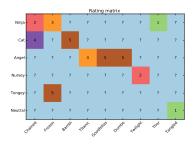
Embedded Ethics — Recommender System Objectives

Rahul G. Krishnan Steven Coyne

Embedded Ethics Module Recommender System Objectives

295660


- Topic: objective functions for recommender systems
- Two parts
 - **Part 1:** technical challenges in moving beyond regression and classification
 - **Part 2:** ethical challenges, and philosophical tools for reasoning about them

Recap and Motivation

Recap: Netflix Challenge

• We can view collaborative filtering as a matrix completion problem.

• In addition to the learning algorithm, it is important to consider the data and the objective function.

Recommender Systems

- Other kinds of recommendation systems include search engines and social media feeds.
- What are some difficulties you'd run into if you tried to use a Netflix-style algorithm to organize a user's social media feed?

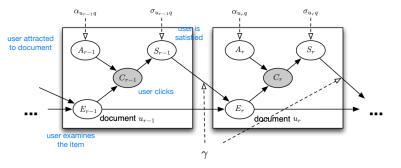
Recommender Systems

• If you were designing an ML algorithm to organize a user's social media feed, what other information might you use?

• As a supervised learning problem, what would be the inputs, and what would be the targets?

Warmup: Open up your social media feeds - shout out some of the topics in the posts that you find.

• Google News was an early example of training a model to predict clicks.

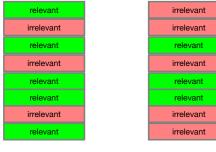

≡	Google News	Q, toronto computer science	×	·
•	Top stories	U of T computer science grads reflect on their studies - and the profs		_ University of Toronto Computer
ů	For you	who inspired them News@UofT - Jun.24		Science
슙	Following			topic ☆ Follow < Share
	News Showcase			State
Q	Saved searches	The 50-year-old problem that eludes theoretical computer science MITTechnology Review + Oct. 27	1 1	
۲	COVID-19		-	
p.	Canada	Global research alliance between U of T and University of Melbourne to		
\odot	World	take 'strong relationship to another level' News@UofT - Oct. 28		
9	Your local news		A DE LA	
	Business			
۲	Technology	Trapping light in microchips: Professor wins top science award CTV News - Yesterday	B PLA	
	Entertainment			
ేం	Sports			
	Science	U of T releases new guidelines for researchers engaging in international		
~	Health	partnerships News@UoT - Oct.21		
Lanç Engli	uage & region sh (Canada)			
Setti	ngs	U of T researchers create mirror-image peptides that can neutralize SARS-CoV-2		
Get	the Android app 🛛	News@Uoff · Oct. 26		
Get	the iOS app 🛛	Screenshot E3I-RSO		

• Why are clicks a useful signal?

• What are some problems with optimizing for clicks?

- Here is a Bayesian network designed to model user behavior for a search engine.
 - We covered Bayes nets briefly when we discussed naıve Bayes.
- Nodes represent random variables, and edges represent direct influences. Shaded = observed.
- Want to infer user satisfaction (S).

Chuklin et al., "Click models for web search"

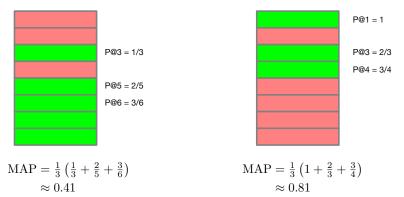

- User preferences aren't just a matter of reactions to individual items, but also of the user's overall experience.
- Many web services optimize for a criterion called engagement.
 - User's frequency, intensity, or depth of interaction with a product over some time period
 - Not a technical term, but a business term, instantiated in different ways by different companies
 - E.g. Gmail: percentage of active users who visited the site on 5 or more days during the past week Rodden et al., "Measuring the user experience on a large scale"
 - E.g. Facebook: time spent on site, meaningful social interactions https://www.washingtonpost.com/technology/interactive/2021/how-facebook-algorithm-works/
- This is not directly optimized by an ML algorithm (as far as I know), but is used to evaluate changes to the system.
 - Sort of analogous to how logistic regression minimizes cross-entropy loss but you might tune hyperparameters based on accuracy.

- The choice of what to optimize for can have ethical implications.
- The recently published Facebook Papers reveal a lot about unintended consequences of algorithm design
 - My aim isn't to pick on Facebook here. They found these harms and worked to fix them!
- Early years: optimizing for likes and clicks \Rightarrow clickbait
- Optimizing for time spent reading/watching ⇒ favored professional over organic content
- 2017: service changed to reward comments & emojis ⇒ most successful political posts were the polarizing ones
 - Some political parties consciously shifted their messaging to be much more negative
 - Facebook eventually rolled back this change for health and politics

https://www.wsj.com/articles/facebook-algorithm-change-zuckerberg-11631654215

- Most of this class has focused on classification, where there is a natural metric to use (accuracy).
- In this case, we'd like to produce a feed (an ordered list of items). Problems where we want to predict a structured object are known as structured prediction.
- For now, assume that all items are either relevant or irrelevant.
- Which of the following lists is preferable?

E3I-RSO



- One basic measure is precision: the fraction of items which are relevant.
- Which of the following lists is preferable?

- Precision@K: Precision for the list up to the *K*th item.
- Average Precision (AP): average of Precision@K, where K is taken as the indices of the first N relevant items.
 - Moving a relevant item from position 2 to position 1 is worth more points than moving it from position 8 to position 7.
- Mean Average Precision (MAP): mean of the AP over multiple queries.
- Note: in different application areas, there are different (but related) definitions of AP/MAP.

An example of calculating AP with N = 3.

What other factors might you consider in evaluating a list of recommendations?

- We've been discussing challenges that arise when defining optimization objectives beyond the basic classification and regression settings.
- So far, we've focused on challenges of building a useful and engaging system.
- But what we choose to optimize for can have unintended consequences. The rest of the lecture focuses on thinking about optimization objectives from an ethical standpoint.

Acknowledgements

This module was created as part of an Embedded Ethics Education Initiative (E3I), a joint project between the Department of Computer Science¹ and the Schwartz Reisman Institute for Technology and Society², University of Toronto.

Instructional Team:

Roger Grosse, Steven Coyne, Emma McClure, Rahul G. Krishnan

Faculty Advisors:

Diane Horton¹, David Liu¹, and Sheila McIlraith^{1,2}

Department of Computer Science Schwartz Reisman Institute for Technology and Society University of Toronto

