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Multi-class Classification

Task is to predict a discrete(> 2)-valued target.
It is very hard to say what makes a 2         Some examples from an earlier version of the net 
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Last week : Binary classification
- Binary linear classification
- Logistic Regression

MNIST Dataset 10 classes ↓ Object classification .

Visualizing probability at top
H classes .



Targets in Multi-class Classification

Targets form a discrete set {1, . . . ,K}.

Represent targets as one-hot vectors or one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)| {z }
entry k is 1

2 RK
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Two representations are

equivalent .

t=k OR
,

e. g if
we have 4 classes Note :

Be careful

1. indexing t - l i o o o to map this

notation
.

correctly whent -2 0 I 0 0
zero indexing .



Linear Function of Inputs

Vectorized form:

z = Wx+ b or

z = Wx with dummy x0 = 1

Non-vectorized form:

zk =
DX

j=1

wkjxj + bk for k = 1, 2, ...,K

W: K x D matrix.

x: D x 1 vector.

b: K x 1 vector.

z: K x 1 vector.
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Generating a Prediction

Interpret zk as how much the model prefers the k-th prediction.

yi =

(
1, if i = argmax

k
zk

0, otherwise

How does the K = 2 case relate to the binary linear classifiers?
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Softmax Regression

Soften the predictions for optimization.

A natural activation function is the softmax function,
a generalization of the logistic function:

yk = softmax(z1, . . . , zK)k =
ezkP
k0 e

zk0

Inputs zk are called the logits.

Interpret outputs as probabilities.

If zk is much larger than the others,
then softmax(z)k ⇡ 1 and it behaves like argmax.

What does the K = 2 case look like?
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Consider the case where k=2
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Cross-Entropy as Loss Function

Use cross-entropy as the loss function.

LCE(y, t) = �
KX

k=1

tk log yk = �t>(logy),

where the log is applied element-wise.

Often use a combined softmax-cross-entropy function.
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Gradient Descent Updates for Softmax Regression

Softmax Regression:

z = Wx

y = softmax(z)

LCE = �t>(logy)

Gradient Descent Updates:

@LCE

@wk
=
@LCE

@zk
·
@zk
@wk

= (yk � tk) · x

wk  wk � ↵
1

N

NX

i=1

(y(i)k � t(i)k )x(i)
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Progress During Learning

Track progress during learning by plotting training curves.

Chose the training criterion (e.g. squared error, cross-entropy)
partly to be easy to optimize.

May wish to track other metrics to measure performance
(even if we can’t directly optimize them).
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Tracking Accuracy for Binary Classification

We can track accuracy, or fraction correctly classified.

Equivalent to the average 0–1 loss, the error rate,
or fraction incorrectly classified.

Useful metric to track even if we couldn’t optimize it.

Another way to break down the accuracy:

Acc =
TP + TN

P +N
=

TP + TN

(TP + FN) + (TN + FP )

P=num positive; N=num negative;

TP=true positives; TN=true negatives

FP=false positive or a type I error

FN=false negative or a type II error

Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 13 / 46

true class

0 1

"iii.s :|



Accuracy is Highly Sensitive to Class Imbalance

Suppose you are screening patients for a particular disease.
It’s known that 1% of patients have that disease.

What is the simplest model that can achieve 99% accuracy?
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Sensitivity and Specificity

Useful metrics even under class imbalance!

Sensitivity = TP
TP+FN [True positive rate]

Specificity = TN
TN+FP [True negative rate]

What happens if our problem is not linearly separable?
How do we pick a threshold for y = �(x)?
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Designing Diagnostic Tests

A binary model to predict whether someone has a disease.

What happens to sensitivity and specificity
as you slide the threshold from left to right?
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Tradeo↵ between Sensitivity and Specificity

As we increase the criterion value (i.e. move from left to right),
how do the sensitivity and specificity change?
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Receiver Operating Characteristic (ROC) Curve

Area under the ROC curve (AUC) can quantify if a binary classifier
achieves a good tradeo↵ between sensitivity and specificity.
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Confusion Matrix for Multi-Class classification

Visualizes how frequently certain classes are confused.

K ⇥K matrix; rows are true labels, columns are predicted labels,
entries are frequencies

What does the confusion matrix for a perfect classifier look like?
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XOR is Not Linearly Separable

Some datasets are not linearly separable, e.g. XOR.

Visually obvious, but how can we prove this formally?
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NOT
,
AND are linearly

separable .



Proof That XOR is Not Linearly Separable

Proof by Contradiction:

Half-spaces are convex. That is, if two points lie in a half-space,
the line segment connecting them also lie in the same half-space.

Suppose that the problem is feasible.

If the positive examples are in the positive half-space,
then the green line segment must be as well.

Similarly, the red line segment must lie in the negative half-space.

But, the intersection can’t lie in both half-spaces. Contradiction!
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Classifying XOR Using Feature Maps

Sometimes, we can overcome this limitation using feature maps,
e.g., for XOR.

 (x) =

0

@
x1
x2

x1x2

1

A

x1 x2  1(x)  2(x)  3(x) t
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable. (Try it!)

