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Reinforcement Learning Problem

Recall: we categorized types of ML by how much information they
provide about the desired behavior.

Supervised learning: labels of desired behavior
Unsupervised learning: no labels
Reinforcement learning: reward signal evaluating the outcome of
past actions

Bandit problems (Lecture 10) are a simple instance of RL where each
decision is independent.

More commonly, we focus on sequential decision making: an agent
chooses a sequence of actions which each affect future possibilities
available to the agent.

Reinforcement Learning (RL)

An agent observes the 
world

takes an action and 
its states changes

with the goal of 
achieving long-term 
rewards.

Reinforcement Learning Problem: An agent continually interacts with the 
environment. How should it choose its actions so that its long-term rewards are 
maximized?

Also might be called: 
• Adaptive Situated Agent Design 
• Adaptive Controller for Stochastic Nonlinear Dynamical Systems
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Reinforcement Learning

Most RL is done in a mathematical framework called a Markov Decision Process
(MDP).
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MDPs: States and Actions

First let’s see how to describe the dynamics of the environment.

The state is a description of the environment in sufficient detail to
determine its evolution.

Think of Newtonian physics.

What would be the state variables for a puck sliding on a
frictionless table?

Markov assumption: the state at time t+ 1 depends directly on the
state and action at time t, but not on past states and actions.

To describe the dynamics, we need to specify the transition
probabilities P(St+1 |St, At).
In this lecture, we assume the state is fully observable, a highly
nontrivial assumption.
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MDPs: States and Actions

Suppose you’re controlling a robot hand. What should be the set
of states and actions?

In general, the right granularity of states and actions depends on
what you’re trying to achieve.
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MDPs: Policies

The way the agent chooses the action in each step is called a
policy.

We’ll consider two types:

Deterministic policy: At = π(St) for some function π : S → A
Stochastic policy: At ∼ π(· |St) for some function π : S → P(A).
(Here, P(A) is the set of distributions over actions.)

With stochastic policies, the distribution over rollouts, or
trajectories, factorizes:

p(s1, a1, . . . , sT , aT ) = p(s1)π(a1 | s1)P(s2 | s1, a1)π(a2 | s2) · · · P(sT | sT−1, aT−1)π(aT | sT )

Note: the fact that policies need consider only the current state is
a powerful consequence of the Markov assumption and full
observability.

If the environment is partially observable, then the policy needs to
depend on the history of observations.
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MDPs: Rewards

In each time step, the agent receives a reward from a distribution
that depends on the current state and action

Rt ∼ R(· |St, At)

For simplicity, we’ll assume rewards are deterministic, i.e.

Rt = r(St, At)

What’s an example where Rt should depend on At?

The return determines how good was the outcome of an episode.

Undiscounted: G = R0 +R1 +R2 + · · ·
Discounted: G = R0 + γR1 + γ2R2 + · · ·

The goal is to maximize the expected return, E[G].

γ is a hyperparameter called the discount factor which determines
how much we care about rewards now vs. rewards later.

What is the effect of large or small γ?
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MDPs: Rewards

How might you define a reward function for an agent learning to
play a video game?

Change in score (why not current score?)
Some measure of novelty (this is sufficient for most Atari games!)

Consider two possible reward functions for the game of Go. How
do you think the agent’s play will differ depending on the choice?

Option 1: +1 for win, 0 for tie, -1 for loss
Option 2: Agent’s territory minus opponent’s territory (at end)

Specifying a good reward function can be tricky.
https://www.youtube.com/watch?v=tlOIHko8ySg
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Markov Decision Processes

Putting this together, a Markov Decision Process (MDP) is defined by a
tuple (S,A,P,R, γ).

S: State space. Discrete or continuous
A: Action space. Here we consider finite action space, i.e.,
A = {a1, . . . , a|A|}.
P: Transition probability
R: Immediate reward distribution
γ: Discount factor (0 ≤ γ < 1)

Together these define the environment that the agent operates in, and
the objectives it is supposed to achieve.
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Finding a Policy

Now that we’ve defined MDPs, let’s see how to find a policy that
achieves a high return.

We can distinguish two situations:

Planning: given a fully specified MDP.
Learning: agent interacts with an environment with unknown
dynamics.

I.e., the environment is a black box that takes in actions and
outputs states and rewards.

Which framework would be most appropriate for chess? Super
Mario?
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Value Function

The value function V π for a policy π measures the expected return if you
start in state s and follow policy π.

V π(s) , Eπ[Gt |St = s] = Eπ

[ ∞∑

k=0

γkRt+k | St = s

]
.

This measures the desirability of state s.
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Value Function

Rewards: −1 per time-step

Actions: N, E, S, W

States: Agent’s location

[Slide credit: D. Silver]
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Value Function

Arrows represent policy π(s)
for each state s

[Slide credit: D. Silver]
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Value Function

Numbers represent value
V π(s) of each state s

[Slide credit: D. Silver]
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Bellman equations

The foundation of many RL algorithms is the fact that value functions
satisfy a recursive relationship, called the Bellman equation:

V π(s) = Eπ[Gt |St = s]

= Eπ[Rt + γGt+1 |St = s]

=
∑
a

π(a | s)

[
r(s, a) + γ

∑
s′

P(s′ | a, s)Eπ[Gt+1 |St+1 = s′]

]

=
∑
a

π(a | s)

[
r(s, a) + γ

∑
s′

P(s′ | a, s)V π(s′)

]
Viewing V π as a vector (where entries correspond to states), define the
Bellman backup operator Tπ.

(TπV )(s) ,
∑

a

π(a | s)
[
r(s, a) + γ

∑

s′

P(s′ | a, s)V (s′)

]

The Bellman equation can be seen as a fixed point of the Bellman
operator:

TπV π = V π.
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Value Function

A value function for golf:

3.5. Policies and Value Functions 61

rewards important, or only the intervals between them? Prove, using (3.8), that adding a
constant c to all the rewards adds a constant, vc, to the values of all states, and thus
does not a↵ect the relative values of any states under any policies. What is vc in terms
of c and �? ⇤
Exercise 3.16 Now consider adding a constant c to all the rewards in an episodic task,
such as maze running. Would this have any e↵ect, or would it leave the task unchanged
as in the continuing task above? Why or why not? Give an example. ⇤
Example 3.6: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of �1 for each stroke until we hit the ball
into the hole. The state is the location of the ball. The value of a state is the negative of
the number of strokes to the hole from that location. Our actions are how we aim and
swing at the ball, of course, and which club we select. Let us take the former as given
and consider just the choice of club, which we assume is either a putter or a driver. The
upper part of Figure 3.3 shows a possible state-value function, vputt(s), for the policy that
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Figure 3.3: A golf example: the state-value func-
tion for putting (upper) and the optimal action-
value function for using the driver (lower).

always uses the putter. The terminal
state in-the-hole has a value of 0. From
anywhere on the green we assume we can
make a putt; these states have value �1.
O↵ the green we cannot reach the hole
by putting, and the value is greater. If
we can reach the green from a state by
putting, then that state must have value
one less than the green’s value, that is,
�2. For simplicity, let us assume we can
putt very precisely and deterministically,
but with a limited range. This gives us
the sharp contour line labeled �2 in the
figure; all locations between that line and
the green require exactly two strokes to
complete the hole. Similarly, any location
within putting range of the �2 contour
line must have a value of �3, and so
on to get all the contour lines shown in
the figure. Putting doesn’t get us out of
sand traps, so they have a value of �1.
Overall, it takes us six strokes to get from
the tee to the hole by putting.

r

s0

s, a

a0
⇡

p

q⇡ backup diagram

Exercise 3.17 What is the Bellman equation for action values, that
is, for q⇡? It must give the action value q⇡(s, a) in terms of the action
values, q⇡(s0, a0), of possible successors to the state–action pair (s, a).
Hint: the backup diagram to the right corresponds to this equation.
Show the sequence of equations analogous to (3.14), but for action
values. ⇤

— Sutton and Barto, Reinforcement Learning: An Introduction
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State-Action Value Function

A closely related but usefully different function is the state-action
value function, or Q-function, Qπ for policy π, defined as:

Qπ(s, a) , Eπ


∑

k≥0
γkRt+k | St = s,At = a


 .

