
Computer Science 2426F Fall, 2020
St. George Campus University of Toronto

Notes #2

Expanding the Length of a Pseudo-Random Number Generator
We now want to show how a pseudo-random number generator that only does a little bit of

expansion, can be used to construct a pseudo-random generator that does a lot of expansion. The
idea is that we view G(s) as consisting of “stuff” that we can spit out, together with a new seed
that we feed back into the generator, etc., a polynomial number of times. This construction is often
used in practice to form a generator that is continually spitting out stuff (such as floating point
numbers) “forever”; in our definition of security, the adversary will only see the first ne bits that
are spit out, for some e of his choosing.

Let G be a number generator with length function l(n), where l(n) = e(n)+n. For every natural
number i and every bit string s, |s| = n, define
G0(s) = λ =the empty string;
Gi+1(s) = αGi(β) where G(s) = αβ and |α| = e(n) and |β| = n.
Let t(n) be a function computable in time polynomial in n, such that is t(n) is polynomial in the
value of n. Define
G′(s) = Gt(n)(s); note that G′ is a number generator with length function l′(n) = e(n)t(n). (We
will assume l′(n) > n.)

Theorem: If G is pseudo-random, then G′ is pseudo-random.

Proof: (nonuniform setting)
Assume G′ is not pseudo-random. Let D′ = {D′n} be a polynomial size circuit family for distin-
guishing G′; for each n, let pD′(n) and rD′(n) be the standard probabilities associated with D′n and
G′. Fix n and assume (without loss of generality) that pD′(n)− rD′(n) > 1/nc.

We now describe a sequence of experiments that are “hybrids” between the experiment that
gives rise to pD′(n) and the experiment that gives rise to rD′(n). For 0 ≤ i ≤ t(n) let qi be the
probability: IF α1, α2, · · · , αt(n)−i are t(n) − i randomly chosen strings from {0, 1}e(n), and s is a
randomly chosen string from {0, 1}n, and D′n is given as input [α1α2 · · ·αt(n)−iGi(s)], THEN D′n
accepts. Clearly qt(n) = pD′(n) and q0 = rD′(n). So qt(n) − q0 > 1/nc. So there exists an i,
0 ≤ i < t(n), such that qi+1 − qi > 1/(nct(n)); fix such an i.

Let Dn be the following (probabilistic) distinguisher for G. Given a string β of length l(n),
β = αγ where |α| = e(n) and |γ| = n, choose random α1, α2, · · · , αt(n)−i−1 and run D′n on
[α1α2 · · ·αt(n)−i−1αGi(γ)].

Letting pD(n) be the probability that Dn accepts G(s) for random s chosen from {0, 1}n, we see
that pD(n) = qi+1. Letting rD(n) be the probability that Dn accepts a random β from {0, 1}l(n),
we see that rD(n) = qi. So pD(n) − rD(n) > 1/(nct(n)), so {Dn} is an adversary that breaks the
pseudo-randomness of G.

Here is an iterative (as opposed to recursive) way of viewing the above construction. The idea is
that we start with an n-bit seed s0; we then compute G(s0) = α1s1 where |α1| = e(n) and |s1| = n.
We “spit out” α1 as “pseudo-random” bits, set the new seed to be s1, and continue as long as we

1

like. (Of course the adversary is only allowed to run this for a polynomial-in-n amount of time, for
a polynomial of his own choosing.)

Pseudo-Random Function Generators
We now wish to define an even stronger notion of pseudo-random generation. A “function

generator” will take an n bit seed s, and produce a function Fs mapping {0, 1}n into {0, 1}n. Of
course Fs is a exponentially large object; rather than actually outputting it, we merely require that
the generator can efficiently evaluate Fs on any input. Our definition of “pseudo-random” will be
that no efficient algorithm can tell the difference between being given a black-box for a random
function, and being given a black box for Fs for random s.

Definition:
A Function Generator F associates with each n and each s ∈ {0, 1}n a function
Fs : {0, 1}n → {0, 1}n, such that there is a polynomial time algorithm that given s ∈ {0, 1}n and
x ∈ {0, 1}n, computes Fs(x).

Definition: (“uniform adversary setting”)
Let F be a function generator; we will define what it means for F to be pseudo-random. By an
adversary D we mean a probabilistic algorithm that has two inputs: a string 1n of n ones indicating
the security parameter n, and an “oracle” for a function f mapping {0, 1}n into {0, 1}n. D must run
in time polynomial in n. Formally, D may be thought of as a Turing machine with a special “query”
tape on which an n bit string x may be printed; whenever the machine enters a designated query
state, the value of f(x) appears (in one step) on a special “answer” tape. D is probabilistic and
must halt in time polynomial in n, outputting a single bit indicating whether or not the function f
is accepted.

