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• Double sided and sheet

• HW 3 out this week - due in 2 weeks.

• Midterm strategy
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Today

So far in the course we have adopted a modular perspective, in
which the model, loss function, optimizer, and regularizer are
specified separately.

Today we begin putting together a probabilistic interpretation of
our model and loss, and introduce the concept of maximum
likelihood estimation.
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Example: A Biased Coin

You flip a coin N = 100 times and get outcomes {x1, . . . , xN}
where xi 2 {0, 1} and xi = 1 is interpreted as heads H.

Suppose you had NH = 55 heads and NT = 45 tails.

We want to create a model to predict the outcome of the next coin flip.
That is, we want to answer this question:

What is the probability it will come up heads if we flip again?
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Qi . What prob . dist . should we use to model a coin flip?



Model

The coin may beliefs biased. Let’s assume that one coin flip outcome x

is a Bernoulli random variable for a currently unknown parameter
✓ 2 [0, 1].

p(x = 1|✓) = ✓ and p(x = 0|✓) = 1 � ✓

or more succinctly p(x|✓) = ✓
x(1 � ✓)1�x

Assume that {x1, . . . , xN} are independent and identically distributed
(i.i.d.). Thus, the joint probability of the outcome {x1, . . . , xN} is

p(x1, ..., xN |✓) =
NY

i=1

✓
xi(1 � ✓)1�xi
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Loss Function

The likelihood function is the probability of observing the data as a
function of the parameters ✓:

L(✓) =
NY

i=1

✓
xi(1 � ✓)1�xi

We usually work with log-likelihoods (why?):

`(✓) =
NX

i=1

xi log ✓ + (1 � xi) log(1 � ✓)
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Maximum Likelihood Estimation

How can we choose ✓? Good values of ✓ should assign high probability
to the observed data.
The maximum likelihood criterion says that we should pick the
parameters that maximize the likelihood.

✓̂ML = arg max
✓2[0,1]

`(✓)

We can find the optimal solution by setting derivatives to zero.

d`

d✓
=

d

d✓

 
NX

i=1

xi log ✓ + (1 � xi) log(1 � ✓)

!
=

NH

✓
� NT

1 � ✓

where NH =
P

i
xi and NT = N �

P
i
xi.

Setting this to zero gives the maximum likelihood estimate:

✓̂ML =
NH

NH + NT

.
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Maximum Likelihood Estimation

define a model that assigns a probability (or has a probability
density at) to a dataset

maximize the likelihood (or minimize the neg. log-likelihood).

Intro ML (UofT) CSC311-Lec7 9 / 37



1 Probabilistic Modeling of Data

2 Discriminative and Generative Classifiers
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Spam Classification

For a large company that runs an email service, one of the important
predictive problems is the automated detection of spam email.

Dear Karim,

I think we should postpone the board meeting to be held
after Thanksgiving.

Regards,
Anna

Dear Toby,

I have an incredible opportunity for mining 2 Bitcoin a day. Please
Contact me at the earliest at +1 123 321 1555. You won’t want to miss 
out on this opportunity. 

Regards,
Ark

Not spam

Spam
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Discriminative Classifiers

Discriminative classifiers try to learn mappings directly from the
space of inputs X to class labels {0, 1, 2, . . . , K}

postpone, board, meeting, 
Thanksgiving

mining, Bitcoin, contact, 
opportunity

Not spam

Spam

Class probabilityFeatures
<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>

x
<latexit sha1_base64="jQKLULRWuYndUjqhjCG4E1ku6EQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyYpL7X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgpgzbVz328mtrK6tb+Q3C1vbO7t7xf2DppaJIrRBJJeqHWBNORO0YZjhtB0riqOA01Ywup76rQeqNJPizqQx9SM8ECxkBBsrNeNy+vR42iuW3Io7A1omXkZKkKHeK351+5IkERWGcKx1x3Nj44+xMoxwOil0E01jTEZ4QDuWChxR7Y9n107QiVX6KJTKljBopv6eGONI6zQKbGeEzVAvelPxP6+TmPDSHzMRJ4YKMl8UJhwZiaavoz5TlBieWoKJYvZWRIZYYWJsQAUbgrf48jJpnlW880r1tlqqXWVx5OEIjqEMHlxADW6gDg0gcA/P8ApvjnRenHfnY96ac7KZQ/gD5/MHP26O7Q==</latexit>

p(y|x)
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Generative Classifiers

