.
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Choosing a prediction y

- For convenience we'll work in regression and assumed the following
function to quantify the error in our prediction (square loss),

L(y,t) = 5(y — t)*
- Imagine that we knew the conditional distribution pyarget (t | x).
What value of y should we predict?

» Treat ¢ as a random variable and choose y.
- Claim: y, =, .| [t]x] is the best possible prediction.
- Proof:
Eppaegen (120 [(y = )7 | x] = E[y* — 2yt + ¢* | %]

=y? — 2E[t|x] + E[t? | x]
=y® — 2yE[t|x] + E[t | x]* + Var[t|x]
=y® — 2yy. + y3 + Var[t|x]
= (y — yx)? + Var[t| x|
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Bayes Optimality

Ept 1) [(y — )% 1x] = (y — vu)? + Var[t| ]

- The first term is nonnegative, and can be made 0 by setting y = v,.

- The second term is the Bayes error, or
the noise or inherent unpredictability of the target .

» An algorithm that achieves it is Bayes optimal.
» This term doesn’t depend on y.
» Best we can ever hope to do with any learning algorithm.

- This process of choosing a single value y, based on pearget (] x) is an
example of decision theory.
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Decomposition Continued

- Now let's treat y as a random variable
(where the randomness comes from the choice of dataset).

- We can decompose the expected loss further
(suppressing the conditioning on x for clarity):

Ep[Ep,peee () [y — )]l = Ep[(y — y2)® + Var(t)]
= Ep[(y — y.)] + Var(t)
= Eply: — 2y.y + v°] + Var(t)
= y; — 2. Eply] + Ep[y?] + Var(t)
=y — 2y, Eply] + Ep[y]

+Eply®] — Ep[y)* +Var(t)
Var(y)

= (y« —Eply])® + Var(y) + Var(t)
N—— S~—— S——

bias variance Bayes error
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Bayes Optimality

Ep[Epr)[(y — 1)?]] = (v« — Eply])? + Var(y) + Var(t)

bias variance Bayes error

We split the expected loss into three terms:

- bias: how wrong the expected prediction is
(corresponds to underfitting)

- variance: the amount of variability in the predictions
(corresponds to overfitting)

- Bayes error: the inherent unpredictability of the targets
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Bias and Variance

- Throwing darts = predictions for each draw of a dataset

Low Variance High Variance

Low Bias

High Bias

- Be careful, what doesn't this capture?
» We average over points x from the data distribution.
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