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Overview

o Last week, we started our tour of probabilistic models, and
introduced the fundamental concepts in the discrete setting.
e Continuous random variables:

» Manipulating Gaussians to tackle interesting problems requires lots
of linear algebra, so we’ll begin with a linear algebra review.

» Additional reference: See also Chapter 4 of Mathematics for
Machine Learning, by Desienroth et al.
https://mml-book.github.io/

o Regression: Linear regression as maximum likelihood estimation
under a Gaussian distribution.

o Generative classifier for continuous data: Gaussian
discriminant analysis, a Bayes classifier for continuous variables.

o Next week’s lecture (PCA) draws heavily on today’s linear algebra
content, so be sure to review it offline.
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@ Linear Algebra Review
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Eigenvectors and Eigenvalues

o Let B be a square matrix.

An eigenvector of B is a vector v such that

for a scalar A, which is called an eigenvalue.

e A matrix of size D x D has at most D distinct eigenvalues,
but may have fewer.

We will focus on symmetric matrices.
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Spectral Theorem

For a symmetric D x D matrix,

o All of the eigenvalues are real-valued.

@ There is a full set of D linearly independent eigenvectors.
These eigenvectors form a basis for RP.

o The eigenvectors can be chosen to be real-valued.

@ The eigenvectors can be chosen to be orthonormal.

perpen diculon- unit vectors.
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Spectral Decomposition

Factorize a symmetric matrix A with the Spectral Decomposition:
A=QAQT

where
e Q is an orthogonal matrix
» The columns q; of Q are eigenvectors.
e A is a diagonal matrix.

» The diagonal entries \; are the corresponding eigenvalues.

Check that this is reasonable:

Ag=N%; D AR=QA=A=0A""

A
A(%’ 9;.“" gn> = (Q-, 'Zz 2N) (_9}\2,8;\“
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Spectral Decomposition

@ Because A has a full set of orthonormal eigenvectors {q;},
we can use these as an orthonormal basis for RP.

@ A vector x can be written in an alternate coordinate system:
X =121q1 + -+ Zpdp

e Converting between the two coordinate systems:
x=Q'x x = Qx

@ In the alternate coordinate system,
A acts by re-scaling the individual coordinates:

Ax =21Aq +---+TpAdgp
= MZ1q1 + -+ ApZTpap

Intro ML (UofT) CSC311-Lec8 7/ 53



[0



PSD Matrices

Symmetric matrices represent quadratic forms, f(v) = v’ Av.
o If vIAv > 0 for all v # 0, A is positive definite, denoted A > 0.
o If v Av >0 for all v, A is positive semi-definite, denoted A > 0.
o If vIAv < 0 for all v # 0, A is negative definite, denoted A < 0.

If v Av can be positive or negative then A is indefinite.

b 7z - )\ f
oy | | Y 3

positive definite non-strictly PSD

Nl = A TS

negative definite indefinite
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PSD Matrices

o Exercise: Show from the definition that nonnegative linear
combinations of PSD matrices are PSD.

Assume A 7s PSD, vTA; v 20 forall v, (u, ... @y 20
VT(IZQ'L‘A-Z>V =2 a;(VTAi v) 20

o Related: If A is a random matrix which is always PSD, then

E[A] is PSD. (The discrete case is a special case of the above.)
o Exercise: Show that for any matrix B, the matrix BB is PSD.

VvTBBTY = vTT)T(®BTv) = (B7v) (B"v)
= |BTw > 20

e Corollary: For a random vector x, the covariance matrix
Cov(x) = E[(x — p)(x — p) "] is a PSD matrix. (Special case of
above, since x — p is a column vector, i.e. a D x 1 matrix.)
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PSD Matrices

e Claim: A is positive definite iff all of its eigenvalues are positive.
It is PSD iff all of its eigenvalues are nonnegative.

» Expressing v in terms of the eigenbasis, v = Q v,

vTszvTQAQTv) change of
TAV &

(Viva-~ W) )\'7\;.. \‘,/,' =V . Coordinate system.
W) T2

» This is positive (nonnegative) for all v iff all the A; are positive
(nonnegative).
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PSD Matrices

o If A is positive definite, then the contours of the quadratic form
are elliptical.

e If A is both diagonal and positive definite (i.e. its diagonal entries
are positive), then the ellipses are axis-aligned.

(5 9
f(v)=v'Av

= E CLl"UZ-2

>
I
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PSD Matrices

e For general positive definite A = QAQ", the contours of the
quadratic form are elliptical, and the principal axes of the ellipses
are aligned with the eigenvectors.

