CSC 260, Spring 1999, Answers to Second Mini-Test

1(a) A procedure for drawing $y = \log(x)$ for x in the range 1 to 10:

```c
for x from 1 to 10 do
  y := log(x);
  plot_pixel(x, round(y));
od;
```

1(b) A procedure that does this (approximately) without computing logarithms directly:

```c
y := 0; # Initialize y to the correct value for x=1
for x from 1 to 10 do
  plot_pixel(x, round(y));
  # Set y to value that will go with the next value of x, by adding
  # the derivative of log(x) times the change in x (which is one).
  y := y + 1.0/x;
od;
```

1(c) A more accurate answer could be obtained by doing differential computation with a smaller step size. For instance, one could increase x in steps of $1/2$, adding $(1/2)/x$ to y each time. Pixels would be plotted only every other step, when x is an integer.

2(a) Here is the new version with variables xs and ys that are x and y multiplied by R:

```c
xs := R*R;
ys := 0;
while ys >= 0 do
  plot_pixel(round(xs/R), round(ys/R));
  xs := xs - round(ys/R);
  ys := ys + round(xs/R);
od;
```

2(b) The new version will not be as accurate as the old (assuming the old version used floating-point with a reasonably large number of around significant digits). The first time through the loop, xs and ys are multiples of R, so the rounding operations don’t result in a loss of accuracy. This is true the second time through the loop too. In iterations after that, however, xs and ys may not be multiples of R, so accuracy is lost when xs/R and ys/R are rounded.
3 Here is the curve we are to find a parametric representation of:

Here are two of the infinite number of possible parametric representations (one on the left, one on the right):