Outline

1. Introduction
2. Bias-Variance Decomposition
3. Bagging
4. Linear Regression
5. Vectorization
6. Optimization
7. Feature Mappings
8. Regularization
Announcements

- HW1 is due next Monday (10% late penalty for each late day, no credit after 3 days).
- We have arranged TA office hours (on website) for the assignment.
- Go to the earliest possible ones you can attend.
- **Manage your time well!** If you wait till the last TA session, you may have a long wait to ask your question.
Today we will introduce ensembling methods that combine multiple models and can perform better than the individual members.

- We’ve seen many individual models (KNN, decision trees)

We will see bagging:

- Train models independently on random “resamples” of the training data.

We will introduce linear regression, our first parametric learning algorithm.

- This will exemplify how we’ll think about learning algorithms for the rest of the course.
1 Introduction
2 Bias-Variance Decomposition
3 Bagging
4 Linear Regression
5 Vectorization
6 Optimization
7 Feature Mappings
8 Regularization
Bias/Variance Decomposition

- prediction y at a query x is a random variable (where the randomness comes from the choice of dataset),
- y_\star is the optimal deterministic prediction, and
- t is a random target sampled from the true conditional $p(t|x)$.

$$\mathbb{E}[(y - t)^2] = (y_\star - \mathbb{E}[y])^2 + \text{Var}(y) + \text{Var}(t)$$
Bias/Variance Decomposition

\[\mathbb{E}[(y - t)^2] = (y_* - \mathbb{E}[y])^2 + \text{Var}(y) + \text{Var}(t) \]

Bias/variance decomposes the expected loss into three terms:

- **bias**: how wrong the expected prediction is (corresponds to under-fitting)
- **variance**: the amount of variability in the predictions (corresponds to over-fitting)
- **Bayes error**: the inherent unpredictability of the targets

Often loosely use “bias” for “under-fitting” and “variance” for “over-fitting”.
An overly **simple** model (e.g. KNN with large k) might have

- **high bias**
 (cannot capture the structure in the data)
- **low variance**
 (enough data to get stable estimates)
An overly complex model (e.g. KNN with $k = 1$) might have

- **low bias**
 (learns all the relevant structure)

- **high variance**
 (fits the quirks of the data you happened to sample)
The following graphic summarizes the previous two slides:

- Low Bias
 - Low Variance
 - High Variance
- High Bias
 - Low Variance
 - High Variance

A: Bayes error
1 Introduction
2 Bias-Variance Decomposition
3 Bagging
4 Linear Regression
5 Vectorization
6 Optimization
7 Feature Mappings
8 Regularization
Bagging Motivation

- Sample m independent training sets from p_{sample}.
- Compute the prediction y_i using each training set.
- Compute the average prediction $y = \frac{1}{m} \sum_{i=1}^{m} y_i$.

How does this affect the three terms of the expected loss?

▶ **Bias**: unchanged, since the averaged prediction has the same expectation

$$\mathbb{E}[y] = \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} y_i \right] = \mathbb{E}[y_i]$$

▶ **Variance**: reduced, since we are averaging over independent predictions

$$\text{Var}[y] = \text{Var}\left[\frac{1}{m} \sum_{i=1}^{m} y_i \right] = \frac{1}{m^2} \sum_{i=1}^{m} \text{Var}[y_i] = \frac{1}{m} \text{Var}[y_i].$$

▶ **Bayes error**: unchanged, since we have no control over it
Bagging: The Idea

- In practice, p_{sample} is often expensive to sample from. So training separate models on independently sampled datasets is very wasteful of data!

- Given training set \mathcal{D}, use the empirical distribution $p_{\mathcal{D}}$ as a proxy for p_{sample}. This is called bootstrap aggregation or bagging.

 ▶ Take a dataset \mathcal{D} with n examples.
 ▶ Generate m new datasets (“resamples” or “bootstrap samples”).
 ▶ Each dataset has n examples sampled from \mathcal{D} with replacement.
 ▶ Average the predictions of models trained on the m datasets.

- One of the most important ideas in statistics!