A= (43

fv)=v'QAQ'v

=vIAV

=> At}

o In this example, A1 > Ao.

o All symmetric matrices are diagonal if you choose the right
coordinate system.
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Matrix Powers

e Applying the Spectral Decomposition, we can square a symmetric

matrix:
A’=(QAQ')"=QAQ'QAQ’ = QA’Q]
71
o We can take the k-th power of the matrix:
AF = QAFQT.
o If A is invertible, we calculate its inverse:

—IZ(QT) lA 1Q 1 QA 1QT

o If A is PSD, then we can easily define the matrix square root:

A1/2 —_ QA1/2QT.

o Observe that A2 is PSD and (A'/?)? = A.
This is the unique PSD matrix with this property.
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Determinant Properties

Claim: The determinant of a symmetric matrix equals
the product of its elgenvalues @

Al =1QAQT| = IQHAHQT! |A\ |
Sy

Corollary: the determinant of a positive semi-definite matrix is
non-negative, and the determinant of a positive definite matrix is
positive.
Basic properties of a determinant:
[e |BC| =B -[C]
2 e |B| =0 iff B is singular
2 o |B7!| = |B|7! if B is invertible (nonsingular)
4o [BT| =B
C o If Q is orthogonal, then |Q| = £1
(i.e. orthogonal transformations preserve volume)
[ e If A is diagonal with entries {\;}, then |A| = [, \i.
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© Multivariate Gaussian Distribution
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Univariate Gaussian distribution

Y
Ni(a: 1, 02) (“)>

1
= ——exp| —
V2o P < 202

o Parameterized by mean y and variance o2.

e Why is Gaussian so popular?

» Sums of lots of independent random variables are approximately
Gaussian (Central Limit Theorem).

» Machine learning uses Gaussians a lot because they make the
calculations easy.
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Multivariate Mean and Covariance

Mean
K1
p=Ex]=|:
i
Covariance
o7 o
2
012 0y
% = Cov(x) = El(x — p)(x — )] =
how- differert dimensions S
. Opl OD2
nderact .

01D
02D

2
Op

(¢ and X)) uniquely define a multivariate Gaussian (or Normal)

distribution, denoted N (u, X) or N (x; u, X).
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PDF of Gaussian Distribution

PDF of the univariate Gaussian distribution (d = 1, ¥ = o?):

N (5 p,07) = \/21—7“7 exp (—@2_05)2)

PDF of the multivariate Gaussian distribution:

N ) = s ow |5 w57 )
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Univariate Shift + Scale

@ All univariate Gaussian distributions are shaped like
the standard normal distribution.

o Obtain N (u, 0?) by starting with A(0, 1), shifting by u, and
stretching by o = Vo2.
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Multivariate Shift + Scale

e Any multivariate Gaussian distribution is a shifted and “scaled”
version of the standard multivariate normal distribution.

» The standard multivariate normal has g =0 and X =1

e Multivariate analog of the shift is simple: it’s a vector u
e But what about the scale?

» In the univariate case, the scale factor was the square root of the
variance: o = Vo2

» But in the multivariate case, the covariance X is a matrix!
Does X2 exist, and can we scale by it?
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Multivariate Shift + Scale

e Start with a standard Gaussian x ~ N (0,I). So E[x] = 0 and
Cov(x) =1L A SCA]I’I'I@~
What happens if we apply the map x = Sx + b?

o shhahhg,.

By linearity of expecation,
+0
E[x] = SE[x] + b = b.

By the linear transformation rule for covariance,

Cov(x) = SCov(x)S" =8SS".
A\N
X is also Gaussian distributed.
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Multivariate Shift + Scale

E[Sx +b] = b S=Zy7'
Cov(Sx +b) =SS". ; __/u

e To obtain N (p, X), we start with N (0,1),
shift by u, and scale by the matrix square root »1/2,
» Recall: /2 = QA'/2Q.
» For each eigenvector q; with eigenvalue \;, we stretch by a factor of
Vi in the direction q;.
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Bivariate Gaussian
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Figure: Probability density function
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Bivariate Gaussian
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Bivariate Gaussian

Probability Density

Figure: Probability density function
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@ Gaussian Maximum Likelihood
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Maximum Likelihood for Multivariate Gaussian

Model the distribution of highest and lowest temperatures in Toronto
in March, and recorded the following observations

(-2.5,-7.5)  (-9.9-14.9) (-12.1,-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they’re drawn from a Gaussian distribution MV (p, X).
We want to estimate p and ¥ using data.
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Maximum Likelihood for Univariate Gaussian

a'u g i=1
1 N
i = o
i=
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Maximum Likelihood for Univariate Gaussian

