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Today

So far in this course: supervised learning

Today we start unsupervised learning

» No labels, so the purpose is to find patterns in data
» Need to specify what kind of patterns to look for

This week: dimensionality reduction
» Linear dimensionality reduction (Principal Component Analysis)

» Matrix completion (needed for the project) is closely related to
PCA.

» Nonlinear dimensionality reduction (autoencoders)

e Week 11: clustering
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Motivating Examples

Energy disaggregation
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Kolter and Johnson, “REDD: A public data set for energy disaggregation research”
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Motivating Examples

Modeling the change in scientific topics over time
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Griffiths and Steyvers, “Finding scientific topics”
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Motivating Examples

Modeling the change in scientific topics over time
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Motivating Examples

The models for those tasks are fairly complicated. In this course, we’ll
focus on two simpler instances of unsupervised learning:

Clustering Dimensionality Reduction

After IsoMap
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Linear Dimensionality Reduction

We'll start with a simpler form of dimensionality reduction: linear
dimensionality reduction

Example: suppose you're a psychologist interested in modeling
the variation in human personality

» You've asked lots of participants to take a survey with lots of
personality questions.

» By figuring out which questions are highly correlated with each
other, you can uncover the main factors describing human
personality.

@ A linear dimensionality reduction model called factor analysis
found five key personality traits called the Big Five:
» extraversion, agreeableness, openness to experience,
conscientiousness, neuroticism

In this lecture, we’ll consider a different but closely related model
called Principal Component Analysis (PCA).
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PCA: Overview

e Principal Component Analysis (PCA) is our first unsupervised
learning algorithm, and an example of linear dimensionality
reduction.

e Dimensionality reduction: map data to a lower dimensional space
» Save computation/memory
» Reduce overfitting, achieve better generalization
» Visualize in 2 dimensions

e Since PCA is a linear model, this mapping will be a projection.
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Image credit: Elements of Statistical Learning
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Euclidean projection

Projection onto a 1-D subspace o &D iﬂ"oﬁ*‘
: Meﬂ’
}ﬁ‘”

e

S © Subspace S is the line along the

P unit vector u

» {u} is a basis for S: any point in
S can be written as zu for some
z.

e Projection of x on § is denoted by Projs(x)
o Recall: x'u = ||x||||ul| cos(8) = ||x|| cos(6)
o Projs(x)= x'u - u = [|%]|u

-~
length of proj direction of proj
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General subspaces

fineox:
e How to project onto a K —dimensionall{_subspace?

» Idea: choose an orthonormal basis {uy, uy, ---,ug} for S (i.e. all
unit vectors and orthogonal to each other)

» Project onto each unit vector individually (as in previous slide), and
sum together the projections.

e Mathematically, the projection is given as:
K
Projs(x) = Zziui where z; = xTui.
=1, gadt wi s Hu dasis wder
o Hu magnitade  alon fd .
e In vector form: o K iS ) 8 Pr@:}eﬁwﬂ

Projs(x) = Uz where z = U'x
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Projection onto a Subspace

@ So far, we assumed the subspace passes through 0.

o In mathematical terminology, the “subspaces” we want to project
onto are really affine spaces, and can have an arbitrary origin f.

\ —, i:Uz{ﬁ:z1u1+zzu2+ﬁ

\/ 4 2=U"(x~ u)

\' H on
Aouen of qgu,b;pace <

@ In machine learning, X is also called the reconstruction of x.

@ z is its representation, or code.
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Projection onto a Subspace

IMustion : we hm K
If we have a K-dimensional subspace i ma yumbag in , eadn

D- dlmensmnal input space, then x € R” okdl s us kmp A
and z € RE pro; edR anto 3 (’!‘(—\‘/\138'5“"‘n

If the data points x all lie close to their banis o§' S
reconstructions, then we can approximate

distances, etc. in terms of these same

operations on the code vectors z. e

If K << D, then it’s much cheaper to work

with z than x. uZ\/v )

A mapping to a space that’s easier to H
manipulate or visualize is called a >
representation, and learning such a
mapping is representation learning.

