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@ Introduction
© Decision Trees

@ Bias-Variance Decomposition
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Today

@ Announcement: HW1 released this week
@ Decision Trees

» Simple but powerful learning algorithm

» Used widely in Kaggle competitions

» Lets us motivate concepts from information theory (entropy, mutual
information, etc.)

@ Bias-variance decomposition

» Concept to motivate combining different classifiers.

Ideas we will need in today’s lecture

» Trees [from algorithms]
» Expectations, marginalization, chain rule [from probability]
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© Decision Trees
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Lemons or Oranges

Scenario: You run a sorting facility for citrus fruits
@ Binary classification: lemons or oranges

@ Features measured by sensor on conveyor belt: height and width

Intro ML (UofT) CSC311-Lec02 B/ 55



Decision Trees

@ Make predictions by splitting on features according to a tree structure.
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Decision Trees

@ Make predictions by splitting on features according to a tree structure.

Test example

[width > 6.5cm? ]

Yes o

[height>9.50m? ] [height>6.00m? ]
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Decision Trees—Continuous Features

@ Split continuous features by checking whether that feature is greater
than or less than some threshold.

@ Decision boundary is made up of axis-aligned planes.
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Decision Trees

width > 6.5cm?

[height>9.50m? ]\ [height>6.0cm? ]

Yes No Yes No
@ Internal nodes test a feature
@ Branching is determined by the feature value

@ Leaf nodes are outputs (predictions)

Question: What are the hyperparameters of this model?
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Decision Trees—Classification and Regression

@ Each path from root to a leaf defines a regio .

of input space - ‘ e
" F IS
o Let {(z0™) 1m0}, (x(m) 1m0)} be the o e @
training examples that fall into R,, o ® -
@ m = 4 on the right and k is the same across each - [. =
region 3 y.
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Decision Trees—Classification and Regression

@ Fach path from root to a leaf defines a region R,,

of input space - ‘ 0
" F IS
o Let {(z0™) 1m0}, (x(m) 1m0)} be the o e @
training examples that fall into R,, B ® - .
@ m = 4 on the right and k is the same across each - ( =
region

@ Regression tree:

» continuous output

» leaf value y™ typically set to the mean value in {t(m1) . . ¢t(mr)}
o Classification tree (we will focus on this):

» discrete output

> leaf value y™ typically set to the most common value in
{0 )}
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Decision Trees—Discrete Features

@ Will I eat at this restaurant?

Alternate?
No Yes No

| Reservation? || Fri/Sat? |
No Yes

Alternate?
No
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Decision Trees—Discrete Features

@ Split discrete features into a partition of possible values.

m T Input Attributes Goal
\ Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est WillWait
@}\ X1 Yes| No| No | Yes| Some| $$8 | No | Yes| French| 0-10 | y; = Yes
0& L% X3 Yes| No | No | Yes| Full 3 No | No Thai | 30-60 | y,= No
t ¢ x No | Yes| No | No | Some $ No | No | Burger | 0-10 | ys3= Yes
X4 Yes| No | Yes| Yes Full 3 Yes | No Thai 10-30 | y4 = Yes
Sg" X5 Yes | No | Yes| No Full | $3$ | No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 3% | Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 | y;= No
Xg No| No| No| Yes| Some| 3§ | Yes| Yes| Thai 0-10 | ys = Yes
Xg No | Yes| Yes| No Full 3 Yes | No | Burger| >60 y9 = No
X190 Yes | Yes| Yes| Yes| Full | $$88  No | Yes| ltalian | 10-30 | yi0= No
X11 No| No| No| No | None 3 No | No Thai 0-10 | yi1 = No
X12 Yes | Yes| Yes| Yes| Full 3 No | No | Burger | 30-60 | yia = Yes
1 Alternate: whether there is a suitable alternative restaurant nearby.
2. | | Bar: whether the restaurant has a comfortable bar area to wait in
3. | | Fri/Sat: true on Fridays and Saturdays.
4. | | Hungry: whether we are hungry.
- Patrons: how many people are in the restaurant (values are None, Some, and Full)
6. Price: the restaurant's price range ($, $$, $$$).
7. Raining: whether it is raining outside.
8, Reservation: whether we made a reservation
9. | | Type: the kind of restaurant (French, Italian, Thai or Burger)

Features: 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
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Learning Decision Trees

@ Decision trees are universal function approximators.

» For any training set we can construct a decision tree that has
exactly the one leaf for every training point, but it probably won’t
generalize.

» Example - If all D features were binary, and we had N = 2” unique
training examples, a Full Binary Tree would have one leaf per
example.

o Finding the smallest decision tree that correctly classifies a training set is
NP complete.