If you knew Qπ, how would you obtain V π?

V π(s) =
∑

a

π(a | s)Qπ(s, a).

If you knew V π, how would you obtain Qπ?
Apply a Bellman-like equation:

Qπ(s, a) = r(s, a) + γ
∑

s′

P(s′ | a, s)V π(s′)

This requires knowing the dynamics, so in general it’s not easy to
recover Qπ from V π.
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State-Action Value Function

Qπ satisfies a Bellman equation very similar to V π (proof is
analogous):

Qπ(s, a) = r(s, a) + γ
∑

s′

P(s′ | a, s)
∑

a′

π(a′ | s′)Qπ(s′, a′)

︸ ︷︷ ︸
,(TπQπ)(s,a)
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Optimal State-Action Value Function

Suppose you’re in state s. You get to pick one action a, and then
follow (fixed) policy π from then on. What do you pick?

arg max
a

Qπ(s, a)

If a deterministic policy π is optimal, then it must be the case that
for any state s:

π(s) = arg max
a

Qπ(s, a),

otherwise you could improve the policy by changing π(s). (see
Sutton & Barto for a proper proof)
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Optimal State-Action Value Function

Bellman equation for optimal policy π∗:

Qπ
∗
(s, a) = r(s, a) + γ

∑
s′

P(s′, | s, a)Qπ
?

(s′, π?(s′))

= r(s, a) + γ
∑
s′

p(s′ | s, a) max
a′

Qπ
?

(s′, a′)

Now Q∗ = Qπ
?

is the optimal state-action value function, and we
can rewrite the optimal Bellman equation without mentioning π?:

Q∗(s, a) = r(s, a) + γ
∑

s′

p(s′ | s, a) max
a′

Q∗(s′, a′)

︸ ︷︷ ︸
,(T ∗Q∗)(s,a)

Turns out this is sufficient to characterize the optimal policy. So
we simply need to solve the fixed point equation T ∗Q∗ = Q∗, and
then we can choose π∗(s) = arg maxaQ

∗(s, a).
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Bellman Fixed Points

So far: showed that some interesting problems could be reduced
to finding fixed points of Bellman backup operators:

Evaluating a fixed policy π

TπQπ = Qπ

Finding the optimal policy

T ∗Q∗ = Q∗

Idea: keep iterating the backup operator over and over again.

Q← T πQ (policy evaluation)

Q← T ∗Q (finding the optimal policy)

We’re treating Qπ or Q∗ as a vector with |S| · |A| entries.
This type of algorithm is an instance of dynamic programming.
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Bellman Fixed Points

An operator f (mapping from vectors to vectors) is a contraction
map if

‖f(x1)− f(x2)‖ ≤ α‖x1 − x2‖
for some scalar 0 ≤ α < 1 and vector norm ‖ · ‖.
Let f (k) denote f iterated k times. A simple induction shows

‖f (k)(x1)− f (k)(x2)‖ ≤ αk‖x1 − x2‖.

Let x∗ be a fixed point of f . Then for any x,

‖f (k)(x)− x∗‖ ≤ αk‖x− x∗‖.

Hence, iterated application of f , starting from any x, converges
exponentially to a unique fixed point.
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Finding the Optimal Value Function: Value Iteration

Let’s use dynamic programming to find Q∗.

Value Iteration: Start from an initial function Q1. For each k = 1, 2, . . . ,
apply

Qk+1 ← T ∗Qk

Writing out the update in full,

Qk+1(s, a)← r(s, a) + γ
∑

s′∈S
P(s′|s, a) max

a′∈A
Qk(s′, a′)

Observe: a fixed point of this update is exactly a solution of the optimal
Bellman equation, which we saw characterizes the Q-function of an
optimal policy.
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Value Iteration

Q1
<latexit sha1_base64="bX6D+T8jAyDiXs6lV4RQJXyswVM=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWOL9gFtKJvNJl26j7C7EUrIT/Cqv8ef4S/wJl69uU1zsC0d+GCY+QaG8WNKlHacT6u0tb2zu1ferxwcHh2fVGunPSUSiXAXCSrkwIcKU8JxVxNN8SCWGDKf4r4/bc39/guWigj+rGcx9hiMOAkJgtpIT52xO67WnYaTw14nbkHqoEB7XLOuRoFACcNcIwqVGrpOrL0USk0QxVlllCgcQzSFER4ayiHDykvzrpl9aZTADoU0x7Wdq/8TKWRKzZhvPhnUE7XqzcVNnp6wbFmjkZDEyARtMFba6vDeSwmPE405WpQNE2prYc/HswMiMdJ0ZghEJk+QjSZQQqTNxJVRHkxbgjHIA5WZZd3VHddJ76bhOg23c1tvPhQbl8E5uADXwAV3oAkeQRt0AQIReAVv4N36sL6sb+tn8VqyiswZWIL1+weid7B3</latexit><latexit sha1_base64="bX6D+T8jAyDiXs6lV4RQJXyswVM=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWOL9gFtKJvNJl26j7C7EUrIT/Cqv8ef4S/wJl69uU1zsC0d+GCY+QaG8WNKlHacT6u0tb2zu1ferxwcHh2fVGunPSUSiXAXCSrkwIcKU8JxVxNN8SCWGDKf4r4/bc39/guWigj+rGcx9hiMOAkJgtpIT52xO67WnYaTw14nbkHqoEB7XLOuRoFACcNcIwqVGrpOrL0USk0QxVlllCgcQzSFER4ayiHDykvzrpl9aZTADoU0x7Wdq/8TKWRKzZhvPhnUE7XqzcVNnp6wbFmjkZDEyARtMFba6vDeSwmPE405WpQNE2prYc/HswMiMdJ0ZghEJk+QjSZQQqTNxJVRHkxbgjHIA5WZZd3VHddJ76bhOg23c1tvPhQbl8E5uADXwAV3oAkeQRt0AQIReAVv4N36sL6sb+tn8VqyiswZWIL1+weid7B3</latexit><latexit sha1_base64="bX6D+T8jAyDiXs6lV4RQJXyswVM=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWOL9gFtKJvNJl26j7C7EUrIT/Cqv8ef4S/wJl69uU1zsC0d+GCY+QaG8WNKlHacT6u0tb2zu1ferxwcHh2fVGunPSUSiXAXCSrkwIcKU8JxVxNN8SCWGDKf4r4/bc39/guWigj+rGcx9hiMOAkJgtpIT52xO67WnYaTw14nbkHqoEB7XLOuRoFACcNcIwqVGrpOrL0USk0QxVlllCgcQzSFER4ayiHDykvzrpl9aZTADoU0x7Wdq/8TKWRKzZhvPhnUE7XqzcVNnp6wbFmjkZDEyARtMFba6vDeSwmPE405WpQNE2prYc/HswMiMdJ0ZghEJk+QjSZQQqTNxJVRHkxbgjHIA5WZZd3VHddJ76bhOg23c1tvPhQbl8E5uADXwAV3oAkeQRt0AQIReAVv4N36sL6sb+tn8VqyiswZWIL1+weid7B3</latexit><latexit sha1_base64="bX6D+T8jAyDiXs6lV4RQJXyswVM=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWOL9gFtKJvNJl26j7C7EUrIT/Cqv8ef4S/wJl69uU1zsC0d+GCY+QaG8WNKlHacT6u0tb2zu1ferxwcHh2fVGunPSUSiXAXCSrkwIcKU8JxVxNN8SCWGDKf4r4/bc39/guWigj+rGcx9hiMOAkJgtpIT52xO67WnYaTw14nbkHqoEB7XLOuRoFACcNcIwqVGrpOrL0USk0QxVlllCgcQzSFER4ayiHDykvzrpl9aZTADoU0x7Wdq/8TKWRKzZhvPhnUE7XqzcVNnp6wbFmjkZDEyARtMFba6vDeSwmPE405WpQNE2prYc/HswMiMdJ0ZghEJk+QjSZQQqTNxJVRHkxbgjHIA5WZZd3VHddJ76bhOg23c1tvPhQbl8E5uADXwAV3oAkeQRt0AQIReAVv4N36sL6sb+tn8VqyiswZWIL1+weid7B3</latexit>

