CSC 311: Introduction to Machine Learning
 Lecture 7 - Probabilistic Models

Rahul G. Krishnan Alice Gao

University of Toronto, Fall 2022

Outline

(1) Probabilistic Modeling of Data
(2) Discriminative and Generative Classifiers
(3) Naïve Bayes Models

4 Bayesian Parameter Estimation

Today

- So far in the course we have adopted a modular perspective, in which the model, loss function, optimizer, and regularizer are specified separately.
- Today we begin putting together a probabilistic interpretation of our model and loss, and introduce the concept of maximum likelihood estimation.
(1) Probabilistic Modeling of Data

(2) Discriminative and Generative Classifiers

3 Naïve Bayes Models

4 Bayesian Parameter Estimation

Example: A Biased Coin

You flip a coin $N=100$ times and get outcomes $\left\{x_{1}, \ldots, x_{N}\right\}$ where $x_{i} \in\{0,1\}$ and $x_{i}=1$ is interpreted as heads H.

Suppose you had $N_{H}=55$ heads and $N_{T}=45$ tails.

We want to create a model to predict the outcome of the next coin flip. That is, we want to answer this question:

What is the probability it will come up heads if we flip again?

Model

The coin is likely biased. Let's assume that one coin flip outcome x is a Bernoulli random variable for a currently unknown parameter $\theta \in[0,1]$.

$$
\begin{gathered}
p(x=1 \mid \theta)=\theta \text { and } p(x=0 \mid \theta)=1-\theta \\
\text { or more succinctly } p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}
\end{gathered}
$$

Assume that $\left\{x_{1}, \ldots, x_{N}\right\}$ are independent and identically distributed (i.i.d.). Thus, the joint probability of the outcome $\left\{x_{1}, \ldots, x_{N}\right\}$ is

$$
p\left(x_{1}, \ldots, x_{N} \mid \theta\right)=\prod_{i=1}^{N} \theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

Loss Function

The likelihood function is the probability of observing the data as a function of the parameters θ :

$$
L(\theta)=\prod_{i=1}^{N} \theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

We usually work with log-likelihoods:

$$
\ell(\theta)=\sum_{i=1}^{N} x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)
$$

Maximum Likelihood Estimation

How can we choose θ ? Good values of θ should assign high probability to the observed data.
The maximum likelihood criterion says that we should pick the parameters that maximize the likelihood.

$$
\hat{\theta}_{\mathrm{ML}}=\underset{\theta \in[0,1]}{\arg \max } \ell(\theta)
$$

We can find the optimal solution by setting derivatives to zero.

$$
\frac{\mathrm{d} \ell}{\mathrm{~d} \theta}=\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\sum_{i=1}^{N} x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)\right)=\frac{N_{H}}{\theta}-\frac{N_{T}}{1-\theta}
$$

where $N_{H}=\sum_{i} x_{i}$ and $N_{T}=N-\sum_{i} x_{i}$.
Setting this to zero gives the maximum likelihood estimate:

$$
\hat{\theta}_{\mathrm{ML}}=\frac{N_{H}}{N_{H}+N_{T}}
$$

Maximum Likelihood Estimation

- define a model that assigns a probability (or has a probability density at) to a dataset
- maximize the likelihood (or minimize the neg. log-likelihood).

(1) Probabilistic Modeling of Data

(2) Discriminative and Generative Classifiers

3 Naïve Bayes Models

4 Bayesian Parameter Estimation

Spam Classification

For a large company that runs an email service, one of the important predictive problems is the automated detection of spam email.


```
Dear Karim,
I think we should postpone the board meeting to be held
Regards,
Anna
```


Discriminative Classifiers

Discriminative classifiers try to learn mappings directly from the space of inputs \mathcal{X} to class labels $\{0,1,2, \ldots, K\}$

Features	Class probability
$x \longrightarrow p(y \mid x)$	

postpone, board, meeting,
Thanksgiving
mining, Bitcoin, contact, opportunity

Spam

Generative Classifiers

Generative classifiers try to build a model of "what data for a class looks like", i.e. model $p(\mathbf{x}, y)$. If we know $p(y)$ we can easily compute $p(\mathbf{x} \mid y)$.
Classification via Bayes rule (thus also called Bayes classifiers)

Probability of feature given label
postpone, board, meeting, Thanksgiving

Not spam

Class label

Spam

Generative vs Discriminative

- Discriminative approach: estimate parameters of decision boundary/class separator directly from labeled examples.
- Model $p(t \mid \mathbf{x})$ directly (logistic regression models)
- Learn mappings from inputs to classes (linear/logistic regression, decision trees etc)
- Tries to solve: How do I separate the classes?
- Generative approach: model the distribution of inputs characteristic of the class (Bayes classifier).
- Model $p(\mathbf{x} \mid t)$
- Apply Bayes Rule to derive $p(t \mid \mathbf{x})$.
- Tries to solve: What does each class "look" like?
- Key difference: is there a distributional assumption over inputs?