Mapping data to a low-dimensional space is
called dimensionality reduction.
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Learning a Subspace

e How to choose a good subspace S?

jmﬂ\'w\g F‘fobll.W\ .

» Origin £ is the empirical mean of the data
» Need to choose a D X K matrix U with orthonormal columns.

e Two criteria: How 8o I L'O“&ke %\'\S
» Minimize the reconstruction error: V\ 3 Cox‘&bafa

wndd

N
o1 N )2 dnedk alo
min gy 3l =) :
i=1

» Maximize the variance of reconstructions: Find a subspace where
data has the most variability.

1 () g2
mgXNgllx - il

» Note: The data and its reconstruction have the same means
(exercise)!
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Learning a Subspace

@ These two criteria are equivalent! I.e., we’ll show
LS @) 2 1 S(6) .2
& 2 ==V = const — 5 ) (1% -
i=1 i
o Recall X = o + Uz and 2” = U (xV) - ).

@ Observation 1: Because the columns of U are orthogonal, U'U-= I, so
- A2 2 T,-T T 2
Ix - pll” =[|Uz||" =2 U Uz =2z z=|z||".

= norm of centered reconstruction is equal to norm of representation.
(If you draw it, this is obvious).
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Pythagorean Theorem

e Observation 1: ||>~((i) - ﬂ”2 = ||Z(i)||2

» Variance of reconstructions is equal to variance of code vectors:
(i) ~q(2 i) 2 . i
LYY = al® = £ ¥ 1271 (exercise + ¥, 2 = 0)

@ Observation 2: orthogonality of £ — i and £ - x@

(Two vectors a,b are orthogonal <= a b =0)

o Recall ¥V = 1+ UU T (xV - f1).

& - )& - x0)-Csubst X @)
= (x" - )" (a-x" + VU (" - )

x® == U (a-x") + (< -p)ToU T (- )
=0
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Pythagorean Theorem

The Pythagorean Theorem tells us:

@ _ j II? for each 4

J0) a2 () )2
175 =A™ + N =% =[x - o

By averaging over data and from observation 2, we obtain

IR0 2, Lo ) _ (2
NZIIX ol +WZ”X - x|

projected variance reconstruction error
N
1 (G) 12
S =N I = all
=1

constant

Therefore,
projected variance = constant — reconstruction error

Maximizing the variance is equivalent to minimizing the reconstruction error!
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize
the reconstruction error, is called principal component analysis (PCA).

o Consider the empirical covariance matrix:

L1 & (i)
E:N;x — ) (x" -

o Recall: 3 is symmetric and positive semidefinite.
o The optimal PCA subspace is spanned

by the top K eigenvectors of X.

» More precisely, choose the first K of

any orthonormal eigenbasis for 3.

» The general case is tricky, but we’ll
show this for K = 1.

o These eigenvectors are called principal

components, analogous to the
principal axes of an ellipse.

Intro ML (UofT)
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Deriving PCA

e For K =1, we are fitting a unit vector u, and the code is a scalar
20 = uT(X(l) — ft). Let’s maximize the projected variance. From

observation 1, we have

1 @) a2 _ 1 W2 _ 1 T, (1) A2
NZIIX ol -Ng[z ] —Ng(u (x” = 1))

L Tl oo

=+ Y ' (x - )" - ) (a'b)’=a"bb'a
i=1
TL L So @y 3T
=u'| 52 V- - )
i=1

=u'Zu
= UTQAQTU Spectral Decomposition 3 = QAQT
=a'Aa for a = QTu

3 2
= Z Aja;

j=1
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Deriving PCA

. T D 2 T

o Maximize a Aa = ijl Aja; fora=Q u.
» This is a change-of-basis to the eigenbasis of X.

o Assume the \; are in sorted order, A\; = Ao, = ...

@ Observation: since u is a unit vector, then by unitarity, a is also a
.tt_T_TQQT_T.Zg_1

unit vector: a a =u u=u u e, ) a;=1
e By inspection, set a; = £1 and a; = 0 for j # 1.

e Hence, u = Qa = q; (the top eigenvector).

o A similar argument shows that the kth principal component is the
kth eigenvector of 3.
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Recap

Recap:
e Dimensionality reduction aims to find a low-dimensional
representation of the data.
e PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction
error.

