
CSC 311: Introduction to Machine Learning
Lecture 8 - Multivariate Gaussians, GDA

Rahul G. Krishnan

University of Toronto, Fall 2023

Intro ML (UofT) CSC311-Lec8 1 / 53



Classification: Diabetes Example

Observation per patient: White blood cell count & glucose value.

p(x | t = k) for each class is shaped like an ellipse
=⇒ we model each class as a multivariate Gaussian
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Overview

Last week, we started our tour of probabilistic models, and
introduced the fundamental concepts in the discrete setting.

Continuous random variables:
▶ Manipulating Gaussians to tackle interesting problems requires lots

of linear algebra, so we’ll begin with a linear algebra review.
▶ Additional reference: See also Chapter 4 of Mathematics for

Machine Learning, by Desienroth et al.
https://mml-book.github.io/

Regression: Linear regression as maximum likelihood estimation
under a Gaussian distribution.

Generative classifier for continuous data: Gaussian
discriminant analysis, a Bayes classifier for continuous variables.

Next week’s lecture (PCA) draws heavily on today’s linear algebra
content, so be sure to review it offline.
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Eigenvectors and Eigenvalues

Let B be a square matrix.

An eigenvector of B is a vector v such that

Bv = λv

for a scalar λ, which is called an eigenvalue.

A matrix of size D ×D has at most D distinct eigenvalues,
but may have fewer.

We will focus on symmetric matrices.
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Spectral Theorem

For a symmetric D ×D matrix,

All of the eigenvalues are real-valued.

There is a full set of D linearly independent eigenvectors.
These eigenvectors form a basis for RD.

The eigenvectors can be chosen to be real-valued.

The eigenvectors can be chosen to be orthonormal.
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Spectral Decomposition

Factorize a symmetric matrix A with the Spectral Decomposition:

A = QΛQ⊤

where

Q is an orthogonal matrix
▶ The columns qi of Q are eigenvectors.

Λ is a diagonal matrix.
▶ The diagonal entries λi are the corresponding eigenvalues.

Check that this is reasonable:

Aqi =
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Spectral Decomposition

Because A has a full set of orthonormal eigenvectors {qi},
we can use these as an orthonormal basis for RD.

A vector x can be written in an alternate coordinate system:

x = x̃1q1 + · · ·+ x̃DqD

Converting between the two coordinate systems:

x̃ = Q⊤x x = Qx̃

In the alternate coordinate system,
A acts by re-scaling the individual coordinates:

Ax = x̃1Aq1 + · · ·+ x̃DAqD

= λ1x̃1q1 + · · ·+ λDx̃DqD
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PSD Matrices

Symmetric matrices represent quadratic forms, f(v) = v⊤Av.

If v⊤Av > 0 for all v ̸= 0, A is positive definite, denoted A ≻ 0.

If v⊤Av ≥ 0 for all v, A is positive semi-definite, denoted A ⪰ 0.

If v⊤Av < 0 for all v ̸= 0, A is negative definite, denoted A ≺ 0.

If v⊤Av can be positive or negative, A is indefinite.

positive definite non-strictly PSD

negative definite indefinite
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PSD Matrices

Exercise: Non-negative linear combinations of PSD matrices are
PSD.

Related: If A is a random matrix which is always PSD, then
E[A] is PSD.

Exercise: For any matrix B, the matrix BB⊤ is PSD.

Corollary: For a random vector x, the covariance matrix
Cov(x) = E[(x− µ)(x− µ)⊤] is a PSD matrix. (Special case of
above, since x− µ is a column vector, i.e. a D × 1 matrix.)
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PSD Matrices

Claim: A is positive definite (PSD) if and only if
all of its eigenvalues are positive (non-negative).

Proof: Write v in terms of the eigenbases,

ṽ = Q⊤v.