Q2
<latexit sha1_base64="Srj0llwUfl51deTIkafbU9cQdDo=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVJIi6LHYi8cW7QPaUDabTbp0H2F3I5SQn+BVf48/w1/gTbx6c5vmYFsc+GCY+QaG8WNKlHacD6u0tb2zu1ferxwcHh2fVGunfSUSiXAPCSrk0IcKU8JxTxNN8TCWGDKf4oE/ay/8wTOWigj+pOcx9hiMOAkJgtpIj91Jc1KtOw0nh71J3ILUQYHOpGZdjQOBEoa5RhQqNXKdWHsplJogirPKOFE4hmgGIzwylEOGlZfmXTP70iiBHQppjms7V/8mUsiUmjPffDKop2rdW4j/eXrKslWNRkISIxP0j7HWVod3Xkp4nGjM0bJsmFBbC3sxnh0QiZGmc0MgMnmCbDSFEiJtJq6M82DaFoxBHqjMLOuu77hJ+s2G6zTc7k29dV9sXAbn4AJcAxfcghZ4AB3QAwhE4AW8gjfr3fq0vqzv5WvJKjJnYAXWzy+kULB4</latexit><latexit sha1_base64="Srj0llwUfl51deTIkafbU9cQdDo=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVJIi6LHYi8cW7QPaUDabTbp0H2F3I5SQn+BVf48/w1/gTbx6c5vmYFsc+GCY+QaG8WNKlHacD6u0tb2zu1ferxwcHh2fVGunfSUSiXAPCSrk0IcKU8JxTxNN8TCWGDKf4oE/ay/8wTOWigj+pOcx9hiMOAkJgtpIj91Jc1KtOw0nh71J3ILUQYHOpGZdjQOBEoa5RhQqNXKdWHsplJogirPKOFE4hmgGIzwylEOGlZfmXTP70iiBHQppjms7V/8mUsiUmjPffDKop2rdW4j/eXrKslWNRkISIxP0j7HWVod3Xkp4nGjM0bJsmFBbC3sxnh0QiZGmc0MgMnmCbDSFEiJtJq6M82DaFoxBHqjMLOuu77hJ+s2G6zTc7k29dV9sXAbn4AJcAxfcghZ4AB3QAwhE4AW8gjfr3fq0vqzv5WvJKjJnYAXWzy+kULB4</latexit><latexit sha1_base64="Srj0llwUfl51deTIkafbU9cQdDo=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVJIi6LHYi8cW7QPaUDabTbp0H2F3I5SQn+BVf48/w1/gTbx6c5vmYFsc+GCY+QaG8WNKlHacD6u0tb2zu1ferxwcHh2fVGunfSUSiXAPCSrk0IcKU8JxTxNN8TCWGDKf4oE/ay/8wTOWigj+pOcx9hiMOAkJgtpIj91Jc1KtOw0nh71J3ILUQYHOpGZdjQOBEoa5RhQqNXKdWHsplJogirPKOFE4hmgGIzwylEOGlZfmXTP70iiBHQppjms7V/8mUsiUmjPffDKop2rdW4j/eXrKslWNRkISIxP0j7HWVod3Xkp4nGjM0bJsmFBbC3sxnh0QiZGmc0MgMnmCbDSFEiJtJq6M82DaFoxBHqjMLOuu77hJ+s2G6zTc7k29dV9sXAbn4AJcAxfcghZ4AB3QAwhE4AW8gjfr3fq0vqzv5WvJKjJnYAXWzy+kULB4</latexit><latexit sha1_base64="Srj0llwUfl51deTIkafbU9cQdDo=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVJIi6LHYi8cW7QPaUDabTbp0H2F3I5SQn+BVf48/w1/gTbx6c5vmYFsc+GCY+QaG8WNKlHacD6u0tb2zu1ferxwcHh2fVGunfSUSiXAPCSrk0IcKU8JxTxNN8TCWGDKf4oE/ay/8wTOWigj+pOcx9hiMOAkJgtpIj91Jc1KtOw0nh71J3ILUQYHOpGZdjQOBEoa5RhQqNXKdWHsplJogirPKOFE4hmgGIzwylEOGlZfmXTP70iiBHQppjms7V/8mUsiUmjPffDKop2rdW4j/eXrKslWNRkISIxP0j7HWVod3Xkp4nGjM0bJsmFBbC3sxnh0QiZGmc0MgMnmCbDSFEiJtJq6M82DaFoxBHqjMLOuu77hJ+s2G6zTc7k29dV9sXAbn4AJcAxfcghZ4AB3QAwhE4AW8gjfr3fq0vqzv5WvJKjJnYAXWzy+kULB4</latexit>

T ⇤Q1
<latexit sha1_base64="yqJIT7qss5GVGdOiCqx7wCN5G3s=">AAACRXicdVDJSgNBFOxxjXFL9OilMSiewowIegzm4jGBbJKE0NPpJE16GbrfCGGYr/Cq3+M3+BHexKt2loNJSMGDouoVFBVGglvw/U9va3tnd28/c5A9PDo+Oc3lzxpWx4ayOtVCm1ZILBNcsTpwEKwVGUZkKFgzHJenfvOFGcu1qsEkYl1JhooPOCXgpOdOTUeAq72glyv4RX8GvE6CBSmgBSq9vHfd6WsaS6aACmJtO/Aj6CbEAKeCpdlObFlE6JgMWdtRRSSz3WTWOMVXTunjgTbuFOCZ+j+REGntRIbuUxIY2VVvKm7yYCTTZU0MteFO5nSDsdIWBg/dhKsoBqbovOwgFhg0nk6I+9wwCmLiCKEuzymmI2IIBTd0tjMLJmUtJVF9m7plg9Ud10njthj4xaB6Vyg9LjbOoAt0iW5QgO5RCT2hCqojiiR6RW/o3fvwvrxv72f+uuUtMudoCd7vH4EfstY=</latexit><latexit sha1_base64="yqJIT7qss5GVGdOiCqx7wCN5G3s=">AAACRXicdVDJSgNBFOxxjXFL9OilMSiewowIegzm4jGBbJKE0NPpJE16GbrfCGGYr/Cq3+M3+BHexKt2loNJSMGDouoVFBVGglvw/U9va3tnd28/c5A9PDo+Oc3lzxpWx4ayOtVCm1ZILBNcsTpwEKwVGUZkKFgzHJenfvOFGcu1qsEkYl1JhooPOCXgpOdOTUeAq72glyv4RX8GvE6CBSmgBSq9vHfd6WsaS6aACmJtO/Aj6CbEAKeCpdlObFlE6JgMWdtRRSSz3WTWOMVXTunjgTbuFOCZ+j+REGntRIbuUxIY2VVvKm7yYCTTZU0MteFO5nSDsdIWBg/dhKsoBqbovOwgFhg0nk6I+9wwCmLiCKEuzymmI2IIBTd0tjMLJmUtJVF9m7plg9Ud10njthj4xaB6Vyg9LjbOoAt0iW5QgO5RCT2hCqojiiR6RW/o3fvwvrxv72f+uuUtMudoCd7vH4EfstY=</latexit><latexit sha1_base64="yqJIT7qss5GVGdOiCqx7wCN5G3s=">AAACRXicdVDJSgNBFOxxjXFL9OilMSiewowIegzm4jGBbJKE0NPpJE16GbrfCGGYr/Cq3+M3+BHexKt2loNJSMGDouoVFBVGglvw/U9va3tnd28/c5A9PDo+Oc3lzxpWx4ayOtVCm1ZILBNcsTpwEKwVGUZkKFgzHJenfvOFGcu1qsEkYl1JhooPOCXgpOdOTUeAq72glyv4RX8GvE6CBSmgBSq9vHfd6WsaS6aACmJtO/Aj6CbEAKeCpdlObFlE6JgMWdtRRSSz3WTWOMVXTunjgTbuFOCZ+j+REGntRIbuUxIY2VVvKm7yYCTTZU0MteFO5nSDsdIWBg/dhKsoBqbovOwgFhg0nk6I+9wwCmLiCKEuzymmI2IIBTd0tjMLJmUtJVF9m7plg9Ud10njthj4xaB6Vyg9LjbOoAt0iW5QgO5RCT2hCqojiiR6RW/o3fvwvrxv72f+uuUtMudoCd7vH4EfstY=</latexit><latexit sha1_base64="yqJIT7qss5GVGdOiCqx7wCN5G3s=">AAACRXicdVDJSgNBFOxxjXFL9OilMSiewowIegzm4jGBbJKE0NPpJE16GbrfCGGYr/Cq3+M3+BHexKt2loNJSMGDouoVFBVGglvw/U9va3tnd28/c5A9PDo+Oc3lzxpWx4ayOtVCm1ZILBNcsTpwEKwVGUZkKFgzHJenfvOFGcu1qsEkYl1JhooPOCXgpOdOTUeAq72glyv4RX8GvE6CBSmgBSq9vHfd6WsaS6aACmJtO/Aj6CbEAKeCpdlObFlE6JgMWdtRRSSz3WTWOMVXTunjgTbuFOCZ+j+REGntRIbuUxIY2VVvKm7yYCTTZU0MteFO5nSDsdIWBg/dhKsoBqbovOwgFhg0nk6I+9wwCmLiCKEuzymmI2IIBTd0tjMLJmUtJVF9m7plg9Ud10njthj4xaB6Vyg9LjbOoAt0iW5QgO5RCT2hCqojiiR6RW/o3fvwvrxv72f+uuUtMudoCd7vH4EfstY=</latexit>

