CSC 311: Introduction to Machine Learning Tutorial 9 - Math Review

Fall 2023

University of Toronto, Fall 2023

Outline

- Gradients of multivariate functions
- Matrix decomposition

Gradients of vector-valued functions

Vector-valued functions

For a function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and a vector $\mathbf{x}=\left[x_{1}, \cdots, x_{n}\right]^{T} \in \mathbb{R}^{n}$, the corresponding vector of function values is given as:

$$
\mathbf{f}(\mathbf{x})=\left[f_{1}(\mathbf{x}) \cdots f_{m}(\mathbf{x})\right] \in \mathbb{R}^{m}
$$

where $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Partial derivatives

The partial derivative of a vector-valued function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with respect to $x_{i} \in \mathbb{R}$ is given as:

$$
\frac{\partial \mathbf{f}}{\partial x_{i}}=\left[\frac{\partial f_{1}}{\partial x_{i}} \cdots \frac{\partial f_{m}}{\partial x_{i}}\right] \in \mathbb{R}^{m}
$$

Jacobian

The collection of all first-order partial derivatives of a vector-valued function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called the Jacobian. The Jacobian $\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}$ is an $m \times n$ matrix, which is defined as:

$$
\begin{aligned}
\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} & =\left[\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{1}} \cdots \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{n}}\right] \\
& =\left[\begin{array}{ccc}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{m}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{m}(\mathbf{x})}{\partial x_{n}}
\end{array}\right]
\end{aligned}
$$

Example

Given $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$, we define the linear vector-valued function \mathbf{f} as:

$$
\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}
$$

- Q_{1} : What is the dimension of $\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}$?
- Q_{2} : Compute $\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}$.

Answer

- Since $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, its follows that $\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \in \mathbb{R}^{m \times n}$.
- The first step is to compute each entry of the Jacobian matrix, $\frac{\partial f_{i}}{\partial x_{j}}$. From the definition of the matrix decomposition, we know:

$$
f_{i}(\mathbf{x})=\sum_{j=1}^{N} A_{i j} x_{j}
$$

Then each entry $\frac{\partial f_{i}}{\partial x_{j}}=A_{i j}$. It follows that:

$$
\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{m}(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial f_{m}(\mathbf{x})}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 N} \\
\vdots & \vdots & \vdots \\
A_{M 1} & \ldots & A_{M N}
\end{array}\right]=\mathbf{A}
$$

Gradients with respect to the matrix

- Often in machine learning, we need to take gradients of matrices with respect to other matrices. The Jacobian in this case will be a multi-dimension tensor.
- For example, if we compute the gradient of an $m \times n$ matrix \mathbf{A} with respect to a $p \times q$ matrix \mathbf{B}, the resulting Jacobian \mathbf{J} is a four-dimensional tensor $m \times n \times p \times q$. Each entry $\mathbf{J}_{i j k l}=\frac{\partial \mathbf{A}_{i j}}{\partial \mathbf{B}_{k l}}$.

Exercise

Given a matrix $\mathbf{R} \in \mathbb{R}^{m \times n}$. We define:

$$
\mathbf{f}(\mathbf{R})=\mathbf{R}^{T} \mathbf{R}
$$

- Q_{1} : What is the diminsion of $\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}$?
- Q_{2} : Compute $\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}$.

Recommended resources

Petersen, Kaare Brandt, and Michael Syskind Pedersen. "The matrix cookbook." Technical University of Denmark 7, no. 15 (2008): 510.

Matrix decomposition

Introduction

- We can decompose an integer into its prime factors, e.g., $12=2 \times 2 \times 3$.
- Similarly, matrices can be decomposed into product of other matrices.
- Examples are Eigendecomposition, SVD, Schur decomposition, LU decomposition,

Eigenvector

- An eigenvector of a square matrix A is a nonzero vector v such that multiplication by A only changes the scale of v :

$$
A v=\lambda v
$$

- The scalar λ is known as the eigenvalue.
- If v is an eigenvector of A, so is any rescaled vector $s v$. Moreover, $s v$ still has the same eigenvalue. Thus, we constrain the eigenvector to be of unit length.