Then, we have

v⊤Av = v⊤QΛQ⊤v

= ṽ⊤Λṽ

=
∑
i

λiṽ
2
i

This is positive (nonnegative) for all v if and only if
all the λi are positive (nonnegative).
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PSD Matrices

If A is positive definite, then the contours of the quadratic form
are elliptical.

If A is both diagonal and positive definite (i.e. its diagonal entries
are positive), then the ellipses are axis-aligned.

A =

(
0.5 0
0 1

)

f(v) = v⊤Av

=
∑
i

aiv
2
i
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PSD Matrices

For a positive definite A = QΛQ⊤, the contours of the quadratic form
are elliptical, and the principal axes of the ellipses are aligned with the
eigenvectors.

A =

(
1 −1
−1 2

)

f(v) = v⊤QΛQ⊤v

= ṽ⊤Λṽ

=
∑
i

λiṽ
2
i

In this example, λ1 > λ2.
All symmetric matrices are diagonal if you choose the right coordinate
system.

Intro ML (UofT) CSC311-Lec8 13 / 53



Matrix Powers

By the Spectral Decomposition, we can square a symmetric A:

A2 = (QΛQ⊤)2 = QΛQ⊤Q︸ ︷︷ ︸
=I

ΛQ⊤ = QΛ2Q⊤

We can take the k-th power of A:

Ak = QΛkQ⊤.

If A is invertible, we calculate its inverse:

A−1 = (Q⊤)−1Λ−1Q−1 = QΛ−1Q⊤.

If A is PSD, then we can calculate its square root:

A1/2 = QΛ1/2Q⊤.
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Determinant Properties

Claim: The determinant of a symmetric matrix equals
the product of its eigenvalues.

|A| = |QΛQ⊤| = |Q||Λ||Q⊤| = |Λ| =
∏
i

λi.

Corollary: The determinant of a PSD (positive definite) matrix is
non-negative (positive).
Basic properties of a determinant:

|BC| = |B| · |C|
|B| = 0 iff B is singular

|B−1| = |B|−1 if B is invertible (nonsingular)

|B⊤| = |B|
If Q is orthogonal, then |Q| = ±1
(i.e. orthogonal transformations preserve volume)

If Λ is diagonal with entries {λi}, then |Λ| =
∏

i λi.
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Univariate Gaussian distribution

N (x;µ, σ2) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)

Parameterized by mean µ and variance σ2.

Why is Gaussian so popular?
▶ Sums of lots of independent random variables are approximately

Gaussian (Central Limit Theorem).
▶ Machine learning uses Gaussians a lot because they make the

calculations easy.
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Multivariate Mean and Covariance

Mean

µ = E[x] =

µ1
...

µD


Covariance

Σ = Cov(x) = E[(x− µ)(x− µ)⊤] =


σ2
1 σ12 · · · σ1D

σ12 σ2
2 · · · σ2D

...
...

. . .
...

σD1 σD2 · · · σ2
D


(µ and Σ) uniquely define a multivariate Gaussian (or Normal)
distribution, denoted N (µ,Σ) or N (x;µ,Σ).

Intro ML (UofT) CSC311-Lec8 18 / 53



PDF of Gaussian Distribution

PDF of the univariate Gaussian distribution (d = 1, Σ = σ2):

N (x;µ, σ2) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
PDF of the multivariate Gaussian distribution:

N (x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
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Univariate Shift + Scale

All univariate Gaussian distributions are shaped like
the standard normal distribution.

Obtain N (µ, σ2) by starting with N (0, 1), shifting by µ, and
stretching by σ =

√
σ2.
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Multivariate Shift + Scale

Start with a standard Gaussian x ∼ N (0, I). So E[x] = 0 and
Cov(x) = I.

What happens if we apply the map x̂ = Sx+ b?

By linearity of expecation,

E[x̂] = SE[x] + b = b.

By the linear transformation rule for covariance,

Cov(x̂) = SCov(x)S⊤ = SS⊤.

x̂ is also Gaussian distributed.
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Multivariate Shift + Scale

E[Sx+ b] = b

Cov(Sx+ b) = SS⊤.

