
CSC 310: Information Theory

University of Toronto, Fall 2011

Instructor: Radford M. Neal

Week 12



Getting to Capacity for the BEC

We can get near-error-free transmission for the binary erasure channel, at

any rate below capacity, using a practical method.

We use a linear [N, K] code, defined by a set of M = N−K parity-check

equations:

c1,1 v1 + c1,2 v2 + · · · + c1,N vN = 0

c2,1 v1 + c2,2 v2 + · · · + c2,N vN = 0

...

cM,1 v1 + cM,2 v2 + · · · + cM,N vN = 0

For the BEC, any bit received as 0 or 1 is guaranteed to be correct. To

decode, we fill in these known values in the equations above, and then try

to solve for the unknown values, where the bit was received as an erasure.



When Will This BEC Decoding Method Succeed?

If the probability of an erasure is f , and N is large, there will very likely

be around Nf erasures in the received data (the Law of Large Numbers

again).

So the decoder will be solving M equations in U unknowns, where U is

very likely to be near Nf

These equations will be consistent, since the correct decoding is certainly

a solution.

The correct decoding will be the unique solution — which the decoder is

guaranteed to find — as long as U out of the M equations are

independent.



Picking the Code at Random

Suppose we pick a code — specified by its parity-check coefficients,

the cij — at random, independently, with equal probabilities for cij = 0

and cij = 1.

How likely is it that the equations that we need to solve to decode a

transmission that has U erasures will have a unique solution?

Imagine randomly picking the parity-check equations after we receive the

transmission with U erasures. How many equations would we expect to

have to pick to get U independent equations?

Once we have i independent equations, the probability that the next

equation picked will be dependent on these will be

2i

2U
=

1

2U−i

since there are 2i ways of combining the previous equations, and 2U

possible equations, after combining constants.



Picking the Code at Random (Continued)

The expected number of dependent equations picked before we get U

independent ones is

U−1
∑

i=0

1

2U−i

(

1 −
1

2U−i

)−1

=

U−1
∑

i=0

1

2U−i − 1

Reordering the terms, we can see that this is small:

1 + 1/3 + 1/7 + · · · < 1 + 1/2 + 1/4 + · · · < 2

Hence, we likely need M to be only slightly larger than U , which is likely

to be no more than slightly larger than Nf .

So with a random code, we will be likely to correct all erasures when N is

large as long as f < M/N = (N−K)/N = 1 − R. In other words, as long

as R < 1−f . As we saw in tutorial, the capacity of the BEC is equal to

1−f , so we’ve achieved the promise of Shannon’s theorem.



What about the BSC?

A similar argument using randomly-chosen codes is used in the proof of

Shannon’s noisy coding theorem for the BSC. We’ll look at a sketch of

this proof.

But unlike the random codes for the BEC, the random codes used in this

proof are completely impractical.

We’ll then look briefly at random codes of a different kind, whose

parity-check matrices are mostly zeros. These “Low Density Parity Check

Codes” can be used in practice, and allow near-error-free transmission at

close to capacity.



Statement of Shannon’s Noisy Coding Theorem
for the Binary Symmetric Channel

Consider a BSC with error probability f < 1/2. This channel has capacity

C = 1 − H2(f).

For any desired closeness to capacity, η > 0, and for any desired limit on

error probability, ǫ > 0, there is a code of some length N whose rate, R,

is at least C − η, and for which the probability that nearest neighbor

decoding will decode a codeword incorrectly is less than ǫ.

I’ll now give a proof of this, which more-or-less follows the proof for

general channels in Chapter 10 of MacKay’s book.



Strategy for Proving the Theorem

Rather than showing how to construct a specific code for given values of

f , η, and ǫ, we will consider choosing a code of a suitable length, N , and

rate log2(M)/N , by picking M codewords at random from ZN
2 .

We consider the following scenario:

1. We randomly pick a code, C, which we give to both the sender and

the receiver.

2. The sender randomly picks a codeword x ∈ C, and transmits it

through the channel.

3. The channel randomly generates an error pattern, n, and delivers

y = x + n to the receiver.

4. The receiver decodes y to a codeword, x
∗, that is nearest to y in

Hamming distance.

If the probability that this process leads to x
∗ 6= x is less than ǫ, then

there must be some specific code with error probability less than ǫ.