» If you are interested, check: Hyafil & Rivest’76.

@ So, how do we construct a useful decision tree?
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Witk > 65

Learning Decision Trees

@ Resort to a greedy heuristic:

» Start with the whole training set and an empty decision tree.
» Pick a feature and candidate split that would most reduce 3
» Split on that feature and recurse on subpartitions.

© What is a loss? wifl Com up agamn J
» When learning a model, we use a scalar number to assess whether
we’re on track
» Scalar value: low is good, high is bad

@ Which loss should we use?
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Choosing a Good Split

o Consider the following data. Let’s split on width.

o Classify by majority.

e ee
< ® oranges
5 A GO L
< emons
o A
width
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Choosing a Good Split

e Which is the best split? Vote!

A

B
_e| eoe o eofe
< ® oranges
12 Ae Alo P
2 emons
o A o A
width width
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Choosing a Good Split

o A feels like a better split, because the left-hand region is very
certain about whether the fruit is an orange.

e Can we quantify this?

A

B
_e| eoe o eofe
< ® oranges
12 Ao Alo P
< emons
o A [ A
width width

Intro ML (UofT)

CSC311-Lec02 17 /55



Choosing a Good Split

@ How can we quantify uncertainty in prediction for a given {gaf node?

» If all examples in leaf have same class: good, low uncertainty
» If each class has same amount of examples in leaf: bad, high
uncertainty

@ Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

@ A brief detour through information theory...
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Entropy - Quantifying uncertainty

@ You may have encountered the term entropy quantifying the state of
chaos in chemical and physical systems,

@ In statistics, it is a property of a random variable,

@ The entropy of a discrete random variable is a number that quantifies
the uncertainty inherent in its possible outcomes.

@ The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated axiomatically.

» If you're interested, check: Information Theory by Robert Ash or
Elements of Information Theory by Cover and Thomas.
AN ————— AN —— T — - —

@ To explain entropy, consider flipping two different coins...
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We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1:
0001000000000 0100 ...7

Sequence 2:
1010111010011 0101...7
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We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1:
0001000000000 0100 ...7

Sequence 2:
1010111010011 0101...7
16
8 10
Ll
0 1
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Quantifying Uncertainty

@ The entropy of a loaded coin with probability p of heads is given by

—plogy(p) — (1 — p)logy(1 Lf/r,T
j’\ 4/9 5/ 9
1/9
8 8 1 1 1 4 4

5 5
—log, - — = log, — = 0.
0g29 90g29 0.99

9 —

@ Notice: the coin whose outcomes are more certain has a lower entropy.

——log, = — =log, = =~ =
9 0g29 90g29 =2?

@ In the extreme case p = 0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.
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Quantifying Uncertainty

@ Can also think of entropy as the expected information ¢ content of a
random draw from a probability distribution.

entropy

1.0
0.8
0.6
0.4

0.2

0 probability p of heads

@ Claude Shannon showed: you cannot store the outcome of a random
draw using fewer expected bits than the entropy without losing
information.

@ So units of entropy are bits; a fair coin flip has 1 bit of entropy.
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Entropy

@ More generally, the entropy of a discrete random variable Y is given by

" a3
—> p(y)log,p(y) ) (e3]e:2]05
yey

- 0-2 log0-s
e “High Entropy”: /Oa‘ 03 {O(j 2 D(T
» Variable has a uniform like distribution over many outcomes LZ
» Flat histogram H )’
» Values sampled from it are less predictable (\'[ - { ) 0 )

e P(y:0 =03 £0-21090°2
g \J 6201[12 P(\{;D;O‘B *0-5,0805
P(Y:=2)=03 ”

[Slide credit: Vibhav Gogate]
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Entropy

@ More generally, the entropy of a discrete random variable Y is given by

— Y ply)logs ply

yey

e “High Entropy”:

» Variable has a uniform like distribution over many outcomes
» Flat histogram
» Values sampled from it are less predictable

o “Low Entropy”

» Distribution is concentrated on only a few outcomes
» Histogram is concentrated in a few areas
» Values sampled from it are more predlctable

Yedo,&) 2 p(¥)= 08
é} ,{4 ) '3(Y:{3'; Q- 15
plY=2)-2 o>
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Entropy

@ Suppose we observe partial information X about a random variable Y
» For example, X = sign(Y).

@ We want to work towards a definition of the expected amount of
information that will be conveyed about Y by observing X.