N
o 0 1 1 :
— = —Zlog2m —logo — — (xW — p)?
9o~ 0o g glog2m —logo = 55 (" = p)
N
10 0 o1,
— - _ 2 (<@ )2
> 250 log 27 e logo — 8020(X )
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Maximum Likelihood for Multivariate Gaussian

Log-likelihood function:

(S) =1 . [1 L stk
7)) ogH( TSz O S (< =) 2T — )

_ ibg [(QWW;EW exp {—;(X(i) — )T (x® — M)H

=1

N
=3 —log(2m) 2 —log ||V — 2 (x) — ) TE 1 (x) - )
N 2

constant
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Gaussian Maximum Likelihood
Maximize the log-likelihood by setting the derivative to zero:
< Ts—17,(1) _
b))
Z i 2 — )= (%Y — )

=— Z »1x® —p)y=0 using identity Vyx' Ax = 2Ax

Solving for u, we get

L~
:N;X

The best estimate for p is the sample mean of the observed values,
or the empirical mean.
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Maximum Likelihood for Multivariate Gaussians

We can do a similar calculation for the covariance matrix X.

o _

where 1 is an N-dimensional vector of 1s.

The best estimate for X is the empirical covariance.
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@ Revisiting Linear Regression
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Recap: Linear Regression

o Given a training set of inputs and targets {(x®,+®)}N

e Linear model:

y=w'x

Squared error loss:
1
L(y1) = 56— )

Ly regularization:
A
R(w) = Slwl?

o Closed-form solution:
w=(X"X+A)1Xt
e Gradient descent update rule:

w— (1—aN)w—aX(y —t)
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Linear Regression as Maximum Likelihood

o Let’s give linear regression a probabilistic interpretation.

@ Assume a Gaussian noise model.
tlx ~N(w'x, o?)

e Linear regression is just maximum likelihood under this model:

—Zlogpt( | x; w,b) Zlog/\f w'x,0°)
i=1

1 (t® —wTx)?
e (—202 )
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Regularization as MAP Inference

View an Lj regularizer as MAP inference with a Gaussian prior.
Recall MAP inference:

arg max log p(w | D) = arg max [log p(w) + log p(D | w)]

We just derived the likelihood term log p(D | w):

N
logp(D|w) = 72]\}02 Z(t(i) —w ' x)%+ const
i=1

@ Assume a Gaussian prior, w ~ A (m, S):

logp(w) = log N'(w; m, S)

= log {W exp (—%(W —m) S H(w— m))]

=—1(w-— m)'S™'(w — m) + const

@ Commonly, m = 0 and S = nl, so

1
log p(w) = —%HWHQ + const.

This is just Lo regularization!

Intro ML (UofT) CSC311-Lec8 37 / 54



@ Gaussian Discriminant Analysis
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Generative vs Discriminative (Recap)

Two approaches to classification:

@ Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

» Model p(t|x) directly (logistic regression models)

» Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

» Tries to solve: How do I separate the classes?

o Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

» Model p(x]t)
» Apply Bayes Rule to derive p(t|x).

» Tries to solve: What does each class "look” like?
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Classification: Diabetes Example

@ Gaussian discriminant analysis (GDA) is a Bayes classifier for
continuous-valued inputs.

@ Observation per patient: White blood cell count & glucose value.

@ p(x |t = k) for each class is shaped like an ellipse
— we model each class as a multivariate Gaussian
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Gaussian Discriminant Analysis

Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

@ Multivariate Gaussian distribution:

1 _
exp | —-(x — H’k)Tzk I(X — Hy)

plx|t =) = :

1
(27)D/2| 2 |1/2

where |Xj| denotes the determinant of the matrix.

Each class k has associated mean vector p;,, and covariance matrix 3
o How many parameters?

» Each p, has D parameters, for DK total.
» Each X has O(D?) parameters, for O(D?K) — could be hard to
estimate (more on that later).
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GDA: Learning 45: prpb ) -ﬁ-rm examp/e 4 be in C/QSS i

@ Learn the parameters for each class using maximum likelihood
@ For simplicity, assume binary classification k € -J, N 2 ?j
p(t]¢) =o' (1 — )"

@ You can compute the ML estimates in closed form (¢ and p,, are easy,

3, is tricky)
. froctim of examples
¢ = NZ” n class 1 .

o = T X0 empirical mean.

val’r
R k empmca/ covartance.
B o )

i=1"Tk i=1

D~ 19— ches example j belory in clessk?
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2 closses. k€{1,2Y.  binary classification.
¢ i the probability or an example 1o ~belong in cless 1.

M is the mean Vvector- for class K.
ZK js 8 Co-variance matnx for class k .

7”:3)— 1[+P=k] ~ oloes 7 example be/ong n closs k 7

¢ = —‘Z f,m fracton of examples in class 4.

