Solutions for Homework Assignment #4

Answer to Question 1.

a. Special4Sat= \(\mathcal{L}(M) \) for the following polynomial-time nondeterministic machine \(M \).

On input \(\alpha \), \(M \) checks that \(\alpha = \langle F \rangle \) where \(F \) is a 4CNF formula (and if not rejects).

\(M \) then guesses a truth assignment, and computes if that assignment makes at least two literals in every clause true; if so, \(M \) accepts; if not, \(M \) rejects.

b. Let \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) be the function computed by the following polynomial-time algorithm.

On input \(\alpha \), we first check that \(\alpha = \langle F \rangle \) where \(F = (L_{1,1} \lor L_{1,2} \lor V_{1,3}) \land (L_{2,1} \lor L_{2,2} \lor L_{2,3}) \land \ldots \land (L_{m,1} \lor L_{m,2} \lor L_{m,3}) \) is a 3CNF formula (and if not output something not in Special4Sat).

Let \(x \) be a variable not appearing in \(F \). We then compute \(f(\alpha) = F' \) where \(F' = (L_{1,1} \lor L_{1,2} \lor L_{1,3} \lor x) \land (L_{2,1} \lor L_{2,2} \lor L_{2,3} \lor x) \land \ldots \land (L_{m,1} \lor L_{m,2} \lor L_{m,3} \lor x) \). We leave it as an exercise to check that \(\langle F \rangle \in 3SAT \iff \langle F' \rangle \in \text{Special4Sat} \).

Answer to Question 2.

We assume we have a polynomial-time algorithm \(\text{ALG} \) for computing membership in SS. Say are given \(\langle a_1, a_2, \ldots, a_m, t \rangle \in \text{SS} \). We want to compute (in polynomial time) a set \(A \subseteq \{1, 2, \ldots, m\} \) such that \(\sum_{i \in A} a_i = t \).

For \(i = 1, 2, \ldots, m \) we will decide whether or not to put \(i \) into \(A \). Here is how we decide whether to put \(i \) into \(A \): we compute (using \(\text{ALG} \)) if \(\langle a_2, \ldots, a_m, t \rangle \in \text{SS} \); if so, we do not put \(i \) into \(A \), and we continue with input \(\langle a_2, \ldots, a_m, t \rangle \), if not, we put \(i \) into \(A \), and continue with input \(\langle a_2, \ldots, a_m, t - a_1 \rangle \). We continue in this way for \(i = 2, \ldots, m \).

Answer to Question 3.

a. The following nondeterministic polynomial-time algorithm accepts-half-clique:

Given an input string, first check that it is of the form \(\langle G \rangle \) such that \(G = (V, E) \) is an undirected graph, and if not reject.

Assuming \(G = (V, E) \), guess a set \(C \subseteq V \); check that there is an edge between each pair of vertices in \(C \) (there are \(\leq |V|^2 \) such pairs) and that \(|C| \geq |V|/2 \); if so, accept; if not reject.

b. We want a polynomial-time function \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) such that for all \(\alpha \in \{0,1\}^*, \alpha \in \text{CLIQUE} \iff f(\alpha) \in \text{HALF-CLIQUE} \). We define \(f \) as follows.

Given \(\alpha \), first check that \(\alpha = \langle G, k \rangle \) where \(G = (V, E) \) is an undirected graph and \(k \) is a nonnegative integer \(\leq |V| \); if not, let \(f(\alpha) \) be anything not in \(\text{HALF-CLIQUE} \). So now assume \(\alpha = \langle G, k \rangle \), \(G = (V, E) \) an undirected graph, \(0 \leq k \leq |V| \). We wish to construct \(f(\langle G, k \rangle) = \langle G' \rangle \) for a graph \(G' = (V', E') \) such that

\[
G \text{ has a clique of size } k \iff G' \text{ has a clique of size } \geq |V'|/2
\]

The idea is that if \(k \geq |V|/2 \), we form \(G' \) by adding \(2k - |V| \) new, totally disconnected vertices to \(G \); if \(k \leq |V|/2 \), we form \(G' \) by adding a clique of \(|V| - 2k \) of new vertices that have edges to all the old vertices. More specifically:
CASE: $k \geq |V|/2$.
Note that $2k - |V| \geq 0$. Let V_0 be a set of $2k - |V|$ vertices none of which are in V. Let $G' = (V', E)$ where $V' = V \cup V_0$. Note that $|V'| = 2k$, and so $|V'|/2 = k$. It is easy to see (exercise) that G has a clique of size $k \iff G'$ has a clique of size k.

CASE: $k < |V|/2$.
Note that $|V| - 2k \geq 0$. Let V_0 be a set of $|V| - 2k$ vertices none of which are in V. Let $G' = (V', E')$ where $V' = V \cup V_0$, and where E' consists of all of E, as well as all the edges between every vertex of V_0 and every other vertex of $V_0 \cup V = V'$. Note that $|V'| = 2|V| - 2k$, and so $|V'|/2 = |V| - k$.
Consider a largest possible clique C' in G'. C' will equal $V_0 \cup C$ where $C \subseteq V$ is a largest possible clique of G (do you see why?). $|C'| = |C| + (|V| - 2k)$, so $|C'| \geq |V'|/2 = |V| - k \iff |C| \geq k$. So G has a clique of size $k \iff G'$ has a clique of size $|V| - k = |V'|/2$.