» Or equivalently, the expected reduction in our uncertainty about Y
after observing X.
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Entropy of a Joint Distribution

e Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

= L= >{
Cloudy [Not Cloudy

\ﬁ —' Raining 24/100 1/100

¥Not Raining| 25/100 | 50/100

HX,)Y) = => Y pla,y)log, p(x,y)
rzeX yey
. A, H# T T 25, 25 50, 50
= 7100 “®2700 100 ®2700 100 2700 100 %100
~ 1.56bits
-—
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Conditional Entropy

o Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}
Noxgral of %

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining?

HY|X =x) = |- plylz)log, p(ylx)
yeYy

_ o o 1,001

T o5 98295 " 95 %8255
~ 0.24bits

o We used: p(y|x) = 2y 0 | and p(z) = Zyp(:z:,y)/ (sum in a row)
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Conditional Entropy

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 | 50/100

. R
@ The expected conditional entropy: - ,O

-{(\u 7
HO(X) = EdfH[Y]a] 3*\1 “@\*\?0;@

-3 o) — )

reX

= —_ Z Zp(m,y) log, p(y|x)

rzeX yey
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Conditional Entropy

e Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining 24/100 1/100

\QJQ' dd\@
e 8

Not Raining| 25/100 | 50/100 ﬂﬂ\ixﬁ{w:f)

@ What is the entropy of cloudiness, given the knowledge of whether or not
it is raining?

HY) = 3 p@H(YIX =a)

zeX NQ (ot Yeun'
f/" —FC IV\') e P VS)
= ZH(Cloudyhs raining) + iH(cloudy\not raining)
~ 0.75 bits
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Conditional Entropy

Ertvopy — Jowt dishibuhon _, Condbore) _ Arpeded
ot RVS C Rwbvapy T CoRnbegy

@ Some useful properties:
» H is always non-negative
» Chain rule: H(X,Y)=HX|Y)+ HY)=HY|X)+ H(X)
» If X and Y independent, then X does not affect our uncertainty
about Y: (H(Y|X)=H(Y)
» But knowing Y makes our knowledge of Y certain:. H(Y|Y) =0

» By knowing X, we can only decrease uncertainty about Y:
HY|X)<H(Y)
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Information Gain

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ How much more certain am I about whether it’s cloudy if I'm told
whether it is raining? My uncertainty in Y minus my expected
uncertainty that would remain in Y after seeing X.

@ This is called the information gain IG(Y|X) in Y due to X, or the
mutual information of Y and X

IG(Y|X) =H(Y) — H(Y|X) (1)

o If X is completely uninformative about Y: IG(Y|X) =0
e If X is completely informative about Y: IG(Y|X) = H(Y)
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Revisiting Our Original Example

@ Information gain measures the informativeness of a variable,
which is exactly what we desire in a decision tree split!

@ The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split
you're on.
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Information Gain of Split B

@ What is the information gain of split B? Not terribly informative...

B
. e e|e —
= ® oranges
5 Al® L
o emons
o A
width

@ Entropy of class outcome before split:
H(Y) = —2logy(2) — 3 logy(3) ~ 0.86

@ Conditional entropy of class outcome after split:
H(Y|left) ~ 0.81, H(Y|right) ~ 0.92

o IG(split) ~ 0.86 — (% -0.81 + 2 -0.92) ~ 0.006
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Information Gain of Split A

@ What is the information gain of split A? Very informative!

A
e ee —
= ® oranges
5 A® L
o emons
o A
width

@ Entropy of class outcome before split:
H(Y) = —2logy(2) — 3 logy(3) ~ 0.86

@ Conditional entropy of class outcome after split:
H(Y|left) =0, H(Y |right) ~ 0.97

o IG(split) ~0.86— (2-0+ 2-0.97) ~ 0.17!!
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Constructing Decision Trees

lwidth > 6.5cm?

height (cm)

{height >6.0cm? ]

{height >9.5cm?
..'
4 ° ® oranges Yes No Yes No
A lemons

¢ 6widlh (cmi8 " v é v

@ At each level, one must choose:

1. Which feature to split.
2. Possibly where to split it.

@ Choose them based on how much information we would gain from the
decision! (choose feature that gives the highest gain)
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Decision Tree Construction Algorithm

@ Simple, greedy, recursive approach, builds up tree node-by-node

1. pick a feature to split at a non-terminal node
2. split examples into groups based on feature value
3. for each group:

> if no examples — return majority from parent
> else if all examples in same class — return class
> else loop to step 1

@ Terminates when all leaves contain only examples in the same class or
are empty.