Generative classifiers try to build a model of “what data for a class
looks like”, i.e. model p(x, y). If we know p(y) we can easily compute
p(x|y).
Classification via Bayes rule (thus also called Bayes classifiers)

postpone, board, meeting, 
Thanksgiving

mining, Bitcoin, contact, 
opportunity

Not spam

Spam

Class labelProbability of feature given label
<latexit sha1_base64="cSzeeo9cnCWz1eAltF80CbjYWic=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyYpL7X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgpgzbVz328mtrK6tb+Q3C1vbO7t7xf2DppaJIrRBJJeqHWBNORO0YZjhtB0riqOA01Ywup76rQeqNJPizqQx9SM8ECxkBBsrNePy41N62iuW3Io7A1omXkZKkKHeK351+5IkERWGcKx1x3Nj44+xMoxwOil0E01jTEZ4QDuWChxR7Y9n107QiVX6KJTKljBopv6eGONI6zQKbGeEzVAvelPxP6+TmPDSHzMRJ4YKMl8UJhwZiaavoz5TlBieWoKJYvZWRIZYYWJsQAUbgrf48jJpnlW880r1tlqqXWVx5OEIjqEMHlxADW6gDg0gcA/P8ApvjnRenHfnY96ac7KZQ/gD5/MHP2yO7Q==</latexit>

p(x|y)
<latexit sha1_base64="+uQyNRflh6ZfpBt0Osl+e4sjuBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6quNBg==</latexit>

y
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Generative vs Discriminative

Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

I Model p(t|x) directly (logistic regression models)
I Learn mappings from inputs to classes (linear/logistic regression,

decision trees etc)
I Tries to solve: How do I separate the classes?

Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

I Model p(x|t)
I Apply Bayes Rule to derive p(t|x).
I Tries to solve: What does each class ”look” like?

Key di↵erence: is there a distributional assumption over inputs?
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Example: Spam Detection

Classify email into spam (c = 1) or non-spam (c = 0).

Binary features x = [x1, . . . , xD], xi 2 {0, 1} saying
whether each of D words appears in the e-mail.

Example email: “You are one of the very few who have been selected
as a winner for the free $1000 Gift Card.”

Feature vector for this email:

...

“card”: 1

...

“winners”: 1

“winter”: 0

...

“you”: 1
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Bayesian Classifier

Given features x = [x1, x2, · · · , xD]T

want to compute class probabilities using Bayes Rule:

p(c|x)| {z }
Pr. class given feature

=

Pr. feature given classz }| {
p(x|c) p(c)

p(x)

In words,

Posterior for class =
Pr. of feature given class ⇥ Prior for class

Pr. of feature

To compute p(c|x) we need: p(x|c) and p(c).
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Motivation for Compact Representation

Two classes: c 2 {0, 1}.

Binary features x = [x1, . . . , xD], xi 2 {0, 1}

Define a joint distribution p(c, x1, . . . , xD).
How many probabilities do we need to specify this joint dist.?

Let’s impose structure on the distribution so that
the representation is compact and
allows for e�cient learning and inference
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Näıve Bayes Independence Assumption

Näıve assumption:
the features xi are conditionally independent given the class c.

Allows us to decompose the joint distribution:

p(c, x1, . . . , xD) = p(c) p(x1|c) · · · p(xD|c).

Compact representation of the joint distribution

Prior probability of class:
p(c = 1) = ⇡ (e.g. prob of spam)

Conditional probability of feature given class:
p(xj = 1|c) = ✓jc (e.g. prob of word appearing in spam)
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Bayesian Network for a Naive Bayes Model

We can form a graphical model.

Which probabilities do we need to specify this dist.?

How many probabilities do we need to specify this dist.?
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Decomposing the Log-Likelihood

Decompose the log-likelihood into independent terms.
Optimize each term independently.

`(✓) =
NX

i=1

log p(c(i),x(i)) =
NX

i=1

log
n

p(x(i)|c(i))p(c(i))
o

=
NX

i=1

log
n

p(c(i))
DY

j=1

p(x(i)
j

| c(i))
o

=
NX

i=1

2

4log p(c(i)) +
DX

j=1

log p(x(i)
j

| c(i))

3

5

=
NX

i=1

log p(c(i))

| {z }
Log-likelihood

of labels

+
DX

j=1

NX

i=1

log p(x(i)
j

| c(i))

| {z }
Log-likelihood
for feature xj
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Learning the Prior over Class

To learn the prior, we maximize
P

N

i=1 log p(c(i))

Define ⇡ = p(c(i) = 1)

Pr. i-th email: p(c(i)) = ⇡
c
(i)

(1 � ⇡)1�c
(i)

.

Log-likelihood of the dataset:

NX

i=1

log p(c(i)) =
NX

i=1

c
(i) log ⇡ +

NX

i=1

(1 � c
(i)) log(1 � ⇡)

Maximum likelihood estimate of the prior ⇡

is the fraction of spams in dataset.

⇡̂ =

P
i
1I[c(i) = 1]

N
=

# spams in dataset

total # samples
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Learning Pr. Feature Given Class

To learn p(x(i)
j

= 1 | c), we maximize
P

N

i=1 log p(x(i)
j

| c(i))
Define ✓jc = p(x(i)

j
= 1 | c).

Pr. of i-th email: p(x(i)
j

| c) = ✓
x
(i)
j

jc
(1 � ✓jc)

1�x
(i)
j .

Log-likelihood of the dataset:

NX

i=1

log p(x(i)
j

| c(i)) =
NX

i=1

c
(i)
n

x
(i)
j

log ✓j1 + (1 � x
(i)
j

) log(1 � ✓j1)
o

+
NX

i=1

(1 � c
(i))
n

x
(i)
j

log ✓j0 + (1 � x
(i)
j

) log(1 � ✓j0)
o

Maximum likelihood estimate of ✓jc

is the fraction of word j occurrances in each class in the dataset.