@ The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

o PCA gives a set of decorrelated features.
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Applying PCA to faces

Consider running PCA on 2429 19x19 grayscale images (CBCL data)

Can get good reconstructions with only 3 components

Pl slpigh 4 it ridf e s

PCA for pre-processing: can apply classifier to latent representation

» Original data is 361 dimensional

» For face recognition PCA with 3 components obtains 79% accuracy
on face/non-face discrimination on test data vs. 76.8% for a
Gaussian mixture model (GMM) with 84 states. (We'll cover
GMMs later in the course.)

@ Can also be good for visualization
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Applying PCA to faces: Learned basis

Principal components of face images (“eigenfaces”)
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Applying PCA to digits

reconstructed with 2 bases reconstructed with 10 bases

E

reconstructed with 100 bases reconstructed with 506 bases

BEEEERE] =
BEEBEA.
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder
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Some recommender systems in action

<« C & hitps://www.amazon.ca/?ref =nav_signin& * G s * e 0 EH® CHS e
Apps H Bookmarks () Version Control wi.. § The latest Sci-Hu.. W Daylight Theory: S.. [J A Guide to Creatin. How doss physics... e Griled Steak Taco... 5 arXiv:0707.2071v2. »
—————

Inspired by your browsing history see more

Your recently viewed items and featured recommendations
Inspired by your browsing history Page 10f8

Pixel 2XL Case, Google ~ Pixel 2XL Case, Google ~ Google Pixel 2 XL Screen  Pixel 2 XL Case, Google ~ VicTsing M UGREEN Active Micro AmazonBasics Nylon
Pixel 2 XL Case, Spigen Pixel 2 XL Case, Spigen Protector [Not Glass][2-  Pixel 2 XL Case, Spigen (Thunderbolt Port HDMI to HDMI VGA Video  Braided USB A to
Neo Hybrid - Flexible Inner  Thin Fit - Premium Matte  Pack], IQ Shield LiQuidSkin  Rugged Armor - Resilient  Compatible) to Converter Adapterwith  Lightning Compatible
TPU and Reinforced.. Finish Coating for... Full Coverage Screen Carbon Fiber Design... HDMI/DVI/VGA Male to...  3.5mm Audio Jackand...  Cable - Apple MF...
Al Ardryy 134 FR vy 143 Protector for Google... HA R 325 R vr 306 Ry 64 P e dr s 402
CON$ 2099 prime CON$ 15.99 prime CDN$ 27.16 CDN$ 15.99 vprime CDN$ 16.99 vprime CON$ 25.49 prime CON$ 1299 prime

Ideally recommendations should combine global and seasonal interests, look at
your history if available, should adapt with time, be coherent and diverse, etc.
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Some recommender systems in action
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Intro ML (UofT)

The Netflix problem

User | Movie Rating

& Thor * Yok kX
& Chained * Kk kK
& Frozen * % ok 3 X
Chained * kK kK&
Bambi * % % % %
&) Titanic * % Kk K %
© Goodfellas | % % % % %
© Dumbo * Kk Kk K %
o Twilight * Kk K kK
) Frozen * %k ok Kk K
@ Tangled * % Kk %

preference for unrated items

Because users only rate a few items, one would like to infer their

CSC311-Lec 9

Movie recommendation: Users watch movies and rate them out of 5y%.
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Netflix Prize

WETELI —

Rellkors E‘aqnm\c (haos S 1000002
ONE_MILLION D/I 00
ro=The Netflix Prize {

Intro ML (UofT
(UofT) 28 /50



PCA as Matrix Factorization

@ Recall PCA: each input vector x e R is approximated as
[+ Uz(z),
(@)

xM xzW = py Ul

DxK

where f1 = % Y x is the data mean, U € R is the orthogonal

basis for the principal subspace, and 2" € R is the code vector,
~(4) D. (i) . L.
and X'’ € R™ is x'’’s reconstruction or approximation.