@ Questions for discussion:

» How do you choose the feature to split on?
» How do you choose the threshold for each feature?
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Back to Our Example

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price | Rain| Res | Type Est WillWait

X1 Yes No | No| Yes| Some| $$% | No | Yes| French| 0-10 | y; = Yes
Xo Yes No  No | Yes Full $ No | No Thai 30-60 | y, = No
X3 No | Yes| No | No | Some k) No | No | Burger| 0-10 | ys3= Yes
X4 Yes No | Yes| Yes Full $ Yes | No Thai 10-30 | y4 = Yes
X5 Yes No | Yes| No| Full | $8%3 | No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 3% | Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger| 0-10 | y;= No
Xg No | No No| Yes| Some| 8§ | Yes| Yes| Thai 0-10 | yg = Yes
Xg No | Yes| Yes| No Full $ Yes | No | Burger| >60 yo = No
X10 Yes Yes| Yes| Yes| Full | $$% | No | Yes| ltalian | 10-30 | 310 = No
X11 No | No | No| No | None $ No | No Thai 0-10 | y11 = No
X129 Yes | Yes| Yes | Yes Full k) No | No | Burger| 30-60 | yi2 = Yes

1 Alternate: whether there is a suitable alternative restaurant nearby.

2, Bar: whether the restaurant has a comfortable bar area to wait in.

3 Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. Price: the restaurant's price range ($, $$, $$$).

7. | | Raining: whether it is raining outside.

8, Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger).

Features: 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). [fromf Russell & Norvig]
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Feature Selection

IG(Y) = H(Y) — H(Y|X)
2 2 4 4
IG(type) =1 — EH(Y|Fr) + EH(Y|It.) + EH(YlThal) + EH(Y|Bur.) =0
4 2 4
IG(Patrons) =1 — {%H(O, 1) + EH(I, 0) + %H(é’ 6)} ~ 0.541
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Which Tree is Better? Vote!

French Burger

Patrons?

Fri/Sat? |
Yes

[ Reservation? ||
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)
» See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery”

Intro ML (UofT) CSC311-Lec02 39/55



What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)
» See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery”

@ We desire small trees with informative nodes near the root
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Handling continuous attributes
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Handling continuous attributes

» Split based on a threshold, chosen to maximize information gain

4 9B wil haue fe fome
Té&
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Handling continuous attributes
» Split based on a threshold, chosen to maximize information gain

@ Decision trees can also be used for regression on real-valued outputs.
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Handling continuous attributes

» Split based on a threshold, chosen to maximize information gain

@ Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.
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KNN versus Decision Trees

Advantages of decision trees over KNNs
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KNN versus Decision Trees

Advantages of decision trees over KNNs

@ Simple to deal with discrete features, missing values, and poorly scaled
data

@ Fast at test time

@ More interpretable
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KNN versus Decision Trees

Advantages of decision trees over KNNs

@ Simple to deal with discrete features, missing values, and poorly scaled
data

@ Fast at test time
@ More interpretable

Advantages of KNNs over decision trees
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KNN versus Decision Trees

Advantages of decision trees over KNNs

@ Simple to deal with discrete features, missing values, and poorly scaled
data

@ Fast at test time
@ More interpretable

Advantages of KNNs over decision trees
@ Few hyperparameters

@ Can incorporate interesting distance measures (e.g. shape contexts)
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@ We've seen many classification algorithms.

@ We can combine multiple classifiers into an ensemble, which is a set of
predictors whose individual decisions are combined in some way to
classify new examples

» E.g., (possibly weighted) majority vote
@ For this to be nontrivial, the classifiers must differ somehow, e.g.

Different algorithm

Different choice of hyperparameters

Trained on different data

Trained with different weighting of the training examples

v vy VvYyy

@ Next lecture, we will study some specific ensembling techniques.
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@ Bias-Variance Decomposition
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e Today, we deepen our understanding of generalization
through a bias-variance decomposition.

» This will help us understand ensembling methods.

e What is generalization?

» Ability of a model to correctly classify /predict from unseen
examples (from the same distribution that the training data was
drawn from).

» Why does this matter? Gives us confidence that the model has
correctly captured the right patterns in the training data and will
work when deployed.
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Bias-Variance Decomposition

@ Overly simple models underfit the data,
and overly complex models overfit.

o We can quantify underfitting and overfitting
in terms of the bias/variance decomposition.
Ls R:15 o T

[
453 g |
L /J e 3
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Basic Setup for Classification

PN - (abe) duntibeds

® Dsample 1 a data generating distribution.
For lemons and oranges, psample characterizes heights and widths.

e Pick a fixed query point x (denoted with a green x).
We want to get a prediction y at x.

e A training set D consists of pairs (x;,t;) sampled
independent and identically distributed (i.i.d.) from psample-

e We can sample lots of training sets independently from psample-
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Basic Setup for Classification

Intro ML (UofT)
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Basic Setup for Classification

e Run our learning algorithm on each training set,
and compute its prediction y at the query point x.

e We can view y as a random variable, where the randomness comes
from the choice of training set.

o The classification accuracy is determined by the distribution of y.

