
Automatic Differentiation for R

Radford M. Neal, University of Toronto

Dept. of Statistical Sciences and Dept. of Computer Science

Vector Institute Affiliate

http://www.cs.utoronto.ca/∼radford

http://radfordneal.wordpress.com

http://pqR-project.org

Work in Progress

Vector Research Symposium, 22 February 2019

Aims of this project

Given R code written only to evaluate a function (e.g., a log likelihood),

allow the derivatives of this function with respect to any real-valued inputs

(e.g., model parameters) to be computed as well.

Do this:

• Universally — for R functions written using most common language

features, in any reasonable style, without thought of gradients.

• Conveniently — with only the essential additions to the program,

e.g., specifying w.r.t. what variables gradients should be taken.

• Efficiently — speed of resulting value + gradient evaluation should be

comparable to what would be obtained with manually-written code.

I expect to mostly achieve these aims, though with a few compromises

(e.g., good performance may sometimes require tweaking code a bit).

The pqR implementation of R

This project is part of my pqR implementation of R (pqR-project.org).

This is a fork of the R Core implementation with many improvements. Some

changes relevant to automatic differentiation are:

• A new parser makes introducing new language constructs easier.

• Interpretive speed has been greatly improved, eliminating any need to

use the “byte-code compiler”. Implementation by direct interpretation

makes extending the language (e.g., for AD) easier.

• Multiple processor cores can be automatically used to parallelize

numerical computations. This may be especially useful when gradients

can be computed in parallel with the function value.

• An internal mechanism allows expressions to be evaluated asking for a

“variant” result — crucial for how AD is implemented in this project.

Summary of the approach

• New language constructs are introduced to allow convenient use of

automatic differentiation.

• The tracking of gradients associated with values is invisible at the R

level, ensuring that functions behave the same when gradients are

requested as when not.

• Forward-mode differentiation is used, but with two modifications:

– Jacobian matrices (giving derivatives of some set of values with

respect to some set of variables) may be stored in a compact form,

when the Jacobian is block diagonal and/or has repetitive portions.

– The programmer can manually specify points where backpropagation

(reverse-mode differentiation) should be done.

The strategy used to integrate AD in the interpreter could support pure

reverse-mode differentiation if this turns out to be desirable.

The with gradient construct

A new with gradient language construct delivers both the value of an

expression, and its gradient with respect to a specified set of variables:

> with gradient (a=1.2) sin(3*a) # gradient is 3*cos(3*1.2)

[1] -0.4425204

attr(,"gradient")

[1] -2.690275

The gradient is attached as a "gradient" attribute – an existing convention

used by the standard nlm (non-linear minimization) function.

Gradients can be with respect to several variables, giving a list:

> r <- with gradient (a=3, b=8) a*b + a^2

> attr(r,"gradient") $ a

[1] 14

> attr(r,"gradient") $ b

[1] 3

An example function

Find the distance travelled by a projectile launched on level

ground with initial velocity (vx,vy), with no air resistance.

distance_travelled <- function (vx, vy, dt=0.0001, g=9.8) {

x <- y <- 0

repeat {

last_x <- x

last_y <- y

x <- x + vx*dt

y <- y + vy*dt

if (y < 0) # return impact x location, interpolating

return ((x*last_y - last_x*y) / (last_y-y))

vy <- vy - g*dt

}

}

Using automatic differentiation with this example

Let’s use this function to find the angle of launch maximizing distance (for

fixed initial speed), using nlm, with derivatives found by with gradient.

> nlm (function (a)

+ with gradient (a) -distance_travelled (cos(a), sin(a)),

+ 0) $ estimate * 180/pi

[1] 44.99701

Note that derivatives are automatically tracked through the function call,

assignments, loop, and if statement.

The distance_travelled function might have been written with no thought

of differentiation — though it is essential to this example that it interpolates

the impact position; not doing so makes it piecewise constant

in vy, with a zero derivative w.r.t. vy for any value of dt.

When is this useful?

For this example, nlm actually works fine when the function does not attach

a gradient — nlm then uses numerical differentiation, which is not bad when

differentiating w.r.t. only one variable.

But in general. . .

Numerical differentiation: For an n-argument function, obtaining a

numerical gradient requires n+ 1 function evaluations.

Forward-mode automatic differentiation: Potentially takes n+ 1

times as long to do each operation, computing both the value and n

derivatives. But in practice, not all operations need to track derivatives, and

many that do involve only a subset of derivatives.

So forward-mode AD may provide a large speedup over numerical

differentiation. But when the computation involves many intermediate

values, reverse-mode AD may do better.

An example of forward-mode inefficiency

> V <- as.list(seq(0,1,length=3))

> with gradient (V) {

+ p <- 0

+ for (i in 1:length(V))

+ p <- p + i*V[[i]]

+ p^2 + p^3 + p^4 + p^5

+ }

[1] 1360

attr(,"gradient")

attr(,"gradient")[[1]]

[1] 1592

attr(,"gradient")[[2]]

[1] 3184

attr(,"gradient")[[3]]

[1] 4776

Note: Since V is a list, the gradient is

also a list, whose elements are deriva-

tives w.r.t. elements of V.