We say F is pseudo-random if for every such adversary D:
For each n, define
pD(n) = the probability that if s is randomly chosen from {0, 1}n and D is given 1n and an oracle
for Fs, then D accepts, and define
rD(n) = the probability that if D is given 1n and a randomly chosen function mapping {0, 1}n to
{0, 1}n, then D accepts.
Then |pD(n)− rD(n)| ≤ 1

nc for every c and sufficiently large n.

Note that D is allowed to base the queries it makes to the oracle on the answers it receives to
previous queries, and so in this way is permitted to be highly adaptive. The definition of pseudo-
random in the “nonuniform adversary” setting is very similar to the one above. In this case, D
would be a family {Dn} of deterministic, polynomial size circuits, but of a special type. We wish
to think of the input to Dn as a function f mapping {0, 1}n to {0, 1}n; formally, the only inputs to
Dn will be the constants 0 and 1; however, in addition to the normal boolean gates, Dn will have
special “function” gates with n input lines and n output lines. In the experiments defining rD(n)
or pD(n), Dn will be run with either its “function” gates interpreted as f where f is a randomly
chosen function (and the same f is used for all function gates), or interpreted as Fs for a randomly
chosen s (where the same f is used for all the function gates).

It turns out that pseudo-random function generators exist if and only if pseudo-random number
generators exist. The harder part of this theorem is showing how to use a pseudo-random number
generator to construct a pseudo-random function generator. The idea is as follows. Let G be a
pseudo-random number generator with length function l(n) = 2n. For an n bit seed (or key) s,

2

Figure 1: Example where n = 3.

consider the following tree: the root is labelled with s, and if a node has label t, then the the left
and right children are labelled with (respectively) the left and right halves of G(t). We define Fs(x)
to be the label of the leaf corresponding to the path x through the tree. This is usually referred to
as the GGM construction, after Goldreich, Goldwasser, and Micali.

Construction:
Let G be a number generator with l(n) = 2n. Define the function generator F as follows. Let s and
σ be n bit strings, σ = σ1σ2 · · ·σn; define Fs(σ) = Gσn(Gσn−1(· · · (Gσ2(Gσ1(s))) · · ·)) where G0(t) is
the left half of G(t) and G1(t) is the right half of G(t).

Theorem: There exists a pseudo-random number generator ⇐⇒ there exists a pseudo-random
function generator.

Proof of ⇐=:
Let F be a pseudo-random function generator. Define the number generator G by
G(s) = Fs(0̄)Fs(1̄), where if |s| = n, then 0̄ is the n bit representation of 0 (that is, the string of all
0’s), and 1̄ is the n bit representation of 1. It is easy to prove that G is a pseudo-random number
generator.

Proof of =⇒:
Assume there is a pseudo-random number generator. Then by a previous theorem, there is a pseudo-
random number generator with length function l(n) = 2n. Let F be the function generator from

3

the construction above. It is not too hard (nor is it too easy) to prove that F is pseudo-random.
Here is the basic idea. Assume we can break the pseudo-randomness of F . We want to describe

“hybrids” between the tree construction (using G) of depth n starting from a random string and
yielding 2n leaves, and the construction where we choose 2n random strings independently. We
let the ith hybrid be where we chose the ith level of the tree randomly and then, using the above
construction, let each be the root of a tree of depth n− i with 2n−i leaves.

Assume an adversary can distinguish between the case of examining the leaves of an i-th hybrid,
versus the case of examining the leaves of an i + 1-st hybrid. That is, an adversary can tell the
difference between examining the leaves of trees whose roots at level i have been chosen randomly,
versus trees where the two children of each such root have been chosen randomly. This adversary
allows us to break G using multiple sampling:
Whenever, for a node x at level i, a leaf of the tree rooted at x is queried for the first time (amongst
all leaves in this tree), then the next input string αβ is used to label the children of x, And then
G is used as above to answer all the queries to the leaves of this tree. If all the αβ were chosen
randomly, then this corresponds to the i+ 1-st hybrid; if all the αβ were chosen pseudo-randomly,
then this corresponds to the i-th hybrid.

Although we have specified that a function generator on a seed of length n must map n-bit strings
to n-bit strings, this is rather arbitrary. In general, we can permit Fs : {0, 1}l1(n) → {0, 1}l2(n) where
l1 and l2 are polynomially bounded functions of n = |s| and are easy to compute.1 The definition
of “pseudo-random” can be modified in the obvious way to apply to such generators.

It is easy to see that given a pseudo-random function generator F as originally defined, we
can construct a new pseudo-random function generator F ′ that on a seed of length n maps nc-bit
strings to nd-bit strings. Assume c ≥ d; we leave the case d > c as an exercise. We can define
F ′s(x) = the first nd bits of FG(s)(x) where G is a pseudo-random number generator with length
function nc, and we leave it as an exercise to prove that F ′ is pseudo-random. We will give some
alternative constructions below. From now on, when we say “if there exists a pseudo random
generator”, we mean the existence of a pseudo-random number or function generator.

1Technically, we want to assume that 2l1(n) · l2(n) > n, so that the generator will be length expanding.