T ⇤Q2
<latexit sha1_base64="TrsWdF6gWobKWXPGYUF2As5sxHQ=">AAACRXicdVBLS0JBGJ1rL7OX1rLNkBSt5F4Jaim5aangK1Rk7jjq4DwuM98N5OKvaFu/p9/Qj2gXbWt8LFLxwAeHc74DhxNGglvw/U8vtbO7t3+QPswcHZ+cnmVz5w2rY0NZnWqhTSsklgmuWB04CNaKDCMyFKwZjsszv/nCjOVa1WASsa4kQ8UHnBJw0nOnpiPA1V6xl837BX8OvEmCJcmjJSq9nHfT6WsaS6aACmJtO/Aj6CbEAKeCTTOd2LKI0DEZsrajikhmu8m88RRfO6WPB9q4U4Dn6v9EQqS1Exm6T0lgZNe9mbjNg5GcrmpiqA13MqdbjLW2MHjoJlxFMTBFF2UHscCg8WxC3OeGURATRwh1eU4xHRFDKLihM515MClrKYnq26lbNljfcZM0ioXALwTVu3zpcblxGl2iK3SLAnSPSugJVVAdUSTRK3pD796H9+V9ez+L15S3zFygFXi/f4L4stc=</latexit><latexit sha1_base64="TrsWdF6gWobKWXPGYUF2As5sxHQ=">AAACRXicdVBLS0JBGJ1rL7OX1rLNkBSt5F4Jaim5aangK1Rk7jjq4DwuM98N5OKvaFu/p9/Qj2gXbWt8LFLxwAeHc74DhxNGglvw/U8vtbO7t3+QPswcHZ+cnmVz5w2rY0NZnWqhTSsklgmuWB04CNaKDCMyFKwZjsszv/nCjOVa1WASsa4kQ8UHnBJw0nOnpiPA1V6xl837BX8OvEmCJcmjJSq9nHfT6WsaS6aACmJtO/Aj6CbEAKeCTTOd2LKI0DEZsrajikhmu8m88RRfO6WPB9q4U4Dn6v9EQqS1Exm6T0lgZNe9mbjNg5GcrmpiqA13MqdbjLW2MHjoJlxFMTBFF2UHscCg8WxC3OeGURATRwh1eU4xHRFDKLihM515MClrKYnq26lbNljfcZM0ioXALwTVu3zpcblxGl2iK3SLAnSPSugJVVAdUSTRK3pD796H9+V9ez+L15S3zFygFXi/f4L4stc=</latexit><latexit sha1_base64="TrsWdF6gWobKWXPGYUF2As5sxHQ=">AAACRXicdVBLS0JBGJ1rL7OX1rLNkBSt5F4Jaim5aangK1Rk7jjq4DwuM98N5OKvaFu/p9/Qj2gXbWt8LFLxwAeHc74DhxNGglvw/U8vtbO7t3+QPswcHZ+cnmVz5w2rY0NZnWqhTSsklgmuWB04CNaKDCMyFKwZjsszv/nCjOVa1WASsa4kQ8UHnBJw0nOnpiPA1V6xl837BX8OvEmCJcmjJSq9nHfT6WsaS6aACmJtO/Aj6CbEAKeCTTOd2LKI0DEZsrajikhmu8m88RRfO6WPB9q4U4Dn6v9EQqS1Exm6T0lgZNe9mbjNg5GcrmpiqA13MqdbjLW2MHjoJlxFMTBFF2UHscCg8WxC3OeGURATRwh1eU4xHRFDKLihM515MClrKYnq26lbNljfcZM0ioXALwTVu3zpcblxGl2iK3SLAnSPSugJVVAdUSTRK3pD796H9+V9ez+L15S3zFygFXi/f4L4stc=</latexit><latexit sha1_base64="TrsWdF6gWobKWXPGYUF2As5sxHQ=">AAACRXicdVBLS0JBGJ1rL7OX1rLNkBSt5F4Jaim5aangK1Rk7jjq4DwuM98N5OKvaFu/p9/Qj2gXbWt8LFLxwAeHc74DhxNGglvw/U8vtbO7t3+QPswcHZ+cnmVz5w2rY0NZnWqhTSsklgmuWB04CNaKDCMyFKwZjsszv/nCjOVa1WASsa4kQ8UHnBJw0nOnpiPA1V6xl837BX8OvEmCJcmjJSq9nHfT6WsaS6aACmJtO/Aj6CbEAKeCTTOd2LKI0DEZsrajikhmu8m88RRfO6WPB9q4U4Dn6v9EQqS1Exm6T0lgZNe9mbjNg5GcrmpiqA13MqdbjLW2MHjoJlxFMTBFF2UHscCg8WxC3OeGURATRwh1eU4xHRFDKLihM515MClrKYnq26lbNljfcZM0ioXALwTVu3zpcblxGl2iK3SLAnSPSugJVVAdUSTRK3pD796H9+V9ez+L15S3zFygFXi/f4L4stc=</latexit>