1-—!

N

k= N
/M ZI.-;{ ,7<[1

emp;‘n‘ca/ mean Tor examp/es N class K.

emp/“rl“ca/ co-vartance 1o examples in class K .

Ms

K



GDA Decision Boundary

@ Recall: for Bayes classifiers, we compute the decision boundary with
Bayes’ Rule:

p(t)p(x|t

i) = PP

>_u p(') p(x[ ')

@ Plug in the Gaussian p(x|t):

logp(tklx) = logp(x|ty) +logp(ts) — logp(x)
= —g log(27) — %log |Zk| — %(x — ) T2 (x - )
+log p(tx) —log p(x)
@ Decision boundary:

(x = pg) " (x = ) = (= ) "2 (x = ) + Const

@ What’s the shape of the boundary?

» We have a quadratic function in x, so the decision boundary is a
conic section!
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GDA Decision Boundary

I l
i

I

p(xIC,)

discriminant:
P(t;|x)=0.5

posterior fort,
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GDA Decision Boundary

e Our equation for the decision boundary:
(x— ) T2 (x = ) = (x — ) "2 (xx — ) + Const
e Expand the product and factor out constants (w.r.t. x):
TZ x—2p, X x—xTE x—2u 3, 'x + Const

e What if all classes share the same covariance X7
» We get a linear decision boundary!

—2u) X7 x = —2u/) B x + Const
(g — ) "= 'x = Const
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GDA Decision Boundary: Shared Covariances

variances may be
O different
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GDA vs Logistic Regression

@ Binary classification: If you examine p(t = 1|x) under GDA and assume
3 = Xy = X, you will find that it looks like this:

1
- 1+exp(—wix —b)

P(t | X, d)auoa M1 2)

where (w, b) are chosen based on (¢, g, f1, ).

@ Same model as logistic regression!
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GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?

@ GDA makes a stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian

» If this is true, GDA is asymptotically efficient (best model in limit
of large N)
» If it’s not true, the quality of the predictions might suffer.

@ Many class-conditional distributions lead to logistic classifier.

» When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

@ GDA can handle easily missing features (how do you do that with LR?)
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Gaussian Naive Bayes

@ What if x is high-dimensional?

» The X; have O(D?K) parameters, which can be a problem if D is
large.

» We already saw we can save some a factor of K by using a shared
covariance for the classes.

» Any other idea you can think of?

@ Naive Bayes: Assumes features independent given the class

p(x|t=k) Hpmj|t—

@ Assuming likelihoods are Gaussian, how many parameters required for
Naive Bayes classifier?

» This is equivalent to assuming the x; are uncorrelated, i.e. 3 is
diagonal.
» Hence, only D parameters for X!
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Gaussian Naive Bayes

@ Gaussian Naive Bayes classifier assumes that the likelihoods are
Gaussian:
1 —(z5 — pjx)?
exp (z; 2:uj]€)
V2mo 205,

(this is just a 1-dim Gaussian, one for each input dimension)

pla |t =k) =

@ Model the same as GDA with diagonal covariance matrix

@ Maximum likelihood estimate of parameters

N % [
P Zizlﬁi)xg)
J - N i
Dim1 7’1(;)
N o
o X @ — )
" Zf\; Tl(cl)
r = 1D =g
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Decision Boundary: Isotropic

@ We can go even further and assume the covariances are spherical, or
isotropic.

@ In this case: ¥ = oI (just need one parameter!)

@ Going back to the class posterior for GDA:
logp(tilx) = logp(x|tx) +logp(tr) —log p(x)
D 1 _ 1 _
= 73 log(2m) — 5 log |3, 1| - i(x - l"k)—rzk 1(X — ) +
+log p(tx) — log p(x)

@ Suppose for simplicity that p(t) is uniform. Plugging in ¥ = 02T and
simplifying a bit,

1
202

log p(ti | x) — log p(t¢ | x) [Gc = p) T (¢ = paa) = (x = 1) (¢ = )]
- _ﬁ [lIx = pil® = llx — pell?]
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Decision Boundary: Isotropic

@ The decision boundary bisects the class means!
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Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)

Naive Bayes (acc 0.780) Logistic regression (acc 0.722)
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Generative models - Recap

e GDA has quadratic (conic) decision boundary.
e With shared covariance, GDA is similar to logistic regression.

Generative models:

» Flexible models, easy to add/remove class.
» Handle missing data naturally.

» More “natural” way to think about things, but usually doesn’t work
as well.

Tries to solve a hard problem (model p(x)) in order to solve a easy
problem (model p(t|x)).

Next up: Unsupervised learning with PCA!
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