To obtain N (µ,Σ), we start with N (0, I),

shift by µ, and scale by the matrix square root Σ1/2.
▶ Recall: Σ1/2 = QΛ1/2Q.
▶ For each eigenvector qi with eigenvalue λi, we stretch by a factor of√

λi in the direction qi.
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ = 0.5

(
1 0
0 1

)
Σ = 2

(
1 0
0 1

)

Figure: Probability density function

Figure: Contour plot of the pdf

Intro ML (UofT) CSC311-Lec8 23 / 53



Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
2 0
0 1

)
Σ =

(
1 0
0 2

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5
0.5 1

)
Σ =

(
1 0.8
0.8 1

)
= Q1

(
1.5 0.
0. 0.5

)
Q⊤

1 = Q2

(
1.8 0.
0. 0.2

)
Q⊤

2

Figure: Probability density function

Figure: Contour plot of the pdf
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Maximum Likelihood for Multivariate Gaussian

Model the distribution of highest and lowest temperatures in Toronto
in March, and recorded the following observations

(-2.5,-7.5) (-9.9,-14.9) (-12.1,-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they’re drawn from a Gaussian distribution N (µ,Σ).
We want to estimate µ and Σ using data.
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Maximum Likelihood for Univariate Gaussian

∂ℓ

∂µ
= − 1

σ2

N∑
i=1

x(i) − µ = 0

µ̂ML =
1

N

N∑
i=1

x(i)
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Maximum Likelihood for Univariate Gaussian

∂ℓ

∂σ
=

∂

∂σ

[
N∑
i=1

−1

2
log 2π − log σ − 1

2σ2
(x(i) − µ)2

]

=

N∑
i=1

−1

2

∂

∂σ
log 2π − ∂

∂σ
log σ − ∂

∂σ

1

2σ
(x(i) − µ)2

=

N∑
i=1

0− 1

σ
+

1

σ3
(x(i) − µ)2

= −N

σ
+

1

σ3

N∑
i=1

(x(i) − µ)2 = 0

σ̂ML =

√√√√ 1

N

N∑
i=1

(x(i) − µ)2
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Maximum Likelihood for Multivariate Gaussian

Log-likelihood function:

ℓ(µ,Σ) = log

N∏
i=1

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=

N∑
i=1

log

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=

N∑
i=1

− log(2π)d/2︸ ︷︷ ︸
constant

− log |Σ|1/2 − 1

2
(x(i) − µ)TΣ−1(x(i) − µ)
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Gaussian Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

dℓ

dµ
= −

N∑
i=1

d

dµ

1

2
(x(i) − µ)TΣ−1(x(i) − µ)

= −
N∑
i=1

Σ−1(x(i) − µ) = 0 using identity ∇xx
⊤Ax = 2Ax

Solving for µ, we get

µ̂ =
1

N

N∑
i=1

x(i).

The best estimate for µ is the sample mean of the observed values,
or the empirical mean.

Intro ML (UofT) CSC311-Lec8 31 / 53



Maximum Likelihood for Multivariate Gaussians

We can do a similar calculation for the covariance matrix Σ.

∂ℓ

∂Σ
= 0

Σ̂ =
1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)⊤

=
1

N
(X− 1µ⊤)⊤(X− 1µ⊤)

where 1 is an N -dimensional vector of 1s.

The best estimate for Σ is the empirical covariance.
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Recap: Linear Regression

Given a training set of inputs and targets {(x(i), t(i))}Ni=1

Linear model:
y = w⊤x

Squared error loss:

L(y, t) = 1

2
(t− y)2

L2 regularization:

R(w) =
λ

2
∥w∥2

Closed-form solution:

w = (X⊤X+ λI)−1X⊤t

Gradient descent update rule:

w← (1− αλ)w − αX⊤(y − t)
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Linear Regression as Maximum Likelihood

Let’s give linear regression a probabilistic interpretation.