@ Since y is a random variable, we can compute its expectation,

variance, etc.
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Basic Setup for Regression

fit to dataset 1

fit to dataset 2 fit to dataset 3

. .

« ) »

XXX *
x x5 o
X X
P
x X

By 3 - — — 7 T 3 - R 7 7 3

query location

lots of fits histogram of y

Y

N
,M________.._f‘.-__“_____________.

CSC311-Lec02 49 / 55



Basic Setup

e Fix a query point x.
o Repeat:

» Sample a random training dataset D i.i.d. from the data generating
distribution psample-

» Run the learning algorithm on D to get a prediction y at x.

» Sample the (true) target from the conditional distribution p(¢|x).

» Compute the loss| L(y, t).

Comments:

e Notice: y is independent of t. (Why?)
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Basic Setup

e Fix a query point x.
o Repeat:

» Sample a random training dataset D i.i.d. from the data generating
distribution psample-

» Run the learning algorithm on D to get a prediction y at x.

» Sample the (true) target from the conditional distribution p(¢|x).

» Compute the loss L(y,t).

Comments:
e Notice: y is independent of t. (Why?)
e This gives a distribution over the loss at x, with expectation
E[L(y,t) | x].
e For each query point x, the expected loss is different. We are
interested in minimizing the expectation of this with respect to

X ~~ Psample-
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Choosing a prediction y

o Consider squared error loss, L(y,t) = 1(y — )%

@ Suppose that we knew the conditional distribution p(t|x).
What value of y should we predict?

» Treat ¢t as a random variable and choose y.
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Choosing a prediction y

o Consider squared error loss, L(y,t) = 1(y — )%

Suppose that we knew the conditional distribution p(t|x).
What value of y should we predict?

» Treat t as a random variable and choose y.
@ Claim: y, = E[t|x] is the best possible prediction.
@ Proof:
— )2 x| = E[* — 2yt +12|x] (open uwp Squae)
=y — 24E[t|x] + Elf?| x] (fincority of expecdun)
"y = y* — E[t|x] + Eft | x]? + Var[t| x] 2~

\
\ \E'[jah[\ =% — 2yy, + y2 + Var[t| x] (Scf )ff‘ :‘f/f[‘f/)(])
* X = (= 2)" +Vrlt 130 (motuty e £uee)
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Bayes Optimality

El(y 1) | x) = (y = y)* + Valt |

—_—

@ The first term is nonnegative, and can be made 0 by setting y = .

@ The second term is the Bayes error, or
the noise or inherent unpredictability of the target ¢.

» An algorithm that achieves it is Bayes optimal.
» This term doesn’t depend on y.
» Best we can ever hope to do with any learning algorithm.

@ This process of choosing a single value y, based on p(t|x) is an example
of decision theory.
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Decomposition Continued

@ Now let’s treat y as a random variable
(where the randomness comes from the choice of dataset).

@ We can decompose the expected loss further
(suppressing the conditioning on x for clarity):

fIIE),[(l/ —t)*] = E[(y — y+)?] + Var(t)

[y? — 2y,y + y*] + Var(t)
= y7 — 2y, E[y] + E[y*] + Var(t)
= y? — 2. E[y] + E[y]” + Var(y) + Var(t)
(y« —E[y])* + Var(y) + Var(t)
—_—— ——

bias variance Bayes error

Il
ﬁ\c
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Bayes Optimality

El(y —1)°] = (y« — E[y))* + Var(y) + Var(t)

bias variance Bayes error

We split the expected loss into three terms:

@ bias: how wrong the expected prediction is
(corresponds to underfitting)

@ variance: the amount of variability in the predictions
(corresponds to overfitting)

@ Bayes error: the inherent unpredictability of the targets
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Bias and Variance

e Throwing darts = predictions for each draw of a dataset

Low Variance High Variance

Low Bias

High Bias

e Be careful, what doesn’t this capture?
» We average over points x from the data distribution.

Intro ML (UofT) CSC311-Lec02 515 /) 55



i e > D, > [Mi ==& /\(y[%)
i . L(rate)
NS N
/- t
Di’: — [/ ' N | o A 5)
o AA 7
guacy DI ~— - = j— ~~~~~~ FGC[X)

Flow cﬁmarwm g@( JJ'\OL% Vo 1N Cg g@@w@&\%mn,