Compute eigenvalues - characteristic polynomial

- Eigenvalue equation of matrix A :

$$
\begin{aligned}
A v & =\lambda v \\
\lambda v-A v & =0 \\
(\lambda I-A) v & =0
\end{aligned}
$$

- If nonzero solution for v exists, then it must be the case that:

$$
\operatorname{det}(\lambda I-A)=0
$$

- Unpacking the determinant as a function of λ, we get a polynomial, called the characteristic polynomial:

$$
P_{A}(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+c_{n-1} \lambda^{n-1}+\lambda+c_{0}
$$

- Compute eigenvalues of $A \rightarrow$ solve $P_{A}(\lambda)=0$

Exercise

Consider the matrix:

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

- What is the characteristic polynomial of A ?
- What are the eigenvalues of A ?
- What are the associated eigenvectors?

Eigendecomposition

- Every symmetric (hermitian) matrix of dimension n has a set of (not necessarily unique) n orthogonal eigenvectors. Furthermore, all eigenvalues are real.
- Every real symmetric matrix A can be decomposed into real-valued eigenvectors and eigenvalues:

$$
A=P D P^{-1}
$$

- P is an orthogonal matrix of the eigenvectors of A, and D is a diagonal matrix of eigenvalues.

Intuitions of Eigendecomposition

- Diagonal matrix allows fast computations of their determinants, powers and inverses.
- Eigendecomposition transforms a matrix into a diagonal form by changing the basis.

Geometric intuitions of eigendecomposition

- Top-left to bottom-left: P^{-1} performs a basis change.
- Bottom-left to bottom-right: D performs a scaling.
- Bottom-right to top-right: P undoes the basis change.

Singular Value Decomposition (SVD)

- If A is not square, eigendecomposition is undefined.
- SVD is a decomposition of the form $A=U D V^{T}$.
- SVD is more general than eigendecomposition.
- Every real matrix has a SVD.

SVD

- If A is $m \times n$, then U is $m \times m, \mathrm{D}$ is $m \times n$, and V is $n \times n$.
- U and V are orthogonal matrices, and D is a diagonal matrix (not necessarily square).
- Diagonal entries of D are called singular values of A.
- Columns of U are the left singular vectors, and columns of V are the right singular vectors.

SVD and eigendecomposition

- SVD can be interpreted in terms of eigendecompostion.
- Left singular vectors of A are the eigenvectors of $A A^{T}$.
- Right singular vectors of A are the eigenvectors of $A^{T} A$
- Nonzero singular values of A are square roots of eigenvalues of $A^{T} A$ and $A A^{T}$. $\left(A^{T} A\right.$ and $A A^{T}$ are semipositive definite, thus their eigenvalues are positive)

Exercise

Compute SVD of the matrix:

$$
A=\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]
$$

Exercise

Compute SVD of the matrix:

$$
A=\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]
$$

- What is $A A^{T}$ and $A^{T} A$?
- Apply eigendecomposition on $A A^{T}$ and $A^{T} A$

Rank-r approximation

- Given a matrix A, SVD allows us to find its "best" (to be defined) rank-r approximation A_{r}.
- We can write $A=U D V^{T}$ as $A=\sum_{i=1}^{n} d_{i} u_{i} v_{i}^{T}$, where d_{i} are sorted from the largest to the smallest.
- The rank-r approximation A_{r} is defined as:

$$
A=\sum_{i=1}^{r} d_{i} u_{i} v_{i}^{T}
$$

- A_{r} is the best approximation of rank r by many norms, such as, L_{2} norm. It means that $\left\|A-A_{r}\right\|_{2} \leq\|A-B\|_{2}$ for any rank r matrix B.

Exercise

Fine the rank-1 approximation and rank-2 approximation of the matrix:

$$
A=\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]
$$