(1) Probabilistic Modeling of Data

(2) Discriminative and Generative Classifiers

(3) Naïve Bayes Models

4 Bayesian Parameter Estimation

Example: Spam Detection

- Classify email into spam $(c=1)$ or non-spam $(c=0)$.
- Binary features $\mathbf{x}=\left[x_{1}, \ldots, x_{D}\right], x_{i} \in\{0,1\}$ saying whether each of D words appears in the e-mail.

Example email: "You are one of the very few who have been selected as a winner for the free $\$ 1000$ Gift Card."

Feature vector for this email:

- "card": 1
- ...
- "winners": 1
- "winter": 0
- ...
- "you": 1

Bayesian Classifier

Given features $\mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{D}\right]^{T}$
want to compute class probabilities using Bayes Rule:

$$
\underbrace{p(c \mid \mathbf{x})}=\frac{\overbrace{p(\mathbf{x} \mid c)}^{\text {Pr. feature given class }} p(c)}{p(\mathbf{x})}
$$

Pr. class given feature
In words,

$$
\text { Posterior for class }=\frac{\text { Pr. of feature given class } \times \text { Prior for class }}{\text { Pr. of feature }}
$$

To compute $p(c \mid \mathbf{x})$ we need: $p(\mathbf{x} \mid c)$ and $p(c)$.

Motivation for Compact Representation

- Two classes: $c \in\{0,1\}$.
- Binary features $\mathbf{x}=\left[x_{1}, \ldots, x_{D}\right], x_{i} \in\{0,1\}$
- Define a joint distribution $p\left(c, x_{1}, \ldots, x_{D}\right)$. How many probabilities do we need to specify this joint dist.?
- Let's impose structure on the distribution so that the representation is compact and allows for efficient learning and inference

Naïve Bayes Independence Assumption

Naïve assumption:
the features x_{i} are conditionally independent given the class c.

- Allows us to decompose the joint distribution:

$$
p\left(c, x_{1}, \ldots, x_{D}\right)=p(c) p\left(x_{1} \mid c\right) \cdots p\left(x_{D} \mid c\right)
$$

Compact representation of the joint distribution

- Prior probability of class: $p(c=1)=\pi$ (e.g. prob of spam)
- Conditional probability of feature given class: $p\left(x_{j}=1 \mid c\right)=\theta_{j c}$ (e.g. prob of word appearing in spam)

Bayesian Network for a Naive Bayes Model

- Which probabilities do we need to specify this dist.?
- How many probabilities do we need to specify this dist.?

Decomposing the Log-Likelihood

Decompose the log-likelihood into independent terms.
Optimize each term independently.

$$
\begin{aligned}
& \ell(\boldsymbol{\theta})=\sum_{i=1}^{N} \log p\left(c^{(i)}, \mathbf{x}^{(i)}\right)=\sum_{i=1}^{N} \log \left\{p\left(\mathbf{x}^{(i)} \mid c^{(i)}\right) p\left(c^{(i)}\right)\right\} \\
&=\sum_{i=1}^{N} \log \left\{p\left(c^{(i)}\right) \prod_{j=1}^{D} p\left(x_{j}^{(i)} \mid c^{(i)}\right)\right\} \\
&=\sum_{i=1}^{N}\left[\log p\left(c^{(i)}\right)+\sum_{j=1}^{D} \log p\left(x_{j}^{(i)} \mid c^{(i)}\right)\right] \\
&=\underbrace{\sum_{i=1}^{N} \log p\left(c^{(i)}\right)}_{\begin{array}{l}
\text { Log-likelihood } \\
\text { of labels }
\end{array}}+\sum_{j=1}^{\sum_{i=1}^{N} \log p\left(x_{j}^{(i)} \mid c^{(i)}\right)} \\
& \begin{array}{c}
\text { Log-likelihood } \\
\text { for feature } x_{j}
\end{array}
\end{aligned}
$$

Learning the Prior over Class

- To learn the prior, we maximize $\sum_{i=1}^{N} \log p\left(c^{(i)}\right)$
- Define $\pi=p\left(c^{(i)}=1\right)$
- Pr. i-th email: $p\left(c^{(i)}\right)=\pi^{c^{(i)}}(1-\pi)^{1-c^{(i)}}$.
- Log-likelihood of the dataset:

$$
\sum_{i=1}^{N} \log p\left(c^{(i)}\right)=\sum_{i=1}^{N} c^{(i)} \log \pi+\sum_{i=1}^{N}\left(1-c^{(i)}\right) \log (1-\pi)
$$