 ▶ Intuition: As $|\mathcal{D}| \to \infty$, we have $p_{\mathcal{D}} \to p_{\text{sample}}$.
Create \(m = 3 \) datasets by sampling from \(D \) with replacement. Each dataset contains \(n = 7 \) examples.
Generate prediction y_i using dataset D_i.
Average the predictions.
Aggregating Predictions for Binary Classification

- Classifier i outputs a prediction y_i
- y_i can be real-valued $y_i \in [0, 1]$ or a binary value $y_i \in \{0, 1\}$
- Average the predictions and apply a threshold.

$$y_{bagged} = \mathbb{I} \left(\frac{1}{m} \sum_{i=1}^{m} y_i > 0.5 \right)$$

- Same as majority vote.
Bagging Properties

- A bagged classifier can be stronger than the average model.
 - E.g. on “Who Wants to be a Millionaire”, “Ask the Audience” is much more effective than “Phone a Friend”.

- But, if m datasets are NOT independent, don’t get the $\frac{1}{m}$ variance reduction.

- Reduce correlation between datasets by introducing *additional* variability
 - Invest in a diversified portfolio, not just one stock.
 - Average over multiple algorithms, or multiple configurations of the same algorithm.
Random Forests

- A trick to reduce correlation between bagged decision trees: For each node, choose a random subset of features and consider splits on these features only.

- Probably the best black-box machine learning algorithm.
 - works well with no tuning.
 - widely used in Kaggle competitions.
Bagging Summary

Reduces over-fitting by averaging predictions.
In most competition winners.
A small ensemble often better than a single great model.

Limitations:

- Does not reduce bias in case of squared error.
- Correlation between classifiers means less variance reduction.
 Add more randomness in Random Forests.
- Weighting members equally may not be the best.
 Weighted ensembling often leads to better results if members are very different.
1. Introduction

2. Bias-Variance Decomposition

3. Bagging

4. Linear Regression

5. Vectorization

6. Optimization

7. Feature Mappings

8. Regularization
Overview

- Third learning algorithm of the course: **linear regression**.
 - **Task**: predict scalar-valued targets (e.g. stock prices)
 - **Architecture**: linear function of the inputs

- While KNN was a complete algorithm, linear regression exemplifies a modular approach that will be used throughout this course:
 - choose a **model** describing the relationships between variables of interest
 - define a **loss function** quantifying how bad the fit to the data is
 - choose a **regularizer** saying how much we prefer different candidate models (or explanations of data)
 - fit a model that minimizes the loss function and satisfies the constraint/penalty imposed by the regularizer, possibly using an optimization algorithm

- Mixing and matching these modular components give us a lot of new ML methods.
Supervised Learning Setup

In supervised learning:

- There is input \(x \in \mathcal{X} \), typically a vector of features (or covariates)
- There is target \(t \in \mathcal{T} \) (also called response, outcome, output, class)
- Objective is to learn a function \(f : \mathcal{X} \rightarrow \mathcal{T} \) such that \(t \approx y = f(x) \)
 based on some data \(\mathcal{D} = \{(x^{(i)}, t^{(i)}) \text{ for } i = 1, 2, \ldots, N\} \).
Model: In linear regression, we use a linear function of the features $\mathbf{x} = (x_1, \ldots, x_D) \in \mathbb{R}^D$ to make predictions y of the target value $t \in \mathbb{R}$:

$$y = f(\mathbf{x}) = \sum_j w_j x_j + b$$

- y is the prediction
- \mathbf{w} is the weights
- b is the bias (or intercept)

\mathbf{w} and b together are the parameters

We hope that our prediction is close to the target: $y \approx t$.
What is Linear? 1 feature vs D features

- If we have only 1 feature:
 \[y = wx + b \text{ where } w, x, b \in \mathbb{R}. \]
 \[y \text{ is linear in } x. \]

- If we have \(D \) features:
 \[y = \mathbf{w}^\top \mathbf{x} + b \text{ where } \mathbf{w}, \mathbf{x} \in \mathbb{R}^D, \]
 \[b \in \mathbb{R}. \]
 \[y \text{ is linear in } \mathbf{x}. \]

Relation between the prediction \(y \) and inputs \(\mathbf{x} \) is linear in both cases.
Linear Regression - Loss Function

- A loss function $\mathcal{L}(y, t)$ defines how bad it is if, for some example x, the algorithm predicts y, but the target is actually t.

- **Squared error loss function:**

$$\mathcal{L}(y, t) = \frac{1}{2} (y - t)^2$$

- $y - t$ is the residual, and we want to make this small in magnitude.