The back gradient construct

When computing p^2 + p^3 + p^4 + p^5 in this example, each operation

tracks derivatives w.r.t. all elements of V — with increasing inefficiency as

the length of V increases.

Re-writing the code using the back gradient construct avoids this:

with gradient (V) {

p <- 0

for (i in 1:length(V))

p <- p + i*V[[i]]

back gradient (p)

p^2 + p^3 + p^4 + p^5

}

Within the back gradient (p) construct, expressions involving p have their

derivatives tracked with respect to p only. When the back gradient

construct finishes, these derivatives w.r.t. p are converted to derivatives

w.r.t. the elements of V, using the chain rule.

The compute gradient construct

When desired, the method for computing the gradient of an expression can

be specified explicitly. For example, rather than

sigmoid <- function (x) 1 / (1+exp(-x))

for which gradients will be computed automatically, one could instead write

sigmoid <- function (x)

compute gradient (x) { v <- 1 / (1+exp(-x)); v }

as (v * (1-v))

Using the already-computed function value, v, may be more efficient.

The compute gradient construct could be also useful in cases where the

interpreter does not know how to compute the gradient — for example,

when the function is computed by an external C or Fortran routine.

Both compute gradient and back gradient bypass gradient computations,

with minimal overhead, when evaluated in a context where gradients are not

needed.

Form of the gradient for structured values

The gradient attached to the result of

with gradient (V = list (x=5, y=7))

list (a=V$x^2, b=V$x*V$y, c=V$y^2)

is a list with elements x and y, each of which is a list with elements

a, b, and c, giving the derivative of a, b, or c with respect to x or y.

The gradient attached to the result of

with gradient (V = c(5,7))

c (V[1]^2, V[1]*V[2], V[2]^2)

is a 3× 2 Jacobian matrix, with element (i, j) giving the derivative of the

i’th element of the result with respect to the j’th element of V.

For lists of vectors, as values or variables differentiated w.r.t., the gradient

has the list structure above, with elements that are Jacobian matrices.

For lists of lists of matrices, etc. — well, things get more complicated. . .

Compact representations of Jacobian matrices

Consider a neural net with 1000 inputs, one hidden layer of 100 tanh units,

and one output. Its output and gradient w.r.t. network parameters could be

computed as follows, where x is the input vector:

o <- with gradient (W, b, v, a) a + v %*% tanh (b + x %*% W)

Implementing this naively with forward differentiation would be very

inefficient. Even before starting the computation, the 1000× 100 matrix W

would be associated with a Jacobian matrix with 1010 elements.

But this Jacobian for W is an identity matrix, so can be represented quite

compactly. The Jacobian for W associated with vector x %*% W, of length 100,

will have 107 elements, but will be block-diagonal, all blocks equal to x, so

can also be very compactly represented. A block-diagonal representation of

the Jacobian for W of tanh (b + x %*% W) has 105 elements (same size as W).

So, using compact representations (internally), this one-hidden-layer net can

be handled efficiently by forward differentiation. But back gradient is

necessary for efficient handling of more hidden layers.

Some application areas

• Estimation of parameters of statistical models (e.g., by maximum

likelihood), using gradient-based optimization. R is widely-used and

convenient for specifying such models.

Many such models have small to moderate (≈ 100) numbers of

parameters. The AD methods described here should work well in this

application.

• Training of neural networks, for supervised, unsupervised, and

reinforcement learning.

These networks often have quite large numbers of parameters, and quite

large numbers of intermediate values (hidden units). This project aims

to give acceptable performance in this application, though perhaps not

as good as some other well-optimized frameworks.

• Markov chain Monte Carlo methods based on gradients, such as

Hamiltonian Monte Carlo.

Implementation status

A test version currently available at pqR-project.org implements

• The language constructs for gradient computation

• The apparatus for recording and propagating gradients during program

interpretation

• Gradients of and with respect to scalar reals, lists of scalar reals, lists of

lists, etc., with access / replacement of elements using $ and [[.]].

• Evaluation of derivatives for nearly all relevant base and stats functions

(e.g., sin, dnorm, rexp, . . .)

It does not yet implement (but probably will in a month or two)

• Gradients of and with respect to vectors, matrices, and arrays of reals,

and access / replacement of subvectors with [.].

• Evaluation of derivatives for functions involving vectors and matrices,

such as sum, rep, colSums, and %*% (matrix multiply).

Possible further extensions

• Allow the expression for a gradient in a compute gradient construct to

be a function that computes a Jacobian-vector product. Useful when

compute gradient is used with large objects, such as matrices.

• Allow computation of higher derivatives through use of nested gradient

constructs. (Not currently possible, since currently gradients are not

themselves associated with gradient information.)

• Allow gradients to be used more easily, by allowing arithmetic on lists of

parallel structure. This would, for example, allow gradient descent to be

done for parameters structured as lists without having to use R’s

unlist/relist functions.

• Could an implementation strategy somewhat analogous to that used for

AD support incremental re-computation of a function after only a small

part of its argument has changed? Would be very useful for MCMC.