T ⇤ (or T⇡)
<latexit sha1_base64="1NtZU9jecEK2cV+EB72GcN1Qgh0=">AAACUXicdVA9TwJBFHx3fiF+gZY2G0GjDbmj0ZJIY6mJCIkQsrfswcb9uOy+MyEXfout/h4rf4qdC1IoxqkmM2/yJpNkUjiMoo8gXFvf2NwqbZd3dvf2DyrVwwdncst4hxlpbC+hjkuheQcFSt7LLKcqkbybPLXnfveZWyeMvsdpxgeKjrVIBaPopWHlqN6/NxnWybmxxPNM1C+GlVrUiBYgf0m8JDVY4nZYDc76I8NyxTUySZ17jKMMBwW1KJjks3I/dzyj7ImO+aOnmiruBsWi/YycemVEUv8/NRrJQv2ZKKhybqoSf6koTtyqNxf/83CiZr81OTZWeFmwf4yVtpheDQqhsxy5Zt9l01wSNGQ+JxkJyxnKqSeU+bxghE2opQz96OX+Ili0jVJUj9zMLxuv7viXPDQbcdSI75q11vVy4xIcwwmcQwyX0IIbuIUOMJjCC7zCW/AefIYQht+nYbDMHMEvhDtfC02y9g==</latexit><latexit sha1_base64="1NtZU9jecEK2cV+EB72GcN1Qgh0=">AAACUXicdVA9TwJBFHx3fiF+gZY2G0GjDbmj0ZJIY6mJCIkQsrfswcb9uOy+MyEXfout/h4rf4qdC1IoxqkmM2/yJpNkUjiMoo8gXFvf2NwqbZd3dvf2DyrVwwdncst4hxlpbC+hjkuheQcFSt7LLKcqkbybPLXnfveZWyeMvsdpxgeKjrVIBaPopWHlqN6/NxnWybmxxPNM1C+GlVrUiBYgf0m8JDVY4nZYDc76I8NyxTUySZ17jKMMBwW1KJjks3I/dzyj7ImO+aOnmiruBsWi/YycemVEUv8/NRrJQv2ZKKhybqoSf6koTtyqNxf/83CiZr81OTZWeFmwf4yVtpheDQqhsxy5Zt9l01wSNGQ+JxkJyxnKqSeU+bxghE2opQz96OX+Ili0jVJUj9zMLxuv7viXPDQbcdSI75q11vVy4xIcwwmcQwyX0IIbuIUOMJjCC7zCW/AefIYQht+nYbDMHMEvhDtfC02y9g==</latexit><latexit sha1_base64="1NtZU9jecEK2cV+EB72GcN1Qgh0=">AAACUXicdVA9TwJBFHx3fiF+gZY2G0GjDbmj0ZJIY6mJCIkQsrfswcb9uOy+MyEXfout/h4rf4qdC1IoxqkmM2/yJpNkUjiMoo8gXFvf2NwqbZd3dvf2DyrVwwdncst4hxlpbC+hjkuheQcFSt7LLKcqkbybPLXnfveZWyeMvsdpxgeKjrVIBaPopWHlqN6/NxnWybmxxPNM1C+GlVrUiBYgf0m8JDVY4nZYDc76I8NyxTUySZ17jKMMBwW1KJjks3I/dzyj7ImO+aOnmiruBsWi/YycemVEUv8/NRrJQv2ZKKhybqoSf6koTtyqNxf/83CiZr81OTZWeFmwf4yVtpheDQqhsxy5Zt9l01wSNGQ+JxkJyxnKqSeU+bxghE2opQz96OX+Ili0jVJUj9zMLxuv7viXPDQbcdSI75q11vVy4xIcwwmcQwyX0IIbuIUOMJjCC7zCW/AefIYQht+nYbDMHMEvhDtfC02y9g==</latexit><latexit sha1_base64="1NtZU9jecEK2cV+EB72GcN1Qgh0=">AAACUXicdVA9TwJBFHx3fiF+gZY2G0GjDbmj0ZJIY6mJCIkQsrfswcb9uOy+MyEXfout/h4rf4qdC1IoxqkmM2/yJpNkUjiMoo8gXFvf2NwqbZd3dvf2DyrVwwdncst4hxlpbC+hjkuheQcFSt7LLKcqkbybPLXnfveZWyeMvsdpxgeKjrVIBaPopWHlqN6/NxnWybmxxPNM1C+GlVrUiBYgf0m8JDVY4nZYDc76I8NyxTUySZ17jKMMBwW1KJjks3I/dzyj7ImO+aOnmiruBsWi/YycemVEUv8/NRrJQv2ZKKhybqoSf6koTtyqNxf/83CiZr81OTZWeFmwf4yVtpheDQqhsxy5Zt9l01wSNGQ+JxkJyxnKqSeU+bxghE2opQz96OX+Ili0jVJUj9zMLxuv7viXPDQbcdSI75q11vVy4xIcwwmcQwyX0IIbuIUOMJjCC7zCW/AefIYQht+nYbDMHMEvhDtfC02y9g==</latexit>

�
<latexit sha1_base64="kcy9StiPGnILhHdxgpheFrNPU8w=">AAACQnicdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWMF+4AmlM1mk67dR9jdCCXkP3jV3+Of8C94E68e3KY52EoHPhhmvoFhgoQSpR3nw6psbG5t71R3a3v7B4dH9cZxX4lUItxDggo5DKDClHDc00RTPEwkhiygeBBMO3N/8IylIoI/6lmCfQZjTiKCoDZS34shY3Bcbzotp4D9n7glaYIS3XHDuvBCgVKGuUYUKjVynUT7GZSaIIrzmpcqnEA0hTEeGcohw8rPirq5fW6U0I6ENMe1Xah/ExlkSs1YYD4Z1BO16s3FdZ6esHxZo7GQxMgErTFW2uro1s8IT1KNOVqUjVJqa2HP97NDIjHSdGYIRCZPkI0mUEKkzco1rwhmHWFW5aHKzbLu6o7/Sf+q5Tot9+G62b4rN66CU3AGLoELbkAb3IMu6AEEnsALeAVv1rv1aX1Z34vXilVmTsASrJ9f2QCyEw==</latexit><latexit sha1_base64="kcy9StiPGnILhHdxgpheFrNPU8w=">AAACQnicdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWMF+4AmlM1mk67dR9jdCCXkP3jV3+Of8C94E68e3KY52EoHPhhmvoFhgoQSpR3nw6psbG5t71R3a3v7B4dH9cZxX4lUItxDggo5DKDClHDc00RTPEwkhiygeBBMO3N/8IylIoI/6lmCfQZjTiKCoDZS34shY3Bcbzotp4D9n7glaYIS3XHDuvBCgVKGuUYUKjVynUT7GZSaIIrzmpcqnEA0hTEeGcohw8rPirq5fW6U0I6ENMe1Xah/ExlkSs1YYD4Z1BO16s3FdZ6esHxZo7GQxMgErTFW2uro1s8IT1KNOVqUjVJqa2HP97NDIjHSdGYIRCZPkI0mUEKkzco1rwhmHWFW5aHKzbLu6o7/Sf+q5Tot9+G62b4rN66CU3AGLoELbkAb3IMu6AEEnsALeAVv1rv1aX1Z34vXilVmTsASrJ9f2QCyEw==</latexit><latexit sha1_base64="kcy9StiPGnILhHdxgpheFrNPU8w=">AAACQnicdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWMF+4AmlM1mk67dR9jdCCXkP3jV3+Of8C94E68e3KY52EoHPhhmvoFhgoQSpR3nw6psbG5t71R3a3v7B4dH9cZxX4lUItxDggo5DKDClHDc00RTPEwkhiygeBBMO3N/8IylIoI/6lmCfQZjTiKCoDZS34shY3Bcbzotp4D9n7glaYIS3XHDuvBCgVKGuUYUKjVynUT7GZSaIIrzmpcqnEA0hTEeGcohw8rPirq5fW6U0I6ENMe1Xah/ExlkSs1YYD4Z1BO16s3FdZ6esHxZo7GQxMgErTFW2uro1s8IT1KNOVqUjVJqa2HP97NDIjHSdGYIRCZPkI0mUEKkzco1rwhmHWFW5aHKzbLu6o7/Sf+q5Tot9+G62b4rN66CU3AGLoELbkAb3IMu6AEEnsALeAVv1rv1aX1Z34vXilVmTsASrJ9f2QCyEw==</latexit><latexit sha1_base64="kcy9StiPGnILhHdxgpheFrNPU8w=">AAACQnicdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWMF+4AmlM1mk67dR9jdCCXkP3jV3+Of8C94E68e3KY52EoHPhhmvoFhgoQSpR3nw6psbG5t71R3a3v7B4dH9cZxX4lUItxDggo5DKDClHDc00RTPEwkhiygeBBMO3N/8IylIoI/6lmCfQZjTiKCoDZS34shY3Bcbzotp4D9n7glaYIS3XHDuvBCgVKGuUYUKjVynUT7GZSaIIrzmpcqnEA0hTEeGcohw8rPirq5fW6U0I6ENMe1Xah/ExlkSs1YYD4Z1BO16s3FdZ6esHxZo7GQxMgErTFW2uro1s8IT1KNOVqUjVJqa2HP97NDIjHSdGYIRCZPkI0mUEKkzco1rwhmHWFW5aHKzbLu6o7/Sf+q5Tot9+G62b4rN66CU3AGLoELbkAb3IMu6AEEnsALeAVv1rv1aX1Z34vXilVmTsASrJ9f2QCyEw==</latexit>