o Assume for simplicity that the data is centered: f1 = 0. Then, the
approximation looks like

MONGFIONIE § SO}
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PCA as Matrix Factorization

e PCA(on centered data): input vector x s approximated as Uz
OB § SO
@ Write this in matrix form, we have X = ZU" where X and Z are

matrices with one row per data point

(]! [«
(2)7T (2)7T

X=| X7 | er™P qng z=| 271 | gk
[XU{’)]T [Z(]\})]T

o Can write the squared reconstruction error as
N (@) (@) )2 T2
> 1" -z = X - Z2U ||,
i=1

e || - || denotes the Frobenius norm:
2 T2 2 .9
IV = 1Y TIE = u = 3 111
1] i
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PCA as Matrix Factorization

e So PCA is approximating X = ZUT, or equivalently x"~Uz".
XT U YA

|

i
D - D

one code
vector
_ N — —K—

one principal
component

e Based on the sizes of the matrices, this is a rank- K approximation.

@ Since U was chosen to minimize reconstruction error, this is the
. . . . T T2
optimal rank-K approximation, in terms of error ||[X' —UZ ||z.
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PCA vs. SVD

This has a close relationship to the Singular Value Decomposition
(SVD) of X. This is a factorization

X =UxV'

Properties:

e U, X, and v’ provide a real-valued matrix factorization of X, an
m X n matrix.

o U is a m X m matrix with orthonormal columns U' U = L., where
I, is the m X m identity matrix.

@ V is an orthonormal n X n matrix, VIV = L,.

e X is a m X n diagonal matrix, with non-negative singular values,
01,02, - -+, Omin{m,n}>» ON the diagonal, where the singular values are
conventionally ordered from largest to smallest.

It’s possible to show that the first n singular vectors correspond to the
first n principal components; more precisely, Z = UX
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PCA vs. SVD (optional)

'
M= U > V

mxn mxm mxn Nxn
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Matrix Completion

o We just saw that PCA gives the optimal low-rank matrix
factorization to a matrix X.

e Can we generalize this to the case where X is only partially
observed?
» A sparse 1000 X 1000 matrix with 50,000 observations (only 5%
observed).
» A rank 5 approximation requires only 10,000 parameters, so it’s
reasonable to fit this.
» Unfortunately, no closed form solution.

Intro ML (UofT) CSC311-Lec 9
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The Netflix problem

Movie recommendation: Users watch movies and rate them as good or

bad.

Because users only rate a few items, one would like to infer their

User | Movie Rating

& Thor * % K %
& Chained * ok %
& Frozen * Kk Kk %
Chained * ok ok Kk %
= Bambi * Kk Kk K &
© Titanic * %k ok k%
(@] Goodfellas | % % % % *
@] Dumbo * % Kk Kk Kk
G Twilight * ok % %
) Frozen * % ok Kk Kk
2 Tangled * % e %

preference for unrated items

Intro ML (UofT)
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Matrix Completion

Matrix completion problem: Transform the table into a N users by M movies
matrix R

Rating matrix

@ Data: Users rate some movies.
Ruser,movie~ Very sparse

@ Task: Predict missing entries,

3 - v e i.e. how a user would rate a

movie they haven’t previously
? ? ? . ? ? rated
o o Evaluation Metric: Squared
Newall 72112 227 error (used by Netflix
JE I R - e Competition). Is this a
S < reasonable metric?
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Matrix Completion

@ In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
factors K inferred from the ratings patterns.

o That is, we seek representations for movies and users as vectors in
R* that can ultimately be translated to ratings.

e For simplicity, we can associate these factors (i.e. the dimensions
of the vectors) with idealized concepts like
» comedy
» drama
» action
» But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?
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Matrix Completion

@ Let the representation of user i in the K-dimensional space be u; and
the representation of movie j be z;

» Intuition: maybe the first entry of u; says how much the user likes
horror films, and the first entry of z; says how much movie j is a
horror film.

