Extensions of a Source

We formalize the notion of encoding symbols in blocks by defining the N-th extension of a source, in which we look at sequences of symbols, written as (X_1, \ldots, X_N) or X^N.

If our original source alphabet, \mathcal{A}_X, has I symbols, the source alphabet for its N-th extension, \mathcal{A}_X^N, will have I^N symbols — all possible blocks of N symbols from \mathcal{A}_X.

If the probabilities for symbols in \mathcal{A}_X are p_1, \ldots, p_I, the probabilities for symbols in \mathcal{A}_X^N are found by multiplying the p_i for all the symbols in the block. (This is appropriate when symbols are independent.)

For instance, if $N = 3$:

$$P(X_1, X_2, X_3) = (a_i, a_j, a_k) = p_{ij} p_{jk}$$

Entropy of an Extension

We now prove that $H(X^N) = NH(X)$:

$$H(X^N) = \sum_{i_1=1}^I \cdots \sum_{i_N=1}^I p_{i_1} \cdots p_{i_N} \log \left(\frac{1}{p_{i_1} \cdots p_{i_N}} \right)$$

$$= \sum_{i_1=1}^I \cdots \sum_{i_N=1}^I p_{i_1} \cdots p_{i_N} \sum_{j=1}^N \log \left(\frac{1}{p_{i_j}} \right)$$

$$= \sum_{j=1}^N \sum_{i_1=1}^I \cdots \sum_{i_N=1}^I p_{i_1} \cdots p_{i_N} \log \left(\frac{1}{p_{i_j}} \right)$$

$$= \sum_{j=1}^N \sum_{i_j=1}^I p_{i_j} \log \left(\frac{1}{p_{i_j}} \right)$$

$$\times \sum_{i_k \neq j} p_{i_1} \cdots p_{i_{j-1}} p_{i_{j+1}} \cdots p_{i_N}$$

$$= \sum_{j=1}^N \sum_{i_j=1}^I p_{i_j} \log \left(\frac{1}{p_{i_j}} \right) = NH(X)$$

(Or just use the fact that $E(U + V) = E(U) + E(V)$.)

Shannon's Noiseless Coding Theorem

By using extensions of the source, we can compress arbitrarily close to the entropy!

Formally:

For any desired average length per symbol, R, that is greater than the binary entropy, $H(X)$, there is a value of N for which a uniquely decodable binary code for X^N exists that has expected length less than NR.

Proof of Shannon's Noiseless Coding Theorem

Consider coding the N-th extension of a source whose symbols have probabilities p_1, \ldots, p_I, using an binary Shannon-Fano code.

The Shannon-Fano code for blocks of N symbols will have expected codeword length, L_N, no greater than $1 + H(X^N) = 1 + NH(X)$.

The expected codeword length per original source symbol will therefore be no greater than

$$\frac{L_N}{N} = \frac{1 + NH(X)}{N} = H(X) + \frac{1}{N}$$

By choosing N to be large enough, we can make this as close to the entropy, $H(X)$, as we wish.
Another Way to Compress Down to the Entropy

We get a similar result by supposing that we will always encode \(N \) symbols into a block of exactly \(NR \) bits. Can we do this in a way that is very likely to be decodable?

Yes, for large values of \(N \). As discussed in Section 4.3 of MacKay’s book, the Law of Large Numbers tells us that the sequence of symbols to encode, \(a_1, \ldots, a_N \), is very likely to be a “typical” one, for which

\[
\frac{1}{N} \log_2(1/(p_1 \cdots p_N)) = \frac{1}{N} \sum_{j=1}^{N} \log_2(1/p_i)
\]

is very close to the expectation of \(\log_2(1/p_i) \), which is the entropy, \(H(X) = \sum_i p_i \log_2(1/p_i) \).

So if we encode all the sequences in this typical set in a way that can be decoded, the code will almost always be uniquely decodable.

How Big is the Typical Set?

Let’s define “typical” sequences as ones where

\[
(1/N) \log_2(1/(p_1 \cdots p_N)) \leq H(X) + \eta/\sqrt{N}
\]

We scale the margin allowed above \(H(X) \) as \(1/\sqrt{N} \) since that’s how the standard deviation of an average scales. Chebychev’s inequality then tells us that most sequences will satisfy this inequality, if \(\eta \) is set to a fairly large value.

The probability of any such typical sequence will satisfy

\[
p_1 \cdots p_N \geq 2^{-NH(X) - \eta/\sqrt{N}}
\]

The total probability for all such sequences can’t be greater than one, so the number of “typical” sequences can’t be greater than

\[
2^{NH(X) + \eta/\sqrt{N}}
\]

We will be able to encode these sequences in \(NR \) bits if \(NR \geq N H(X) + \eta \sqrt{N} \). If \(R > H(X) \), this will be true if \(N \) is sufficiently large.

An End and a Beginning

Shannon’s Noiseless Coding Theorem is mathematically satisfying. From a practical point of view, though, we still have two problems:

- How can we compress data to nearly the entropy in practice?
 The number of possible blocks of size \(N \) is \(I^N \) — huge when \(N \) is large. And \(N \) sometimes must be large to get close to the entropy by encoding blocks of size \(N \).
 One solution: A technique known as arithmetic coding.

- Where do the symbol probabilities \(p_1, \ldots, p_I \) come from? And are symbols really independent, with known, constant probabilities?
 This is the problem of source modeling.