- The $\frac{1}{2}$ factor is just to make the calculations convenient.

- **Cost function:** loss function averaged over all training examples

$$\mathcal{J}(w, b) = \frac{1}{2N} \sum_{i=1}^{N} \left(y^{(i)} - t^{(i)} \right)^2$$

$$= \frac{1}{2N} \sum_{i=1}^{N} \left(w^\top x^{(i)} + b - t^{(i)} \right)^2$$

- Terminology varies. Some call "cost" empirical or average loss.
1 Introduction
2 Bias-Variance Decomposition
3 Bagging
4 Linear Regression
5 Vectorization
6 Optimization
7 Feature Mappings
8 Regularization
Vectorization

- The prediction for one data point can be computed using a for loop:

```
y = b
for j in range(M):
y += w[j] * x[j]
```

- Excessive super/sub scripts are hard to work with, and Python loops are slow, so we **vectorize** algorithms by expressing them in terms of vectors and matrices.

\[
\mathbf{w} = (w_1, \ldots, w_D)^\top \quad \mathbf{x} = (x_1, \ldots, x_D)^\top
\]

\[
y = \mathbf{w}^\top \mathbf{x} + b
\]

- This is simpler and executes much faster:

\[
y = \text{np.dot}(\mathbf{w}, \mathbf{x}) + b
\]
Vectorization

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
 - Cut down on Python interpreter overhead
 - Use highly optimized linear algebra libraries (hardware support)
 - Matrix multiplication very fast on GPU (Graphics Processing Unit)

Switching in and out of vectorized form is a skill you gain with practice

- Some derivations are easier to do element-wise
- Some algorithms are easier to write/understand using for-loops and vectorize later for performance
We can organize all the training examples into a design matrix X with one row per training example, and all the targets into the target vector t.

\[
X = \begin{pmatrix}
 x^{(1)\top} \\
 x^{(2)\top} \\
 x^{(3)\top}
\end{pmatrix} = \begin{pmatrix}
 8 & 0 & 3 & 0 \\
 6 & -1 & 5 & 3 \\
 2 & 5 & -2 & 8
\end{pmatrix}
\]

Computing the predictions for the whole dataset:

\[
Xw + b1 = \begin{pmatrix}
 w^T x^{(1)} + b \\
 \vdots \\
 w^T x^{(N)} + b
\end{pmatrix} = \begin{pmatrix}
 y^{(1)} \\
 \vdots \\
 y^{(N)}
\end{pmatrix} = y
\]
Computing the squared error cost across the whole dataset:

\[y = Xw + b1 \]

\[J = \frac{1}{2N} \| y - t \|^2 \]

Sometimes we may use \(J = \frac{1}{2} \| y - t \|^2 \), without a normalizer. This would correspond to the sum of losses, and not the averaged loss. The minimizer does not depend on \(N \) (but optimization might!).

We can also add a column of 1’s to design matrix, combine the bias and the weights, and conveniently write

\[
X = \begin{bmatrix}
1 & [x^{(1)}]^	op \\
1 & [x^{(2)}]^	op \\
1 & \vdots \\
1 & \vdots
\end{bmatrix} \in \mathbb{R}^{N \times (D+1)} \quad \text{and} \quad w = \begin{bmatrix}
b \\
w_1 \\
w_2 \\
\vdots
\end{bmatrix} \in \mathbb{R}^{D+1}
\]

Then, our predictions reduce to \(y = Xw \).
1. Introduction
2. Bias-Variance Decomposition
3. Bagging
4. Linear Regression
5. Vectorization
6. Optimization
7. Feature Mappings
8. Regularization
Solving the Minimization Problem

Our goal is to minimize the cost function $J(w)$.

Recall from calculus: the minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.

$$\nabla_w J = \frac{\partial J}{\partial w} = \begin{pmatrix} \frac{\partial J}{\partial w_1} \\ \vdots \\ \frac{\partial J}{\partial w_D} \end{pmatrix}$$

Solutions may be direct or iterative.

- **Direct solution**: set the gradient to zero and solve in closed form — directly find provably optimal parameters.