- Maximum likelihood estimate of the prior π is the fraction of spams in dataset.

$$
\hat{\pi}=\frac{\sum_{i} \mathbb{I}\left[c^{(i)}=1\right]}{N}=\frac{\# \text { spams in dataset }}{\text { total \# samples }}
$$

Learning Pr. Feature Given Class

- To learn $p\left(x_{j}^{(i)}=1 \mid c\right)$, we maximize $\sum_{i=1}^{N} \log p\left(x_{j}^{(i)} \mid c^{(i)}\right)$
- Define $\theta_{j c}=p\left(x_{j}^{(i)}=1 \mid c\right)$.
- Pr. of i-th email: $p\left(x_{j}^{(i)} \mid c\right)=\theta_{j c}^{x_{j}^{(i)}}\left(1-\theta_{j c}\right)^{1-x_{j}^{(i)}}$.
- Log-likelihood of the dataset:

$$
\begin{gathered}
\sum_{i=1}^{N} \log p\left(x_{j}^{(i)} \mid c^{(i)}\right)=\sum_{i=1}^{N} c^{(i)}\left\{x_{j}^{(i)} \log \theta_{j 1}+\left(1-x_{j}^{(i)}\right) \log \left(1-\theta_{j 1}\right)\right\} \\
+\sum_{i=1}^{N}\left(1-c^{(i)}\right)\left\{x_{j}^{(i)} \log \theta_{j 0}+\left(1-x_{j}^{(i)}\right) \log \left(1-\theta_{j 0}\right)\right\}
\end{gathered}
$$

- Maximum likelihood estimate of $\theta_{j c}$
is the fraction of word j occurrances in each class in the dataset.
$\hat{\theta}_{j c}=\frac{\sum_{i} \mathbb{I}\left[x_{j}^{(i)}=1 \& c^{(i)}=c\right]}{\sum_{i} \mathbb{I}\left[c^{(i)}=c\right]} \stackrel{\text { for }}{=} \frac{\text { c=1 }}{=} \quad \frac{\text { word } j \text { appears in class } c}{\# \text { class } c \text { in dataset }}$

Predicting the Most Likely Class

- We predict the class by performing inference in the model.
- Apply Bayes' Rule:

$$
p(c \mid \mathbf{x})=\frac{p(c) p(\mathbf{x} \mid c)}{\sum_{c^{\prime}} p\left(c^{\prime}\right) p\left(\mathbf{x} \mid c^{\prime}\right)}=\frac{p(c) \prod_{j=1}^{D} p\left(x_{j} \mid c\right)}{\sum_{c^{\prime}} p\left(c^{\prime}\right) \prod_{j=1}^{D} p\left(x_{j} \mid c^{\prime}\right)}
$$

- For input \mathbf{x}, predict c with the largest $p(c) \prod_{j=1}^{D} p\left(x_{j} \mid c\right)$ (the most likely class).

$$
p(c \mid \mathbf{x}) \propto p(c) \prod_{j=1}^{D} p\left(x_{j} \mid c\right)
$$

Naïve Bayes Properties

- An amazingly cheap learning algorithm!
- Training time: estimate parameters using maximum likelihood
- Compute co-occurrence counts of each feature with the labels.
- Requires only one pass through the data!
- Test time: apply Bayes' Rule
- Cheap because of the model structure. (For more general models, Bayesian inference can be very expensive and/or complicated.)
- Analysis easily extends to prob. distributions other than Bernoulli.
- Less accurate in practice compared to discriminative models due to its "naïve" independence assumption.

(1) Probabilistic Modeling of Data

(2) Discriminative and Generative Classifiers

3 Naïve Bayes Models

44 Bayesian Parameter Estimation

Data Sparsity

Maximum likelihood can overfit if there is too little data.
Example: what if you flip the coin twice and get H both times?

$$
\theta_{\mathrm{ML}}=\frac{N_{H}}{N_{H}+N_{T}}=\frac{2}{2+0}=1
$$

The model assigned probability 0 to T .
This problem is known as data sparsity.

Defining a Bayesian Model

We need to specify two distributions:

- The prior distribution $p(\boldsymbol{\theta})$ encodes our beliefs about the parameters before we observe the data.
- The likelihood $p(\mathcal{D} \mid \boldsymbol{\theta})$ encodes the likelihood of observing the data given the parameters.

The Posterior Distribution

- When we update our beliefs based on the observations, we compute the posterior distribution using Bayes' Rule:

$$
p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta})}{\int p\left(\boldsymbol{\theta}^{\prime}\right) p\left(\mathcal{D} \mid \boldsymbol{\theta}^{\prime}\right) \mathrm{d} \boldsymbol{\theta}^{\prime}}
$$

- Rarely ever compute the denominator explicitly.
- In general, computing the denominator is intractable.