1
<latexit sha1_base64="93BFzOY2xSaeRGRWOyKXTZ+MQlU=">AAACPXicdVDNSsNAGNzUv1r/Wj16WSyKp5KIoMdiLx5bsLXQhrLZbNql+xN2N0IJeQKv+jw+hw/gTbx6dZvmYFs68MEw8w0ME8SMauO6n05pa3tnd6+8Xzk4PDo+qdZOe1omCpMulkyqfoA0YVSQrqGGkX6sCOIBI8/BtDX3n1+I0lSKJzOLic/RWNCIYmSs1PFG1brbcHPAdeIVpA4KtEc152oYSpxwIgxmSOuB58bGT5EyFDOSVYaJJjHCUzQmA0sF4kT7ad40g5dWCWEklT1hYK7+T6SIaz3jgf3kyEz0qjcXN3lmwrNljY2lolameIOx0tZE935KRZwYIvCibJQwaCScTwdDqgg2bGYJwjZPMcQTpBA2duDKMA+mLck5EqHO7LLe6o7rpHfT8NyG17mtNx+KjcvgHFyAa+CBO9AEj6ANugADAl7BG3h3Ppwv59v5WbyWnCJzBpbg/P4BEcOvsw==</latexit><latexit sha1_base64="93BFzOY2xSaeRGRWOyKXTZ+MQlU=">AAACPXicdVDNSsNAGNzUv1r/Wj16WSyKp5KIoMdiLx5bsLXQhrLZbNql+xN2N0IJeQKv+jw+hw/gTbx6dZvmYFs68MEw8w0ME8SMauO6n05pa3tnd6+8Xzk4PDo+qdZOe1omCpMulkyqfoA0YVSQrqGGkX6sCOIBI8/BtDX3n1+I0lSKJzOLic/RWNCIYmSs1PFG1brbcHPAdeIVpA4KtEc152oYSpxwIgxmSOuB58bGT5EyFDOSVYaJJjHCUzQmA0sF4kT7ad40g5dWCWEklT1hYK7+T6SIaz3jgf3kyEz0qjcXN3lmwrNljY2lolameIOx0tZE935KRZwYIvCibJQwaCScTwdDqgg2bGYJwjZPMcQTpBA2duDKMA+mLck5EqHO7LLe6o7rpHfT8NyG17mtNx+KjcvgHFyAa+CBO9AEj6ANugADAl7BG3h3Ppwv59v5WbyWnCJzBpbg/P4BEcOvsw==</latexit><latexit sha1_base64="93BFzOY2xSaeRGRWOyKXTZ+MQlU=">AAACPXicdVDNSsNAGNzUv1r/Wj16WSyKp5KIoMdiLx5bsLXQhrLZbNql+xN2N0IJeQKv+jw+hw/gTbx6dZvmYFs68MEw8w0ME8SMauO6n05pa3tnd6+8Xzk4PDo+qdZOe1omCpMulkyqfoA0YVSQrqGGkX6sCOIBI8/BtDX3n1+I0lSKJzOLic/RWNCIYmSs1PFG1brbcHPAdeIVpA4KtEc152oYSpxwIgxmSOuB58bGT5EyFDOSVYaJJjHCUzQmA0sF4kT7ad40g5dWCWEklT1hYK7+T6SIaz3jgf3kyEz0qjcXN3lmwrNljY2lolameIOx0tZE935KRZwYIvCibJQwaCScTwdDqgg2bGYJwjZPMcQTpBA2duDKMA+mLck5EqHO7LLe6o7rpHfT8NyG17mtNx+KjcvgHFyAa+CBO9AEj6ANugADAl7BG3h3Ppwv59v5WbyWnCJzBpbg/P4BEcOvsw==</latexit><latexit sha1_base64="93BFzOY2xSaeRGRWOyKXTZ+MQlU=">AAACPXicdVDNSsNAGNzUv1r/Wj16WSyKp5KIoMdiLx5bsLXQhrLZbNql+xN2N0IJeQKv+jw+hw/gTbx6dZvmYFs68MEw8w0ME8SMauO6n05pa3tnd6+8Xzk4PDo+qdZOe1omCpMulkyqfoA0YVSQrqGGkX6sCOIBI8/BtDX3n1+I0lSKJzOLic/RWNCIYmSs1PFG1brbcHPAdeIVpA4KtEc152oYSpxwIgxmSOuB58bGT5EyFDOSVYaJJjHCUzQmA0sF4kT7ad40g5dWCWEklT1hYK7+T6SIaz3jgf3kyEz0qjcXN3lmwrNljY2lolameIOx0tZE935KRZwYIvCibJQwaCScTwdDqgg2bGYJwjZPMcQTpBA2duDKMA+mLck5EqHO7LLe6o7rpHfT8NyG17mtNx+KjcvgHFyAa+CBO9AEj6ANugADAl7BG3h3Ppwv59v5WbyWnCJzBpbg/P4BEcOvsw==</latexit>

Claim: The value iteration update is a contraction map:

‖T ∗Q1 − T ∗Q2‖∞ ≤ γ ‖Q1 −Q2‖∞
‖·‖∞ denotes the L∞ norm, defined as:

‖x‖∞ = max
i
|xi|

If this claim is correct, then value iteration converges exponentially to
the unique fixed point.

The exponential decay factor is γ (the discount factor), which means
longer term planning is harder.
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Bellman Operator is a Contraction (optional)

|(T ∗Q1)(s, a)− (T ∗Q2)(s, a)| =

∣∣∣∣∣
[
r(s, a) + γ

∑
s′

P(s′ | s, a) max
a′

Q1(s′, a′)

]
−[

r(s, a) + γ
∑
s′

P(s′ | s, a) max
a′

Q2(s′, a′)

] ∣∣∣∣∣
= γ

∣∣∣∣∣∑
s′

P(s′ | s, a)

[
max
a′

Q1(s′, a′)−max
a′

Q2(s′, a′)

]∣∣∣∣∣
≤ γ

∑
s′

P(s′ | s, a) max
a′

∣∣Q1(s′, a′)−Q2(s′, a′)
∣∣

≤ γmax
s′,a′

∣∣Q1(s′, a′)−Q2(s′, a′)
∣∣∑
s′

P(s′ | s, a)

= γmax
s′,a′

∣∣Q1(s′, a′)−Q2(s′, a′)
∣∣

= γ ‖Q1 −Q2‖∞
This is true for any (s, a), so

‖T ∗Q1 − T ∗Q2‖∞ ≤ γ ‖Q1 −Q2‖∞ ,

which is what we wanted to show.
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Value Iteration Recap

So far, we’ve focused on planning, where the dynamics are known.

The optimal Q-function is characterized in terms of a Bellman
fixed point update.

Since the Bellman operator is a contraction map, we can just keep
applying it repeatedly, and we’ll converge to a unique fixed point.

What are the limitations of value iteration?

assumes known dynamics
requires explicitly representing Q∗ as a vector

|S| can be extremely large, or infinite
|A| can be infinite (e.g. continuous voltages in robotics)

But value iteration is still a foundation for a lot of more practical
RL algorithms.
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Towards Learning

Now let’s focus on reinforcement learning, where the
environment is unknown. How can we apply learning?

1 Learn a model of the environment, and do planning in the model
(i.e. model-based reinforcement learning)

You already know how to do this in principle, but it’s very hard to
get to work. Not covered in this course.

2 Learn a value function (e.g. Q-learning, covered in this lecture)
3 Learn a policy directly (e.g. policy gradient, not covered in this

course)

How can we deal with extremely large state spaces?