Rearranging the Order of Choices

It will be convenient to rearrange the order in which random choices are

made, as follows:

1. We randomly pick one codeword, x, which is the one the sender

transmits.

2. The channel randomly generates an error pattern, n, that is added to

x to give the received data, y. Let the number of transmission errors

(ie, ones in n) be w.

3. We now randomly pick the other M−1 codewords. If the Hamming

distance from y of all these codewords is greater than w,

nearest-neighbor decoding will make the correct choice.

The probability of the decoder making the wrong choice here is the same

as before.



The Typical Number of Errors

If N is large, we expect that close to Nf of the N bits in a codeword will

be received in error. In other words, we expect the error vector, n, to

contain close to Nf ones.

Specifically, the Law of Large Numbers tells us that for any β > 0, there is

some value for N such that if w is the number of errors in n,

P (f − β < w/N < f + β) ≥ 1 − ǫ/2

We’ll say that error vectors, n, for which f − β < w/N < f + β are

“typical”.



How Many Typical Error Vectors Are There?

How many error vectors, n, for which f − β < w/N < f + β are there?

If n is such a typical error pattern with w errors, then (since f < 1 − f)

P (n) = fw(1−f)N−w > fN(f+β)(1−f)N(1−f−β)

Let J be the number of typical error vectors. Since the total probability of

all these vectors must not exceed one, we must have

JfN(f+β)(1−f)N(1−f−β) < 1

and hence

J < f−N(f+β)(1−f)−N(1−f−β)

Equivalently,

J < 2N(−(f+β) log
2
(f)−(1−f−β) log

2
(1−f))

= 2N(H2(f)+β log
2
((1−f)/f))



Decoding with Typical Error Patterns

The probability that the codeword nearest to y is the correct decoding

will be at least as great as the probability that the following sub-optimal

decoder decodes correctly:

If there is exactly one codeword x
∗ for which n = y − x

∗ has a

typical number of ones, then decode to x
∗, otherwise declare that

decoding has failed.

This sub-optimal decoder can fail in two ways:

I) The correct decoding, x, may correspond to an error pattern,

n = y − x, that is not typical.

II) Some other codeword, x
′, may exist for which the error pattern

n
′ = y − x

′ is typical.



Bounding the Probability of Failure (I)

The total probability of decoding failure is less than the sum of the

probabilities of failing in these two ways. We will try to limit each of these

to ǫ/2.

We can choose N to be big enough that

P (f − β < w/N < f + β) ≥ 1 − ǫ/2

This ensures that the actual error pattern will be non-typical with

probability less than ǫ/2.

We now need to limit the probability that some other codeword also

corresponds to a typical error pattern.



Bounding the Probability of Failure (II)

The number of typical error patterns is

J < 2N(H2(f)+β log
2
((1−f)/f))

For a random codeword, x, other than the one actually transmitted,

the corresponding error pattern given y will contain 0s and 1s that are

independent and equally likely.

The probability that one such codeword will produce a typical error

pattern is therefore

J/2N < 2−N(1−H2(f)−β log
2
((1−f)/f))

The probability that any of the other M − 1 codewords will correspond to

a typical error pattern is bounded by M times this. We need this to be

less than ǫ/2 — that is, we need

M 2−N(1−H2(f)−β log
2
((1−f)/f)) < ǫ/2



Finishing the Proof

Finally, we need to pick β, M , and N so that the two types of error have

probabilities less than ǫ/2, and the rate, R is at least C − η.

We let M = 2⌈(C−η)N⌉, and set N large enough so R = ⌈(C−η)N⌉/N < C.

With this value of M , we need

2⌈(C−η)N⌉ 2−N(1−H2(f)−β log
2
((1−f)/f))

= 2−N(1−H2(f)−⌈(C−η)N⌉/N−β log
2
((1−f)/f))

to be less than ǫ/2.

C = 1 − H2(f), so 1 − H2(f) − ⌈(C − η)N⌉/N = C − R is positive.

Hence a sufficiently small value of β will ensure a positive value for

1 − H2(f) − ⌈(C − η)N⌉/N − β log2((1 − f)/f)

With this β and a large enough N , the probabilities of both types of error

will be less than ǫ/2, so the total error probability will be less than ǫ.