- **Iterative solution**: repeatedly apply an update rule that gradually takes us closer to the solution.
Direct Solution: Calculus

- Lets consider a cartoon visualization of $\mathcal{J}(w)$ where w is single dimensional

- **Left** We seek $w = w^*$ that minimizes $\mathcal{J}(w)$

- **Right** The gradients of a function can tell us where the maxima and minima of functions lie

- **Strategy:** Write down an algebraic expression for $\nabla_w \mathcal{J}(w)$. Set equation to 0. Solve for w
Direct Solution: Calculus

- We seek \mathbf{w} to minimize $\mathcal{J}(\mathbf{w}) = \frac{1}{2} \| \mathbf{Xw} - \mathbf{t} \|^2$

- Taking the gradient with respect to \mathbf{w} and setting it to 0, we get:

 $$\nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w}) = \mathbf{X}^\top \mathbf{Xw} - \mathbf{X}^\top \mathbf{t} = 0$$

 See course notes for additional details.

- Optimal weights:

 $$\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{t}$$

- Linear regression is one of only a handful of models in this course that permit direct solution.
Many optimization problems don’t have a direct solution.

A more broadly applicable way to minimize the cost function: gradient descent.

Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.
Gradient Descent

- Observe:
 - if $\partial J / \partial w_j > 0$, then decreasing J requires decreasing w_j.
 - if $\partial J / \partial w_j < 0$, then decreasing J requires increasing w_j.

- The following update always decreases the cost function for small enough α (unless $\partial J / \partial w_j = 0$):

 $$ w_j \leftarrow w_j - \alpha \frac{\partial J}{\partial w_j} $$
Gradient Descent

- The following update always decreases the cost function for small enough α (unless $\partial J / \partial w_j = 0$):

 $$w_j \leftarrow w_j - \alpha \frac{\partial J}{\partial w_j}$$

- $\alpha > 0$ is a learning rate (or step size).
 - The larger α is, the faster w changes.
 - Values are typically small, e.g. 0.01 or 0.0001.
 - We’ll see later how to tune the learning rate.
 - If cost is the total loss rather than average loss, a smaller learning rate will be needed ($\alpha' = \alpha/N$).
Gradient Descent

- Gradient descent gets its name from the gradient. Recall the definition of the gradient:

\[
\nabla_w J = \frac{\partial J}{\partial w} = \left(\frac{\partial J}{\partial w_1} \right) \left(\begin{array}{c} \vdots \\ \frac{\partial J}{\partial w_D} \end{array} \right)
\]

The gradient is the direction of fastest *increase* in J.

- Update rule in vector form:

\[
w \leftarrow w - \alpha \frac{\partial J}{\partial w}
\]

- Update rule for linear regression:

\[
w \leftarrow w - \frac{\alpha}{N} \sum_{i=1}^{N} (y(i) - t(i)) x(i)
\]

- Gradient descent updates w in the direction of fastest *decrease*.

- Once it converges, we get a critical point, i.e. \(\frac{\partial J}{\partial w} = 0 \).
Why Use Gradient Descent?

- GD is applicable to a much broader set of models
- GD is easier to implement than direct solutions
- For regression in high-dimensional space, GD is more efficient than direct solution
 - For example, the linear regression direction solution $(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{t}$ requires matrix inversion, which is $\mathcal{O}(D^3)$.
 - Each GD update costs $\mathcal{O}(ND)$ or less with stochastic gradient descent.
 - Huge difference if $D \gg 1$
1 Introduction
2 Bias-Variance Decomposition
3 Bagging
4 Linear Regression
5 Vectorization
6 Optimization
7 Feature Mappings
8 Regularization
Can we use linear regression to model a non-linear relationship?

- Map the input features to another space using $\psi(x) : \mathbb{R}^D \rightarrow \mathbb{R}^d$.
- Treat the mapped feature (in \mathbb{R}^d) as the input of a linear regression procedure.
Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

$$y = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{i=0}^{M} w_i x^i$$

- The feature mapping is $\psi(x) = [1, x, x^2, \ldots, x^M]^\top$.
- $y = \psi(x)^\top w$ is linear in w_0, w_1, \ldots.
- Use linear regression to find w.
- In general, ψ can be any function.
 Another example: $\psi(x) = [1, \sin(2\pi x), \cos(2\pi x), \sin(4\pi x), \ldots]^\top$.

