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Bernoulli Distribution

Bernoulli distribution: X is a random variable with two outcomes.
We say that X follows Ber(µ) if:

P (X = x) = µx(1� µ)1�x, x 2 {0, 1}

Example: A coin follows Bernoulli distribution.
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Mixture of Bernoulli

Mixture of Gaussians is defined over continuous variables. Mixture
of Bernoulli can be seen as its counterpart for binary variables.
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Mixture of Bernoulli

Mixture of Gaussians is defined over continuous variables. Mixture
of Bernoulli can be seen as its counterpart for binary variables.

Assume a datapoint x is generated as follows:
Choose a cluster z from {1, ...,K} such that p(z = k) = ⇡k

Given z, sample x from Ber(µk).

We say x follows mixtures of Bernoulli distributions. It pmf can be
expressed as:

P (x) =
kX

i=1

⇡iµ
x
i (1� µi)

1�x
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Maximum Likelihood

We want to learn the parameters {⇡k, µk} from the observations
{xi}ni=1.
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Maximum Likelihood

We want to learn the parameters {⇡k, µk} from the observations
{xi}ni=1.

Training objective: Maximize log likelihood

max
⇡k,µk

NX

n=1

log
KX

i=1

⇡kµ
xn
k (1� µk)

1�xn

Log inside sum: EM algorithm
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E step - compute the posterior

Compute the posterior probability znk = P (zn = k|xn) using
Bayes’ theorem:
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E step - compute the posterior

Compute the posterior probability znk = P (zn = k|xn) using
Bayes’ theorem:

P (zn = k|xn) =
P (zn = k, xn)

P (xn)

=
⇡kµ

xn
k (1� µk)1�xn

Pk
i=1 ⇡iµ

xn
i (1� µi)1�xn

znk can be interpreted as how much we think a cluster k is
responsible for generating a datapoint xn.
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M step - optimize the joint log likelihood

The joint likelihood can be expressed as:

log p(X,Z;µ,⇡)

=
NX

n=1

KX

k=1

znk(log ⇡k + xn logµk + (1� xn) log(1� µk))
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M step - optimize the joint log likelihood

The joint likelihood can be expressed as:

log p(X,Z;µ,⇡)

=
NX

n=1

KX

k=1

znk(log ⇡k + xn logµk + (1� xn) log(1� µk))

Assume the responsibility is known, setting the derivative respect
to µk to zero, we get:

µk =

PN
n=1 znkxnPN
n=1 znk

Interpretation: The mean of component k is equal to the weighted
mean of the data, with weighted coe�cients proportional to the
responsibility.
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True or False

The EM algorithm optimizes a lower bound on its objective function,
which is the marginal likelihood

Q
i P (xi) of the observed data points

x1, x2, ...xN .
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True or False

The EM algorithm optimizes a lower bound on its objective function,
which is the marginal likelihood

Q
i P (xi) of the observed data points

x1, x2, ...xN .

True. See slide 46
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Jensen's Inequality



True or False

The EM algorithm is guaranteed to never decrease the value of its
objective function on any iteration.
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True or False

The EM algorithm is guaranteed to never decrease the value of its
objective function on any iteration.

True
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True or False

The objective function optimized by the EM algorithm can also be
optimized by a gradient descent algorithm which will find the global
optimal solution, whereas EM finds its solution more quickly but may
return only a locally optimal solution.
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True or False

The objective function optimized by the EM algorithm can also be
optimized by a gradient descent algorithm which will find the global
optimal solution, whereas EM finds its solution more quickly but may
return only a locally optimal solution.

False
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True or False

Consider the set of training data below, and two clustering algorithms:
K-Means, and a Gaussian Mixture Model (GMM) trained using EM.
These two clustering algorithms will produce the same cluster centers
(means) for this data set.
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True or False

Consider the set of training data below, and two clustering algorithms:
K-Means, and a Gaussian Mixture Model (GMM) trained using EM.
These two clustering algorithms will produce the same cluster centers
(means) for this data set.

False. In k-means, the means of the clusters are determined by an
average of the points assigned to that cluster, but in GMM the means
of each cluster are (di↵erently) weighted averages of all points.
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Application: EM for image segmentation

Partition an image into regions each of which has a reasonably
homogenous visual appearance
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RGB image

Each pixel in an RGB image is a point in 3-dimensional space
comprising the intensities of the red, blue and green channels.

We can think of image segmentation tasks as clustering problems
on pixels.

We can apply EM and k-means for image segmentation.

More on the colab notebook!
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