Designing feature maps can be hard. Can we learn them?
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Neurons in the Brain

Neurons receive input signals and accumulate voltage.
After some threshold, they will fire spiking responses.

[Pic credit: www.moleculardevices.com]

Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 25 / 46



A Simpler Neuron

For neural nets, we use a much simpler model for neuron, or unit:

Similar to logistic regression: y = �(w>x+ b)

By throwing together lots of these simple neuron-like processing
units, we can do some powerful computations!
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A Feed-Forward Neural Network

A directed acyclic graph
(DAG)

Units are grouped into
layers
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Multilayer Perceptrons

A multi-layer network consists of fully connected layers.
In a fully connected layer, all input units are connected to
all output units.
Each hidden layer i connects Ni�1 input units to Ni output units.
Weight matrix is Ni x Ni�1.
The outputs are a function of the input units:

y = f(x) = � (Wx+ b)

� is applied component-wise.
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Some Activation Functions

Identity

y = z

Rectified Linear Unit
(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez
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More Activation Functions

Hard Threshold

y =

⇢
1 if z > 0
0 if z  0

Logistic

y =
1

1 + e�z

Hyperbolic
Tangent
(tanh)

y =
ez � e�z

ez + e�z
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Computation in Each Layer

Each layer computes a function.

h(1) = f (1)(x) = �(W(1)x+ b(1))

h(2) = f (2)(h(1)) = �(W(2)h(1) + b(2))

...

y = f (L)(h(L�1))

If task is regression: choose
y = f (L)(h(L�1)) = (w(L))>h(L�1) + b(L)

If task is binary classification: choose
y = f (L)(h(L�1)) = �((w(L))>h(L�1) + b(L))
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A Composition of Functions

The network computes
a composition of functions.

y = f (L)
� · · · � f (1)(x).

Modularity: We can implement each layer’s
computations as a black box.

Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 32 / 46



Feature Learning

Neural nets can be viewed as a way of learning features:

The goal:
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Feature Learning

Suppose we’re trying to classify images of handwritten digits.

Each image is represented as a vector of 28⇥ 28 = 784 pixel values.

Each hidden unit in the first layer acts as a feature detector.

We can visualize w by reshaping it into an image.
Below is an example that responds to a diagonal stroke.
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Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit
classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.

Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 35 / 46



1 Softmax Regression

2 Tracking Model Performance

3 Limits of Linear Classification

4 Introducing Neural Networks

5 Expressivity of a Neural Network

Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 36 / 46



Expressivity

A hypothesis space H is the set of functions that can be
represented by some model.

Consider two models A and B with hypothesis spaces HA,HB.

If HB ✓ HA, then A is more expressive than B.
A can represent any function f in HB.

Some functions (XOR) can’t be represented by linear classifiers.
Are deep networks more expressive?
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Expressive Power of Linear Networks

Consider a linear layer: the activation function was the identity.
The layer just computes an a�ne transformation of the input.

Any sequence of linear layers is equivalent to a single linear layer.

y = W(3)W(2)W(1)
| {z }

,W0

x

Deep linear networks can only represent linear functions
— no more expressive than linear regression.
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Expressive Power of Non-linear Networks

Multi-layer feed-forward neural networks
with non-linear activation functions

Universal Function Approximators:
They can approximate any function arbitrarily well,
i.e., for any f : X ! T there is a sequence fi 2 H with fi ! f .

True for various activation functions
(e.g. thresholds, logistic, ReLU, etc.)
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Designing a Network to Classify XOR

Assume a hard threshold activation function.
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Designing a Network to Classify XOR

h1 computes x1 _ x2

I[x1 + x2 � 0.5 > 0]

h2 computes x1 ^ x2

I[x1 + x2 � 1.5 > 0]

y computes h1 ^ (¬h2) = x1 � x2

I[h1 � h2 � 0.5 > 0]

⌘ I[h1 + (1� h2)� 1.5 > 0]
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Universality for Binary Inputs and Targets

Hard threshold hidden units, linear output

Strategy: 2D hidden units, each of which responds to one
particular input configuration

Only requires one hidden layer, though it is extremely wide.
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Expressivity of the Logistic Activation Function

What about the logistic activation function?

Approximate a hard threshold by scaling up w and b.

y = �(x) y = �(5x)

Logistic units are di↵erentiable, so we can learn weights with
gradient descent.
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What is Expressivity Good For?

May need a very large network to represent a function.

Non-trivial to learn the weights that represent a function.

If you can learn any function, over-fitting is potentially
a serious concern!

For the polynomial feature mappings, expressivity increases with
the degree M , eventually allowing multiple perfect fits to the
training data. This motivated L2 regularization.

Do neural networks over-fit and how can we regularize them?
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Regularization and Over-fitting for Neural Networks

The topic of over-fitting (when & how it happens, how to
regularize, etc.) for neural networks is not well-understood, even
by researchers!

I In principle, you can always apply L2 regularization.
I You will learn more in CSC413.

A common approach is early stopping, or stopping training early,
because over-fitting typically increases as training progresses.

Don’t add an explicit R(✓) term to our cost.
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Conclusion

Multi-class classification

Selecting good metrics to track performance in models

From linear to non-linear models
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