Function approximation: choose a parametric form for the policy
and/or value function (e.g. linear in features, neural net, etc.)
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Monte Carlo Estimation

Recall the optimal Bellman equation:

Q∗(s, a) = r(s, a) + γEP(s′ | s,a)
[
max
a′

Q∗(s′, a′)
]

Problem: we need to know the dynamics to evaluate the expectation

Monte Carlo estimation of an expectation µ = E[X]: repeatedly sample
X and update

µ← µ+ α(X − µ)

Idea: Apply Monte Carlo estimation to the Bellman equation by
sampling S′ ∼ P(· | s, a) and updating:

Q(s, a)← Q(s, a) + α
[
r(s, a) + γmax

a′
Q(S′, a′)−Q(s, a)

︸ ︷︷ ︸
= Bellman error

]

This is an example of temporal difference learning, i.e. updating our
predictions to match our later predictions (once we have more
information).
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Monte Carlo Estimation

Problem: Every iteration of value iteration requires updating Q
for every state.

There could be lots of states
We only observe transitions for states that are visited

Idea: Have the agent interact with the environment, and only
update Q for the states that are actually visited.

Problem: We might never visit certain states if they don’t look
promising, so we’ll never learn about them.

Idea: Have the agent sometimes take random actions so that it
eventually visits every state.

ε-greedy policy: a policy which picks arg maxaQ(s, a) with
probability 1− ε and a random action with probability ε. (Typical
value: ε = 0.05)

Combining all three ideas gives an algorithm called Q-learning.
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Q-Learning with ε-Greedy Policy

Parameters:

Learning rate α
Exploration parameter ε

Initialize Q(s, a) for all (s, a) ∈ S ×A
The agent starts at state S0.

For time step t = 0, 1, ...,

Choose At according to the ε-greedy policy, i.e.,

At ←
{

argmaxa∈AQ(St, a) with probability 1− ε
Uniformly random action in A with probability ε

Take action At in the environment.
The state changes from St to St+1 ∼ P(·|St, At)
Observe St+1 and Rt (could be r(St, At), or could be stochastic)
Update the action-value function at state-action (St, At):

Q(St, At)← Q(St, At) + α

[
Rt + γ max

a′∈A
Q(St+1, a

′)−Q(St, At)

]
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Exploration vs. Exploitation

The ε-greedy is a simple mechanism for managing the
exploration-exploitation tradeoff.

πε(S;Q) =

{
argmaxa∈AQ(S, a) with probability 1− ε
Uniformly random action in A with probability ε

The ε-greedy policy ensures that most of the time (probability 1− ε) the
agent exploits its incomplete knowledge of the world by chooses the best
action (i.e., corresponding to the highest action-value), but occasionally
(probability ε) it explores other actions.

Without exploration, the agent may never find some good actions.

The ε-greedy is one of the simplest, but widely used, methods for
trading-off exploration and exploitation. Exploration-exploitation
tradeoff is an important topic of research.
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Examples of Exploration-Exploitation in the Real World

Restaurant Selection

Exploitation: Go to your favourite restaurant
Exploration: Try a new restaurant

Online Banner Advertisements

Exploitation: Show the most successful advert
Exploration: Show a different advert

Oil Drilling

Exploitation: Drill at the best known location
Exploration: Drill at a new location

Game Playing

Exploitation: Play the move you believe is best
Exploration: Play an experimental move

[Slide credit: D. Silver]
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An Intuition on Why Q-Learning Works? (Optional)

Consider a tuple (S,A,R, S′). The Q-learning update is

Q(S,A)← Q(S,A) + α

[
R+ γ max

a′∈A
Q(S′, a′)−Q(S,A)

]
.

To understand this better, let us focus on its stochastic equilibrium, i.e.,
where the expected change in Q(S,A) is zero. We have

E
[
R+ γ max

a′∈A
Q(S′, a′)−Q(S,A)|S,A

]
= 0

⇒(T ∗Q)(S,A) = Q(S,A)

So at the stochastic equilibrium, we have (T ∗Q)(S,A) = Q(S,A).
Because the fixed-point of the Bellman optimality operator is unique
(and is Q∗), Q is the same as the optimal action-value function Q∗.
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Off-Policy Learning

Q-learning update again:

Q(S,A)← Q(S,A) + α

[
R+ γmax

a′∈A
Q(S′, a′)−Q(S,A)

]
.

Notice: this update doesn’t mention the policy anywhere. The
only thing the policy is used for is to determine which states are
visited.

This means we can follow whatever policy we want (e.g. ε-greedy),
and it still coverges to the optimal Q-function. Algorithms like
this are known as off-policy algorithms, and this is an extremely
useful property.

Policy gradient (another popular RL algorithm, not covered in this
course) is an on-policy algorithm. Encouraging exploration is
much harder in that case.
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Function Approximation

So far, we’ve been assuming a tabular representation of Q: one
entry for every state/action pair.

This is impractical to store for all but the simplest problems, and
doesn’t share structure between related states.

Solution: approximate Q using a parameterized function, e.g.

linear function approximation: Q(s,a) = w>ψ(s,a)
compute Q with a neural net

Update Q using backprop:

t← r(st,at) + γmax
a

Q(st+1,a)

θ ← θ + α(t−Q(s,a))∇θQ(st,at).
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Function Approximation

Approximating Q with a neural net is a decades-old idea, but
DeepMind got it to work really well on Atari games in 2013 (“deep
Q-learning”)

They used a very small network by today’s standards

Main technical innovation: store experience into a replay buffer,
and perform Q-learning using stored experience

Gains sample efficiency by separating environment interaction from
optimization — don’t need new experience for every SGD update!
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Atari

Mnih et al., Nature 2015. Human-level control through deep
reinforcement learning

Network was given raw pixels as observations

Same architecture shared between all games

Assume fully observable environment, even though that’s not the
case

After about a day of training on a particular game, often beat
“human-level” performance (number of points within 5 minutes of
play)

Did very well on reactive games, poorly on ones that require
planning (e.g. Montezuma’s Revenge)

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=4MlZncshy1Q
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Recap and Other Approaches

All discussed approaches estimate the value function first. They are
called value-based methods.

There are methods that directly optimize the policy, i.e., policy search
methods.

Model-based RL methods estimate the true, but unknown, model of
environment P by an estimate P̂, and use the estimate P in order to
plan.

There are hybrid methods.

Policy

Model

Value
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Reinforcement Learning Resources

Books:

Richard S. Sutton and Andrew G. Barto, Reinforcement Learning:
An Introduction, 2nd edition, 2018.
Csaba Szepesvari, Algorithms for Reinforcement Learning, 2010.
Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien
Ernst, Reinforcement Learning and Dynamic Programming Using
Function Approximators, 2010.
Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-Dynamic
Programming, 1996.

Courses:

Video lectures by David Silver
CIFAR and Vector Institute’s Reinforcement Learning Summer
School, 2018.
Deep Reinforcement Learning, CS 294-112 at UC Berkeley
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Overview

What this course focused on:

Supervised learning: regression, classification

Choose model, loss function, optimizer
Parametric vs. nonparametric
Generative vs. discriminative
Iterative optimization vs. closed-form solutions

Unsupervised learning: dimensionality reduction and clustering

Reinforcement learning: value iteration

This lecture: what we left out, and teasers for other courses
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CSC413 Teaser: Neural Nets

This course covered some fundamental ideas, most of which are
more than 10 years old.

Big shift of the past decade: neural nets and deep learning

2010: neural nets significantly improved speech recognition accuracy
(after 20 years of stagnation)
2012–2015: neural nets reduced error rates for object recognition by
a factor of 6
2016: a program called AlphaGo defeated the human Go champion
2015–2018: neural nets learned to produce convincing
high-resolution images
2018–today: transformers demonstrate a sophisticated ability to
generate natural language text and learn from few examples
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CSC413 Teaser: Automatic Differentiation

In this course, you derived update rules by hand

Backprop is totally mechanical. Now we have automatic
differentiation tools that compute gradients for you.