Assume a Gaussian noise model.

t |x ∼ N (w⊤x, σ2)

Linear regression is just maximum likelihood under this model:

1

N

N∑
i=1

log p(t(i) |x(i);w, b) =
1

N

N∑
i=1

logN (t(i);w⊤x, σ2)

=
1

N

N∑
i=1

log

[
1√
2πσ

exp

(
−(t(i) −w⊤x)2

2σ2

)]

= const− 1

2Nσ2

N∑
i=1

(t(i) −w⊤x)2
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Regularization as MAP Inference

View an L2 regularizer as MAP inference with a Gaussian prior.

Recall MAP inference:

argmax
w

log p(w | D) = argmax
w

[log p(w) + log p(D |w)]

We just derived the likelihood term log p(D |w):

log p(D |w) = − 1

2Nσ2

N∑
i=1

(t(i) −w⊤x)2 + const

Assume a Gaussian prior, w ∼ N (m,S):

log p(w) = logN (w;m,S)

= log

[
1

(2π)D/2|S|1/2
exp

(
− 1

2
(w −m)⊤S−1(w −m)

)]
= − 1

2
(w −m)⊤S−1(w −m) + const

Commonly, m = 0 and S = ηI, so

log p(w) = − 1

2η
∥w∥2 + const.

This is just L2 regularization!
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Generative vs Discriminative (Recap)

Two approaches to classification:

Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

▶ Model p(t|x) directly (logistic regression models)

▶ Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

▶ Tries to solve: How do I separate the classes?

Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

▶ Model p(x|t)
▶ Apply Bayes Rule to derive p(t|x).
▶ Tries to solve: What does each class ”look” like?
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Classification: Diabetes Example

Gaussian discriminant analysis (GDA) is a Bayes classifier for
continuous-valued inputs.

Observation per patient: White blood cell count & glucose value.

p(x | t = k) for each class is shaped like an ellipse
=⇒ we model each class as a multivariate Gaussian
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Gaussian Discriminant Analysis

Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

Multivariate Gaussian distribution:

p(x | t = k) =
1

(2π)D/2|Σk|1/2
exp

[
−1

2
(x− µk)

TΣ−1
k (x− µk)

]
where |Σk| denotes the determinant of the matrix.

Each class k has associated mean vector µk and covariance matrix Σk

How many parameters?

▶ Each µk has D parameters, for DK total.
▶ Each Σk has O(D2) parameters, for O(D2K) — could be hard to

estimate (more on that later).
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GDA: Learning

Learn the parameters for each class using maximum likelihood

For simplicity, assume binary classification

p(t |ϕ) = ϕt(1− ϕ)1−t

You can compute the ML estimates in closed form (ϕ and µk are easy,
Σk is tricky)

ϕ =
1

N

N∑
i=1

r
(i)
1

µk =

∑N
i=1 r

(i)
k · x(i)∑N

i=1 r
(i)
k

Σk =
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k (x(i) − µk)(x

(i) − µk)
⊤

r
(i)
k = 1[t(i) = k]
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GDA Decision Boundary

Recall: for Bayes classifiers, we compute the decision boundary with
Bayes’ Rule:

p(t |x) = p(t) p(x | t)∑
t′ p(t

′) p(x | t′)

Plug in the Gaussian p(x | t):

log p(tk|x) = log p(x|tk) + log p(tk)− log p(x)

= −D

2
log(2π)− 1

2
log |Σk| −

1

2
(x− µk)

⊤Σ−1
k (x− µk) +

+ log p(tk)− log p(x)

Decision boundary:

(x− µk)
⊤Σ−1

k (x− µk) = (x− µℓ)
⊤Σ−1

ℓ (x− µℓ) + Const

What’s the shape of the boundary?