✓̂jc =

P
i
1I[x(i)

j
= 1 & c

(i) = c]
P

i
1I[c(i) = c]

for c = 1
=

#word j appears in class c

# class c in dataset
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Predicting the Most Likely Class

We predict the class by performing inference in the model.

Apply Bayes’ Rule:

p(c |x) =
p(c)p(x | c)P
c0 p(c0)p(x | c0) =

p(c)
Q

D

j=1 p(xj | c)
P

c0 p(c0)
Q

D

j=1 p(xj | c0)

For input x, predict c with the largest p(c)
DY

j=1

p(xj | c)

(the most likely class).

p(c |x) / p(c)
DY

j=1

p(xj | c)
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Näıve Bayes Properties

An amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood
I Compute co-occurrence counts of each feature with the labels.
I Requires only one pass through the data!

Test time: apply Bayes’ Rule
I Cheap because of the model structure. (For more general models,

Bayesian inference can be very expensive and/or complicated.)

Analysis easily extends to prob. distributions other than Bernoulli.

Less accurate in practice compared to discriminative models
due to its “näıve” independence assumption.
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Data Sparsity

Maximum likelihood can overfit if there is too little data.

Example: what if you flip the coin twice and get H both times?

✓ML =
NH

NH + NT

=
2

2 + 0
= 1

The model assigned probability 0 to T.
This problem is known as data sparsity.
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Defining a Bayesian Model

We need to specify two distributions:

The prior distribution p(✓)
encodes our beliefs about the parameters
before we observe the data.

The likelihood p(D |✓)
encodes the likelihood of observing the data
given the parameters.
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The Posterior Distribution

When we update our beliefs based on the observations,
we compute the posterior distribution using Bayes’ Rule:

p(✓ | D) =
p(✓)p(D |✓)R

p(✓0)p(D |✓0) d✓0 .

Rarely ever compute the denominator explicitly.

In general, computing the denominator is intractable.
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Revisiting Coin Flip Example

We already know the likelihood:

L(✓) = p(D|✓) = ✓
NH (1 � ✓)NT

It remains to specify the prior p(✓).

An uninformative prior, which assumes as little as possible.
A reasonable choice is the uniform prior.

But, experience tells us 0.5 is more likely than 0.99.
One particularly useful prior is the beta distribution:

p(✓; a, b) =
�(a + b)

�(a)�(b)
✓
a�1(1 � ✓)b�1

.

We can ignore the normalization constant.

p(✓; a, b) / ✓
a�1(1 � ✓)b�1

.
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Beta Distribution Properties

The expectation is E[✓] = a/(a + b).

The distribution gets more peaked when a and b are large.

When a = b = 1, it becomes the uniform distribution.
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Posterior for the Coin Flip Example

Computing the posterior distribution:

p(✓ | D) / p(✓)p(D |✓)

/
h
✓
a�1(1 � ✓)b�1

i ⇥
✓
NH (1 � ✓)NT

⇤

= ✓
a�1+NH (1 � ✓)b�1+NT .

A beta distribution with parameters NH + a and NT + b.

The posterior expectation of ✓ is:

E[✓ | D] =
NH + a

NH + NT + a + b

Think of a and b as pseudo-counts.
beta(a, b) = beta(1, 1) + a � 1 heads + b � 1 tails.

The prior and likelihood have the same functional form
(conjugate priors).
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Bayesian Inference for the Coin Flip Example

When you have enough observations, the data overwhelm the prior.

Small data setting
NH = 2, NT = 0

Large data setting
NH = 55, NT = 45
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Maximum A-Posteriori (MAP) Estimation

Finds the most likely parameters under the posterior (i.e. the mode).
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Maximum A-Posteriori Estimation

Converts the Bayesian parameter estimation problem
into a maximization problem

✓̂MAP = arg max
✓

p(✓ | D)

= arg max
✓

p(✓) p(D |✓)

= arg max
✓

log p(✓) + log p(D |✓)

Intro ML (UofT) CSC311-Lec7 35 / 37



Maximum A-Posteriori Estimation

Joint probability of parameters and data:

log p(✓, D) = log p(✓) + log p(D | ✓)
= Const + (NH + a � 1) log ✓ + (NT + b � 1) log(1 � ✓)

Maximize by finding a critical point

d

d✓
log p(✓, D) =

NH + a � 1

✓
� NT + b � 1

1 � ✓
= 0

Solving for ✓,

✓̂MAP =
NH + a � 1

NH + NT + a + b � 2
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Estimate Comparison for Coin Flip Example

Formula NH = 2, NT = 0 NH = 55, NT = 45

✓̂ML
NH

NH+NT

1 55
100 = 0.55

E[✓|D] NH+a

NH+NT+a+b

4
6 ⇡ 0.67 57

104 ⇡ 0.548

✓̂MAP
NH+a�1

NH+NT+a+b�2
3
4 = 0.75 56

102 ⇡ 0.549

✓̂MAP assigns nonzero probabilities as long as a, b > 1.
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