![Graph showing polynomial feature mapping](image-url)
Polynomial Feature Mapping with $M = 0$

$$y = w_0$$

- Pattern Recognition and Machine Learning, Christopher Bishop.
Polynomial Feature Mapping with $M = 1$

$$y = w_0 + w_1 x$$

- Pattern Recognition and Machine Learning, Christopher Bishop.
Polynomial Feature Mapping with $M = 3$

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

-Pattern Recognition and Machine Learning, Christopher Bishop.
Polynomial Feature Mapping with $M = 9$

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \ldots + w_9 x^9$$

-Pattern Recognition and Machine Learning, Christopher Bishop.
Under-fitting (M=0): Model is too simple, does not fit the data.
Good model (M=3): Achieves small test error, generalizes well.
Over-fitting (M=9): Model is too complex, fits perfectly.
As M increases, the magnitude of coefficients gets larger.

For $M = 9$, the coefficients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.
1. Introduction

2. Bias-Variance Decomposition

3. Bagging

4. Linear Regression

5. Vectorization

6. Optimization

7. Feature Mappings

8. Regularization
The degree M of the polynomial controls the model’s complexity.

The value of M is a hyperparameter for polynomial expansion, just like k in KNN. We can tune it using a validation set.

Restricting the number of parameters / basis functions (M) is a crude approach to controlling the model complexity.

Another approach: keep the model large, but **regularize it**

- **Regularizer**: a function that quantifies how much we prefer one hypothesis vs. another
L^2 (or ℓ_2) Regularization

- Encourage the weights to be small by choosing the L^2 penalty as our regularizer.

$$R(w) = \frac{1}{2} \| w \|_2^2 = \frac{1}{2} \sum_j w_j^2.$$

- The regularized cost function makes a tradeoff between the fit to the data and the norm of the weights.

$$J_{\text{reg}}(w) = J(w) + \lambda R(w) = J(w) + \frac{\lambda}{2} \sum_j w_j^2.$$

- If you fit training data poorly, J is large.
 If the weights are large in magnitude, R is large.
- Large λ penalizes weight values more.
- λ is a hyperparameter we can tune with a validation set.
\(L^2 \) (or \(\ell_2 \)) Regularization

- The geometric picture:
L^2 Regularized Least Squares: Ridge regression

For the least squares problem, we have $\mathcal{J}(w) = \frac{1}{2N} \|Xw - t\|^2$.

- When $\lambda > 0$ (with regularization), regularized cost gives

 $$w_{\lambda}^{\text{Ridge}} = \arg\min_w \mathcal{J}_{\text{reg}}(w) = \arg\min_w \frac{1}{2N} \|Xw - t\|^2 + \frac{\lambda}{2} \|w\|^2$$

 $$= (X^\top X + \lambda N I)^{-1} X^\top t$$

- The case $\lambda = 0$ (no regularization) reduces to least squares solution!

- Can also formulate the problem as

 $$\arg\min_w \frac{1}{2} \|Xw - t\|^2 + \frac{\lambda}{2} \|w\|^2$$

 with solution

 $$w_{\lambda}^{\text{Ridge}} = (X^\top X + \lambda I)^{-1} X^\top t.$$
Gradient Descent under the L^2 Regularization

- Gradient descent update to minimize \mathcal{J}:
 \[
 \boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \frac{\partial}{\partial \boldsymbol{w}} \mathcal{J}
 \]

- The gradient descent update to minimize the L^2 regularized cost $\mathcal{J} + \lambda \mathcal{R}$ results in weight decay:
 \[
 \begin{align*}
 \boldsymbol{w} & \leftarrow \boldsymbol{w} - \alpha \frac{\partial}{\partial \boldsymbol{w}} (\mathcal{J} + \lambda \mathcal{R}) \\
 & = \boldsymbol{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \boldsymbol{w}} + \lambda \frac{\partial \mathcal{R}}{\partial \boldsymbol{w}} \right) \\
 & = \boldsymbol{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \boldsymbol{w}} + \lambda \boldsymbol{w} \right) \\
 & = (1 - \alpha \lambda) \boldsymbol{w} - \alpha \frac{\partial \mathcal{J}}{\partial \boldsymbol{w}}
 \end{align*}
 \]
Conclusion so far

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the minimization problem using one of two strategies
 - direct solution (set derivatives to zero)
 - gradient descent
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using features
- improve the generalization by adding a regularizer