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Outline

o Gradients of multivariate functions

e Matrix decomposition
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Gradients of vector-valued functions
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Vector-valued functions

For a function f : R® — R™ and a vector x = [z1,--- ,z,]|T € R", the
corresponding vector of function values is given as:

f(x) = [i(x) - fm(x)] € R

where f; : R” — R.
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Partial derivatives

The partial derivative of a vector-valued function f : R” — R™ with
respect to x; € R is given as:

OF _ Ofr  Ofm

Ekci N [8331 ' 8:&} €R
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Jacobian

The collection of all first-order partial derivatives of a vector-valued
function f : R™ — R™ is called the Jacobian. The Jacobian % is an
m X n matrix, which is defined as:

of(x) [Gf(x) 8f(x)]
ox ' Oxy oxy,
9f1(x) of1(x)
ox1 te Oxn
Unx) )
o1 te O0Tn
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Example

Given x € R" and A € R™*", we define the linear vector-valued
function f as:

f(x) = Ax

@ (Q1: What is the dimension of %}z‘)?

@ (2: Compute ag(;().
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Answer

@ Since f : R™ — R™, its follows that 62(;() € R,

@ The first step is to compute each entry of the Jacobian matrix,
gg;. From the definition of the matrix decomposition, we know:

N
filx) =Y Aija
j=1

Then each entry gﬂ{ ; = A;j. It follows that:

%(lx) e %(nx) A ... A
of(x) ) ) . N : : =A
ox Ofm()  Ofmlx) Avi o Aun
(9m1 P awn
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Gradients with respect to the matrix

e Often in machine learning, we need to take gradients of matrices
with respect to other matrices. The Jacobian in this case will be a
multi-dimension tensor.

e For example, if we compute the gradient of an m x n matrix A
with respect to a p X ¢ matrix B, the resulting Jacobian J is a
four-dimensional tensor m x n x p x ¢. Each entry J;;z; = g%z.
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Exercise

Given a matrix R € R™*". We define:

f(R)=R'R

@ (1: What is the diminsion of 82—(:)?

of (x)

e Q2: Compute —-
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Recommended resources

Petersen, Kaare Brandt, and Michael Syskind Pedersen. ” The matrix
cookbook.” Technical University of Denmark 7, no. 15 (2008): 510.
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https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Matrix decomposition
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Introduction

@ We can decompose an integer into its prime factors, e.g.,
12=2x2x3.

e Similarly, matrices can be decomposed into product of other
matrices.

e Examples are Eigendecomposition, SVD, Schur decomposition, LU
decomposition, . . . .
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Eigenvector

e An eigenvector of a square matrix A is a nonzero vector v such
that multiplication by A only changes the scale of v:

Av = v

@ The scalar X is known as the eigenvalue.

o If v is an eigenvector of A, so is any rescaled vector sv. Moreover,
sv still has the same eigenvalue. Thus, we constrain the
eigenvector to be of unit length.
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Compute eigenvalues - characteristic polynomial

e Eigenvalue equation of matrix A:

Av =\
M —Av =0
(M —-Apv=0

o If nonzero solution for v exists, then it must be the case that:

det(A\l —A) =0

e Unpacking the determinant as a function of A , we get a
polynomial, called the characteristic polynomial:

Pa(A) = detMN — A) = \" + ¢, A\ L+ A4

e Compute eigenvalues of A — solve P4(A) =0
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Exercise

Consider the matrix:
2 1
a=[r )

o What is the characteristic polynomial of A?
e What are the eigenvalues of A7

e What are the associated eigenvectors?
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Eigendecomposition

o Every symmetric (hermitian) matrix of dimension n has a set of
(not necessarily unique) n orthogonal eigenvectors. Furthermore,
all eigenvalues are real.

e Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:

A=PDp!

e P is an orthogonal matrix of the eigenvectors of A, and D is a
diagonal matrix of eigenvalues.
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Intuitions of Eigendecomposition

e Diagonal matrix allows fast computations of their determinants,
powers and inverses.

e Eigendecomposition transforms a matrix into a diagonal form by
changing the basis.
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Geometric intuitions of eigendecomposition

E\/'EI_D_' |L A

o Top-left to bottom-left: P~! performs a basis change.
e Bottom-left to bottom-right: D performs a scaling.
e Bottom-right to top-right: P undoes the basis change.
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Singular Value Decomposition (SVD)

e If A is not square, eigendecomposition is undefined.
SVD is a decomposition of the form A = UDVT.

SVD is more general than eigendecomposition.

Every real matrix has a SVD.
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SVD

If Aism xn, then U is m xm, D ism xn, and Visn x n.

U and V are orthogonal matrices, and D is a diagonal matrix (not
necessarily square).

Diagonal entries of D are called singular values of A.

Columns of U are the left singular vectors, and columns of V are
the right singular vectors.
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SVD and eigendecomposition

SVD can be interpreted in terms of eigendecompostion.

Left singular vectors of A are the eigenvectors of AAT.

Right singular vectors of A are the eigenvectors of AT A

e Nonzero singular values of A are square roots of eigenvalues of
AT A and AAT. (AT A and AAT are semipositive definite, thus
their eigenvalues are positive)
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Exercise

Compute SVD of the matrix:

fry
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Exercise

Compute SVD of the matrix:

o What is AAT and AT A?
o Apply eigendecomposition on AAT and AT A
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Rank-r approximation

e Given a matrix A, SVD allows us to find its “best” (to be defined)
rank-r approximation A,.

o We can write A=UDVT as A = Z?zl diuiviT, where d; are sorted
from the largest to the smallest.

@ The rank-r approximation A, is defined as:

T
=1

e A, is the best approximation of rank r by many norms, such as,
Ly norm. It means that ||[A — A,||2 < ||A — B||2 for any rank r
matrix B.
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Exercise

Fine the rank-1 approximation and rank-2 approximation of the matrix:

3 2 2
A‘[z 3 —2}
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