Answer to Question 1.

a. The following algorithm accepts precisely \(L \).

If the input is not of the form \(<M>\) where \(M \) is a Turing machine over \{0, 1\}, then reject.

So say that the input is \(<M>\) where \(M \) is a Turing machine over \{0, 1\}. We then dovetail as follows: run \(M \) on all strings of length \(\leq 1 \) for 1 step, then run \(M \) on all strings of length \(\leq 2 \) for 2 steps, then run \(M \) on all strings of length \(\leq 3 \) for 3 steps, \ldots. If in any phase, two strings of the same length are found such that \(M \) is found to halt on both of them, and accept one and reject the other, then halt and accept.

b. We will show that \(B_{TM} \leq_m L \). We will exhibit a computable \(f : \{0, 1\}^* \to \{0, 1\}^* \) such that for all \(x \in \{0, 1\}^* \), \(x \in B_{TM} \iff f(x) \in L \). We compute \(f \) as follows.

Let \(x \in \{0, 1\}^* \). If \(x \) is not of the form \(<M>\) where \(M \) is a Turing machine over \{0, 1\}, then let \(f(x) \) be anything not in \(L \). So say \(x \) is of the form \(<M>\) where \(M \) is a Turing machine over \{0, 1\}. We then let \(f(x) = <M'> \) where \(M' \) is the following Turing machine over \{0, 1\}:

- If the input is the string 0, then reject; otherwise, erase the input and run \(M \) on \(\epsilon \), accepting/rejecting as \(M \) does.

We want to show that \(x \in B_{TM} \iff f(x) \in L \).

To show \(\Rightarrow \), assume that \(M \) accepts \(\epsilon \). Then \(M' \) rejects 0 and accepts 1, so \(<M'> \in L \).

To show \(\Leftarrow \), assume \(M \) does not accept \(\epsilon \). Then \(M' \) does not accept anything, and so \(<M'> \notin L \).

Answer to Question 2. We will disprove the assertion, by presenting a counterexample.

Let \(L_1, L, L_2 \) be the following languages over \{0, 1\}:

\[
\begin{align*}
L_1 &= \emptyset \\
L &= A_{tm} \\
L_2 &= \{0, 1\}^*
\end{align*}
\]

\(L_1 \subseteq L \subseteq L_2 \), and \(L_1 \) and \(L_2 \) are decidable, but \(L \) is not decidable.

Answer to Question 3.

a. Define the computable function \(f : \{0, 1\}^* \to \{0, 1\}^* \) as follows. On input \(x \in \{0, 1\}^* \) compute \(f(x) \) as follows:

- Check that \(x \) is of the form \(\langle M \rangle \) where \(M \) is a Turing machine over \{0, 1\}, and if not, reject.
- So assume \(x \) is \(\langle M \rangle \) where \(M \) is a Turing machine over \{0, 1\}.
- Compute the Turing machine \(M' \) which on every input, ignores its input and runs \(M \) on the blank tape, accepting or rejecting whenever \(M \) does. Let \(f(x) = \langle M' \rangle \).
- If \(\epsilon \in L(M) \), then \(M' \) accepts everything, and so \(\langle M' \rangle \in L \).
- If \(\epsilon \notin L(M) \), then \(M' \) accepts nothing, and so \(\langle M' \rangle \notin L \).
- So \(x \in B_{TM} \iff f(x) \in L \).
b. Define the computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ as follows. On input $x \in \{0, 1\}^*$ compute $f(x)$ as follows:

Check that x is of the form $\langle M \rangle$ where M is a Turing machine over $\{0, 1\}$, and if not, let $f(x)$ be anything in L.

So assume x is $\langle M \rangle$ where M is a Turing machine over $\{0, 1\}$.

Compute the Turing machine M' which on input α, runs M on the blank tape for $|\alpha|$ steps; if M accepts within $|\alpha|$ steps, then M' rejects, otherwise M' accepts. Let $f(x) = \langle M' \rangle$.

If M accepts ϵ, say in k steps, then M' rejects everything of length $\geq k$, and so $\langle M' \rangle \notin L$.

If $\epsilon \notin L(M)$, then M' accepts everything, and so $\langle M' \rangle \in L$.

So $x \in B_{TM} \Leftrightarrow f(x) \in \overline{L}$.

Answer to Question 4. Say that $L = L(M_0)$ and L satisfies condition 1; we want to show that L does not satisfy condition 2. Let L' be as defined in the Hint.

We first show that L' is decidable. In fact, the following algorithm decides membership in L':

Given α, first check that α is of the form $\langle M, i \rangle$ where M is a Turing machine over $\{0, 1\}$ and i is a positive integer (and if not reject). Next, run M_0 on $\langle M \rangle$ for (up to) i steps and if M_0 does not accept within that time, then reject. So assume that M_0 accepts M within i steps; by 1, this means that M is a deciding machine. So run M on $\langle M, i \rangle$ until it halts; if M accepts, then reject; if M rejects, then accept.

Since L' is decidable, it is sufficient to show that there is no Turing machine M' over $\{0, 1\}$ such that $\langle M' \rangle \in L$ and $L(M') = L'$. So consider any $\langle M' \rangle \in L$. we will show that $L(M') \neq L'$.

Since $\langle M' \rangle \in L = L(M_0)$, we know that M_0 accepts $\langle M' \rangle$, say in i steps.

Now consider whether or not $\langle M', i \rangle \in L'$. Since M_0 accepts $\langle M' \rangle$ within i steps, we see from the definition of L' that

$$\langle M', i \rangle \in L' \Leftrightarrow \langle M', i \rangle \notin L(M')$$

So $L(M') \neq L'$.