▶ We have a quadratic function in x, so the decision boundary is a
conic section!
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GDA Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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GDA Decision Boundary

Our equation for the decision boundary:

(x− µk)
⊤Σ−1

k (x− µk) = (x− µℓ)
⊤Σ−1

ℓ (x− µℓ) + Const

Expand the product and factor out constants (w.r.t. x):

x⊤Σ−1
k x− 2µ⊤

k Σ
−1
k x = x⊤Σ−1

ℓ x− 2µ⊤
ℓ Σ

−1
ℓ x+Const

What if all classes share the same covariance Σ?
▶ We get a linear decision boundary!

−2µ⊤
k Σ

−1x = −2µ⊤
ℓ Σ

−1x+Const

(µk − µℓ)
⊤Σ−1x = Const
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GDA Decision Boundary: Shared Covariances

variances may be 
different 
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GDA vs Logistic Regression

Binary classification: If you examine p(t = 1 |x) under GDA and assume
Σ0 = Σ1 = Σ, you will find that it looks like this:

p(t |x, ϕ,µ0,µ1,Σ) =
1

1 + exp(−wTx− b)

where (w, b) are chosen based on (ϕ,µ0,µ1,Σ).

Same model as logistic regression!
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GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?

GDA makes a stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian

▶ If this is true, GDA is asymptotically efficient (best model in limit
of large N)

▶ If it’s not true, the quality of the predictions might suffer.

Many class-conditional distributions lead to logistic classifier.

▶ When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

GDA can handle easily missing features (how do you do that with LR?)
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Gaussian Naive Bayes

What if x is high-dimensional?

▶ The Σk have O(D2K) parameters, which can be a problem if D is
large.

▶ We already saw we can save some a factor of K by using a shared
covariance for the classes.

▶ Any other idea you can think of?

Naive Bayes: Assumes features independent given the class

p(x | t = k) =

D∏
j=1

p(xj | t = k)

Assuming likelihoods are Gaussian, how many parameters required for
Naive Bayes classifier?

▶ This is equivalent to assuming the xj are uncorrelated, i.e. Σ is
diagonal.

▶ Hence, only D parameters for Σ!
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Gaussian Näıve Bayes

Gaussian Näıve Bayes classifier assumes that the likelihoods are
Gaussian:

p(xj | t = k) =
1√

2πσjk

exp

[
−(xj − µjk)

2

2σ2
jk

]
(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as GDA with diagonal covariance matrix

Maximum likelihood estimate of parameters

µjk =

∑N
i=1 r

(i)
k x

(i)
j∑N

i=1 r
(i)
k

σ2
jk =

∑N
i=1 r

(i)
k (x

(i)
j − µjk)

2∑N
i=1 r

(i)
k

r
(i)
k = 1[t(i) = k]
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Decision Boundary: Isotropic

We can go even further and assume the covariances are spherical, or
isotropic.

In this case: Σ = σ2I (just need one parameter!)

Going back to the class posterior for GDA:

log p(tk|x) = log p(x | tk) + log p(tk)− log p(x)

= −D

2
log(2π)− 1

2
log |Σ−1

k | −
1

2
(x− µk)

⊤Σ−1
k (x− µk) +

+ log p(tk)− log p(x)

Suppose for simplicity that p(t) is uniform. Plugging in Σ = σ2I and
simplifying a bit,

log p(tk |x)− log p(tℓ |x) = −
1

2σ2

[
(x− µk)

⊤(x− µk)− (x− µℓ)
⊤(x− µℓ)

]
= − 1

2σ2

[
∥x− µk∥2 − ∥x− µℓ∥2

]
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Decision Boundary: Isotropic

* ? 

The decision boundary bisects the class means!
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Example
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Generative models - Recap

GDA has quadratic (conic) decision boundary.

With shared covariance, GDA is similar to logistic regression.

Generative models:
▶ Flexible models, easy to add/remove class.

▶ Handle missing data naturally.

▶ More “natural” way to think about things, but usually doesn’t work
as well.

Tries to solve a hard problem (model p(x)) in order to solve a easy
problem (model p(t |x)).

Next up: Unsupervised learning with PCA!
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