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Bernoulli Distribution

Bernoulli distribution: X is a random variable with two outcomes.
We say that X follows Ber(µ) if:

P (X = x) = µx(1− µ)1−x, x ∈ {0, 1}

Example: A coin follows Bernoulli distribution.
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Mixture of Bernoulli

Mixture of Gaussians is defined over continuous variables. Mixture
of Bernoulli can be seen as its counterpart for binary variables.
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Mixture of Bernoulli

Mixture of Gaussians is defined over continuous variables. Mixture
of Bernoulli can be seen as its counterpart for binary variables.

Assume a datapoint x is generated as follows:

Choose a cluster z from {1, ...,K} such that p(z = k) = πk
Given z, sample x from Ber(µk).

We say x follows mixtures of Bernoulli distributions. It pmf can be
expressed as:

P (x) =
k∑
i=1

πiµ
x
i (1− µi)1−x
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Maximum Likelihood

We want to learn the parameters {πk, µk} from the observations
{xi}ni=1.
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Maximum Likelihood

We want to learn the parameters {πk, µk} from the observations
{xi}ni=1.

Training objective: Maximize log likelihood

max
πk,µk

N∑
n=1

log

K∑
i=1

πkµ
xn
k (1− µk)1−xn

Log inside sum: EM algorithm
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E step - compute the posterior

Compute the posterior probability znk = P (zn = k|xn) using
Bayes’ theorem:
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E step - compute the posterior

Compute the posterior probability znk = P (zn = k|xn) using
Bayes’ theorem:

P (zn = k|xn) =
P (zn = k, xn)

P (xn)

=
πkµ

xn
k (1− µk)1−xn∑k

i=1 πiµ
xn
i (1− µi)1−xn

znk can be interpreted as how much we think a cluster k is
responsible for generating a datapoint xn.
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M step - optimize the joint log likelihood

The joint likelihood can be expressed as:

log p(X,Z;µ, π)

=

N∑
n=1

K∑
k=1

znk(log πk + xn logµk + (1− xn) log(1− µk))
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M step - optimize the joint log likelihood

The joint likelihood can be expressed as:

log p(X,Z;µ, π)

=

N∑
n=1

K∑
k=1

znk(log πk + xn logµk + (1− xn) log(1− µk))

Assume the responsibility is known, setting the derivative respect
to µk to zero, we get:

µk =

∑N
n=1 znkxn∑N
n=1 znk

Interpretation: The mean of component k is equal to the weighted
mean of the data, with weighted coefficients proportional to the
responsibility.
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True or False

The EM algorithm optimizes a lower bound on its objective function,
which is the marginal likelihood

∏
i P (xi) of the observed data points

x1, x2, ...xN .
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True or False

The EM algorithm optimizes a lower bound on its objective function,
which is the marginal likelihood

∏
i P (xi) of the observed data points

x1, x2, ...xN .

True. See slide 46
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True or False

The EM algorithm is guaranteed to never decrease the value of its
objective function on any iteration.
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True or False

The EM algorithm is guaranteed to never decrease the value of its
objective function on any iteration.

True
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True or False

The objective function optimized by the EM algorithm can also be
optimized by a gradient descent algorithm which will find the global
optimal solution, whereas EM finds its solution more quickly but may
return only a locally optimal solution.
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True or False

The objective function optimized by the EM algorithm can also be
optimized by a gradient descent algorithm which will find the global
optimal solution, whereas EM finds its solution more quickly but may
return only a locally optimal solution.

False
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True or False

Consider the set of training data below, and two clustering algorithms:
K-Means, and a Gaussian Mixture Model (GMM) trained using EM.
These two clustering algorithms will produce the same cluster centers
(means) for this data set.
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True or False

Consider the set of training data below, and two clustering algorithms:
K-Means, and a Gaussian Mixture Model (GMM) trained using EM.
These two clustering algorithms will produce the same cluster centers
(means) for this data set.

False. In k-means, the means of the clusters are determined by an
average of the points assigned to that cluster, but in GMM the means
of each cluster are (differently) weighted averages of all points.
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Application: EM for image segmentation

Partition an image into regions each of which has a reasonably
homogenous visual appearance
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RGB image

Each pixel in an RGB image is a point in 3-dimensional space
comprising the intensities of the red, blue and green channels.

We can think of image segmentation tasks as clustering problems
on pixels.

We can apply EM and k-means for image segmentation.

More on the colab notebook!
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