@ Assume the rating user ¢ gives to movie j is given by a dot product:
T
R =u; z;

@ In matrix form, if:

U= : and Z' = Zi ... Z)pf

then: R =~ UZ'

@ This is a matrix factorization problem!
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Matrix Completion

o Recall PCA: To enforce X' = UZT, we minimized
. T T2 T 2
min X7 - UZ [l = ) ()i - i 2)
/L?J

where u; and z; are the i-th rows of matrices U and Z,
respectively.

e What’s different about the Netflix problem?

» Most entries are missing!
» We only want to count the error for the observed entries.
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Matrix Completion

@ Let O = {(n,m): entry (n,m) of matrix R is observed}
@ Using the squared error loss, matrix completion requires solving

min% Z (Rij—u;rzj)z
U2 2o

@ The objective is non-convex in U and Z jointly, and in fact it’s generally
NP-hard to minimize the above cost function exactly.

@ As a function of either U or Z individually, the problem is convex and
easy to optimize. We can use coordinate descent, just like with K-means
and mixture models!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix U
and optimize Z, and so on until convergence.
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Alternating Least Squares

e Want to minimize the squared error cost with respect to the factor
U. (The case of Z is exactly symmetric.)

o We can decompose the cost into a sum of independent terms:

Y (Ry-ula) =) Y (Ry-ul)

(4,5)€0 i g (4,5)€0

only depends on u;

This can be minimized independently for each u;.

o This is a linear regression problem in disguise. Its optimal solution
is:

-1

T
u; = Z Z;Z; Z R;;z;

J:(i,7)€0 3:(4,5)€0
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Alternating Least Squares

ALS for Matrix Completion problem
1. Initialize U and Z randomly
2. repeat until convergence

3. fori=1,..,N do

-

T -1
u; = (Zj:(m‘)eo ZjZj ) Y ji(ijeo Bijzi
5. for j=1,..,.M do

. Ty\"1
6. z; = (Zi:(i,j)EO wu; ) Y iijeo Rigti
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder
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Autoencoders

@ An autoencoder is a feed-forward neural net whose job is to take
an input x and predict x.

o To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

784 units

100 units

reconstruction

decoder

20 units

input 784 units
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code vector




Linear Autoencoders

Why autoencoders?

e Map high-dimensional data to two dimensions for visualization

@ Learn abstract features in an unsupervised way so you can apply
them to a supervised task

» Unlabled data can be much more plentiful than labeled data
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Linear Autoencoders

@ The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss. X ‘

D units ‘

A

Wg decoder
Z | Kunits
o This network computes X = WoW;x, which W [}
is a linear function. !
o If K = D, we can choose W5 and W/ such
that Wy W] is the identity matrix. This isn’t
very interesting.
@ But suppose K < D:

L(x,%) = [|x - x||?

encoder

X ‘ D units ‘

» W, maps x to a K-dimensional space, so it’s doing dimensionality
reduction.
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Linear Autoencoders

@ Observe that the output of the autoencoder must lie in a
K-dimensional subspace spanned by the columns of Wy. This is
because X = Wz

o We saw that the best possible (min error) K-dimensional linear
subspace in terms of reconstruction error is the PCA subspace.

@ The autoencoder can achieve this by setting Wy = U' and
W2 =U.

@ Therefore, the optimal weights for a linear autoencoder are just
the principal components!

X ‘ D units ‘
A
U decoder
Z | Kunits
A
UT encoder
X ‘ D units ‘
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Nonlinear Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

o This manifold is the image of the decoder.

e This is a kind of nonlinear dimensionality reduction.

100 units

100 units

Intro ML (UofT) CSC311-Lec 9 48 / 50




Nonlinear Autoencoders

o Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

real

D /&3 4s &b QR
B / ; % LI S- &-?' d q zg-el::)auto

0 /& 3 4 5 L7 5 Q B
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Nonlinear Autoencoders

Here’s a 2-dimensional autoencoder representation of newsgroup

articles. They’re color-coded by topic, but the algorithm wasn’t given
the labels.

Interbank Markets Monetary/Economic

-

-

Disasters and
Accidents

Leading Ecnomic
Indicators 5

Government

Accounts/ . Borrowings

Earnings

Intro ML
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