Revisiting Coin Flip Example

We already know the likelihood:

$$
L(\theta)=p(\mathcal{D} \mid \theta)=\theta^{N_{H}}(1-\theta)^{N_{T}}
$$

It remains to specify the prior $p(\theta)$.

- An uninformative prior, which assumes as little as possible. A reasonable choice is the uniform prior.
- But, experience tells us 0.5 is more likely than 0.99 . One particularly useful prior is the beta distribution:

$$
p(\theta ; a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}
$$

- We can ignore the normalization constant.

$$
p(\theta ; a, b) \propto \theta^{a-1}(1-\theta)^{b-1}
$$

Beta Distribution Properties

- The expectation is $\mathbb{E}[\theta]=a /(a+b)$.
- The distribution gets more peaked when a and b are large.
- When $a=b=1$, it becomes the uniform distribution.

Posterior for the Coin Flip Example

- Computing the posterior distribution:

$$
\begin{aligned}
p(\boldsymbol{\theta} \mid \mathcal{D}) & \propto p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta}) \\
& \propto\left[\theta^{a-1}(1-\theta)^{b-1}\right]\left[\theta^{N_{H}}(1-\theta)^{N_{T}}\right] \\
& =\theta^{a-1+N_{H}}(1-\theta)^{b-1+N_{T}} .
\end{aligned}
$$

A beta distribution with parameters $N_{H}+a$ and $N_{T}+b$.

- The posterior expectation of θ is:

$$
\mathbb{E}[\theta \mid \mathcal{D}]=\frac{N_{H}+a}{N_{H}+N_{T}+a+b}
$$

- Think of a and b as pseudo-counts. $\operatorname{beta}(a, b)=\operatorname{beta}(1,1)+a-1$ heads $+b-1$ tails.
- The prior and likelihood have the same functional form (conjugate priors).

Bayesian Inference for the Coin Flip Example

When you have enough observations, the data overwhelm the prior.

> Small data setting
> $N_{H}=2, N_{T}=0$

Large data setting

$$
N_{H}=55, N_{T}=45
$$

Maximum A-Posteriori (MAP) Estimation

Finds the most likely parameters under the posterior (i.e. the mode).

Maximum A-Posteriori Estimation

Converts the Bayesian parameter estimation problem into a maximization problem

$$
\begin{aligned}
\hat{\boldsymbol{\theta}}_{\mathrm{MAP}} & =\arg \max _{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathcal{D}) \\
& =\arg \max _{\boldsymbol{\theta}} p(\boldsymbol{\theta}) p(\mathcal{D} \mid \boldsymbol{\theta}) \\
& =\arg \max _{\boldsymbol{\theta}} \log p(\boldsymbol{\theta})+\log p(\mathcal{D} \mid \boldsymbol{\theta})
\end{aligned}
$$

Maximum A-Posteriori Estimation

Joint probability of parameters and data:

$$
\begin{aligned}
\log p(\theta, \mathcal{D}) & =\log p(\theta)+\log p(\mathcal{D} \mid \theta) \\
& =\operatorname{Const}+\left(N_{H}+a-1\right) \log \theta+\left(N_{T}+b-1\right) \log (1-\theta)
\end{aligned}
$$

Maximize by finding a critical point

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p(\theta, \mathcal{D})=\frac{N_{H}+a-1}{\theta}-\frac{N_{T}+b-1}{1-\theta}=0
$$

Solving for θ,

$$
\hat{\theta}_{\mathrm{MAP}}=\frac{N_{H}+a-1}{N_{H}+N_{T}+a+b-2}
$$

Estimate Comparison for Coin Flip Example

Formula
$\hat{\theta}_{\mathrm{ML}} \quad \frac{N_{H}}{N_{H}+N_{T}}$

$$
N_{H}=2, N_{T}=0 \quad N_{H}=55, N_{T}=45
$$

$\hat{\theta}_{\mathrm{ML}}$	$\frac{N_{H}}{N_{H}+N_{T}}$	1	$\frac{55}{100}=0.55$
$\mathbb{E}[\theta \mid \mathcal{D}]$	$\frac{N_{H}+a}{N_{H}+N_{T}+a+b}$	$\frac{4}{6} \approx 0.67$	$\frac{57}{104} \approx 0.548$
$\hat{\theta}_{\text {MAP }}$	$\frac{N_{H}+a-1}{N_{H}+N_{T}+a+b-2}$	$\frac{3}{4}=0.75$	$\frac{56}{102} \approx 0.549$

$\hat{\theta}_{\text {MAP }}$ assigns nonzero probabilities as long as $a, b>1$.