In CSC413, you learn how an autodiff package can be
implemented

Lets you do fancy things like differentiate through the whole
training procedure to compute the gradient of validation loss with
respect to the hyperparameters.

With TensorFlow, PyTorch, etc., we can build much more complex
neural net architectures that we could previously.
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CSC413 Teaser: Beyond Scalar/Discrete Targets

This course focused on regression and classification,
i.e. scalar-valued or discrete outputs

That only covers a small fraction of use cases. Often, we want to
output something more structured:

text (e.g. image captioning, machine translation)
dense labels of images (e.g. semantic segmentation)
graphs (e.g. molecule design)

This used to be known as structured prediction, but now it’s so
routine we don’t need a name for it.
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CSC413 Teaser: Representation Learning

We talked about neural nets as learning feature maps you can use
for regression/classification

More generally, want to learn a representation of the data such
that mathematical operations on the representation are
semantically meaningful

Classic (decades-old) example: representing words as vectors

Measure semantic similarity using the dot product between word
vectors (or dissimilarity using Euclidean distance)
Represent a web page with the average of its word vectors
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CSC413 Teaser: Representation Learning

Here’s a linear projection of word representations for cities and capitals
into 2 dimensions (part of a representation learned using word2vec)

The mapping city → capital corresponds roughly to a single direction in
the vector space:

Mikolov et al., 2018, “Efficient estimation of word representations in vector space”
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CSC413 Teaser: Representation Learning

In other words, vec(Paris)− vec(France) ≈ vec(London)− vec(England)

This means we can analogies by doing arithmetic on word vectors:

e.g. “Paris is to France as London is to ”
Find the word whose vector is closest to
vec(France)− vec(Paris) + vec(London)

Example analogies:

Mikolov et al., 2018, “Efficient estimation of word representations in vector space”
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CSC413 Teaser: Representation Learning

One of the big goals is to learn disentangled representations, where
individual dimensions tell you something meaningful
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(a) Baldness (-6, 6) (b) Face width (0, 6) (c) Gender (-6, 6) (d) Mustache (-6, 0)

Figure 1: Qualitative comparisons on CelebA. Traversal ranges are shown in parentheses. Some
attributes are only manifested in one direction of a latent variable, so we show a one-sided traversal.
Most semantically similar variables from a �-VAE are shown for comparison.

1 Background: Learning and Evaluating Disentangled Representations

We discuss existing work that aims at either learning disentangled representations without supervision
or evaluating such representations. The two problems are inherently related, since improvements
to learning algorithms require evaluation metrics that are sensitive to subtle details, and stronger
evaluation metrics reveal deficiencies in existing methods.

1.1 Learning Disentangled Representations

VAE and �-VAE The variational autoencoder (VAE) [9, 10] is a latent variable model that pairs a
top-down generator with a bottom-up inference network. Instead of directly performing maximum
likelihood estimation on the intractable marginal log-likelihood, training is done by optimizing the
tractable evidence lower bound (ELBO). We would like to optimize this lower bound averaged over
the empirical distribution (with � = 1):

L� =
1

N

NX

n=1

(Eq[log p(xn|z)]� � KL (q(z|xn)||p(z))) (1)

The �-VAE [7] is a variant of the variational autoencoder that attempts to learn a disentangled
representation by optimizing a heavily penalized objective with � > 1. Such simple penalization
has been shown to be capable of obtaining models with a high degree of disentanglement in image
datasets. However, it is not made explicit why penalizing KL(q(z|x)||p(z)) with a factorial prior can
lead to learning latent variables that exhibit disentangled transformations for all data samples.

InfoGAN The InfoGAN [6] is a variant of the generative adversarial network (GAN) [11] that
encourages an interpretable latent representation by maximizing the mutual information between the
observation and a small subset of latent variables. The approach relies on optimizing a lower bound
of the intractable mutual information.

1.2 Evaluating Disentangled Representations

When the true underlying generative factors are known and we have reason to believe that this
set of factors is disentangled, it is possible to create a supervised evaluation metric. Many have
proposed classifier-based metrics for assessing the quality of disentanglement [7, 8, 12, 13, 14, 15].
We focus on discussing the metrics proposed in [7] and [8], as they are relatively simple in design
and generalizable.

The Higgins’ metric [7] is defined as the accuracy that a low VC-dimension linear classifier can
achieve at identifying a fixed ground truth factor. Specifically, for a set of ground truth factors
{vk}K

k=1, each training data point is an aggregation over L samples: 1
L

PL
l=1 |z(1)

l � z
(2)
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InfoGAN The InfoGAN [6] is a variant of the generative adversarial network (GAN) [11] that
encourages an interpretable latent representation by maximizing the mutual information between the
observation and a small subset of latent variables. The approach relies on optimizing a lower bound
of the intractable mutual information.
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When the true underlying generative factors are known and we have reason to believe that this
set of factors is disentangled, it is possible to create a supervised evaluation metric. Many have
proposed classifier-based metrics for assessing the quality of disentanglement [7, 8, 12, 13, 14, 15].
We focus on discussing the metrics proposed in [7] and [8], as they are relatively simple in design
and generalizable.

The Higgins’ metric [7] is defined as the accuracy that a low VC-dimension linear classifier can
achieve at identifying a fixed ground truth factor. Specifically, for a set of ground truth factors
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Chen et al., 2018, “Isolating sources of disentanglement in variational autoencoders”
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CSC413 Teaser: Image-to-Image Translation

Due to convenient autodiff frameworks, we can combine multiple
neural nets together into fancy architectures. Here’s the CycleGAN.

Zhu et al., 2017, “Unpaired image-to-image translation using cycle-consistent adversarial networks”
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CSC413 Teaser: Image-to-Image Translation

Style transfer problem: change the style of an image while preserving
the content.

Data: Two unrelated collections of images, one for each style
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CSC412 Teaser: Probabilistic Graphical Models

In this course, we just scratched the surface of probabilistic
models.

Probabilistic graphical models (PGMs) let you encode complex
probabilistic relationships between lots of variables.

Ghahramani, 2015, “Probabilistic ML and artificial intelligence”
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CSC412 Teaser: PGM Inference

We derived inference methods by inspection for some easy special
cases (e.g. GDA, näıve Bayes)

In CSC412, you’ll learn much more general and powerful inference
techniques that expand the range of models you can build

Exact inference using dynamic programming, for certain types of
graph structures (e.g. chains)
Markov chain Monte Carlo

forms the basis of a powerful probabilistic modeling tool called Stan

Variational inference: try to approximate a complex, intractable,
high-dimensional distribution using a tractable one

Try to minimze the KL divergence
Based on the same math from our EM lecture
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CSC412 Teaser: Beyond Clustering

We’ve seen unsupervised learning algorithms based on two ways of
organizing your data

low-dimensional spaces (dimensionality reduction)
discrete categories (clustering)

Other ways to organize/model data

hierarchies
dynamical systems
sets of attributes
topic models (each document is a mixture of topics)

Motifs can be combined in all sorts of different ways
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CSC412 Teaser: Beyond Clustering

Latent Dirichlet Allocation (LDA)

LATENT DIRICHLET ALLOCATION

TheWilliam Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.

1009

Blei et al., 2003, “Latent Dirichlet Allocation”
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CSC412 Teaser: Automatic Statistician

Automatic search over Gaussian process kernel structures

Duvenaud et al., 2013, “Structure discovery in nonparametric regression through compositional kernel
search”

Image: Ghahramani, 2015, “Probabilistic ML and artificial intelligence”
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Resources

Continuing with machine learning

Courses

csc413/2516, “Neural Networks and Deep Learning”
csc412/2506, “Probabilistic Learning and Reasoning”
Various topics courses (varies from year to year)

Videos from top ML conferences (NIPS/NeurIPS, ICML, ICLR,
UAI)

Tutorials and keynote talks are aimed at people with your level of
background (know the basics, but not experts in a subfield)

Try to reproduce results from papers

If they’ve released code, you can use that as a guide if you get stuck

Lots of excellent free resources avaiable online!
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