4

DES and AES
The most famous examples of function generators assumed to be pseudo-random are DES and

AES. Technically speaking it is not right to call these function generators, since they are only
defined on a small number of key lengths and block size. Nonetheless, by calling them function
generators we hopefully make it clear what security property we want from them: it should be hard
for an adversary to distinguish between a randomly chosen function and a function that comes from
a randomly chosen key.

DES (standing for data encryption standard) was developed in the United States in the seventies.
For a 56-bit key k, DESk : {0, 1}64 → {0, 1}64. Our notion of security means that an adversary that
must run in “reasonable” time, will not be able to distinguish between DESk for random k, and a
truly randomly chosen function, except with “very small” probability. In practice, the adversarial
attacks that people use on DES are of the following form: given a black box for DESk, try to find
k – it is easy to tell when and if one has succeeded (by seeing if DESs gives the same answer as the
black box on a few arbitrary inputs), and you will hardly ever succeed in this way on a randomly
chosen black box. A “brute force” attack would look at a few values of the black box, and then
search through all possible DES keys, essentially taking about the time necessary to do 255 DES
evaluations. Much more clever algorithms take time about 245, but require about 245 evaluations of
the black box. All this is not of immediate practical relevance, since the clever attacks are not that
easy to do and the brute force attack is not that hard to do. And 64 is too small. Do you see why?

However the insights gained as a result of these attacks were used to fine-tune the successor
to DES, chosen around 2000 by NIST (the United States National Institute of Standards and
Technology) after a three year competition. This successor is called AES (for advanced encryption
standard), and is actually a collection of three standards comprising three different key lengths
and block size 128. For our purposes, we will view AES as having 128-bit keys; for each key k,
AESk : {0, 1}128 → {0, 1}128. AES is described at

http://csrc.nist.gov/groups/ST/toolkit/block_ciphers.html

and we will discuss both DES and AES in more detail later.

Expanding the Block Length of a Pseudo-Random Function Generator
Let’s say we have a function generator F which (as with AES), we only wish to apply with n-bit

keys for a specific n (and with n-bit block size). Now we want to create a pseudo-random function
generator F ′ with, say, an n-bit key generating functions that map 2n-bit strings to n-bit strings.
One way we can do this is by using the idea of the tree-like construction above. We can view F
as generating a tree with 2n leaves, and the input specifying a path to a leaf. If we then use each
leaf to also generate a tree with 2n leaves, we get a big tree with 22n leaves. We can express this
construction as F ′k(xy) = FFk(x)(y) (where |x| = |y| = |k|). We leave it as an exercise to prove that
F ′ is pseudo-random; the proof involves the construction of an intermediate hybrid. (It would be
convenient to first prove that a pseudo-random function generator is also pseudo-random against
multiple sampling.)

An alternative construction uses what is known as “cipher-block chaining”. It is:
F ′k(xy) = Fk(Fk(x) ⊕ y), where ⊕ means bit-wise exclusive-or. We leave it as an exercise to prove
that F ′ is pseudo-random; the proof involves the construction of only one intermediate hybrid
(instead of Fk, use a randomly chosen function from n bits to n bits), but it is reasonably difficult
and subtle.

5

All of the above ideas can be generalized and combined, in provably secure ways. For example,
we can generalize each of the above constructions to obtain pseudo-random F ′ that on n-bit keys
generates functions from nc bits to n bits. If we now want the output of our functions to consist of,
say, nd+1 bits, we can create a new generator F ′′ which uses keys consisting of nd subkeys of length
n as follows: F ′′k1k2...knd

(α) = F ′k1(α)F ′k2(α) . . . F ′k
nd

(α). If we would rather the key length were n

instead of nd+1, we can define F ′′′k (α) = F ′′G(k)(α) where G is a pseudo-random number generator

mapping n bits to nd+1 bits. In fact, we could use G(k) = Fk(1)Fk(2) . . . Fk(nd), where i is the n-bit
representation of integer i.2 All of these constructions can be proven secure using hybrid arguments.

We now give an example of a construction that does not work. If F is a function generator (that
on keys of length n maps n bits to n bits), define the function generator F ′ by F ′k(x) = Fk(k ⊕ x)
(where |x| = |k|, and ⊕ means bit-wise exclusive-or). A person might prefer to use F ′ instead of F ,
in the hopes that it would be somehow better. However, we can show that this construction does
not preserve pseudo-randomness, and hence F ′ might not be pseudo-random, even if F is.

Actually, we cannot really prove that there is a pseudo-random F such that F ′ is not pseudo-
random, since it is possible that there are no pseudo-random generators to start with. However,
if we assume that pseudo-random generators exists, then we can prove the existence of a pseudo-
random F such that F ′ is not pseudo-random. More specifically, we will show how to take an
arbitrary pseudo-random function generator H, and “pervert” it to form a pseudo-random function
generator F such that F ′ is not pseudo-random.

So let H be an arbitrary pseudo-random function generator that on keys of length n maps n
bits to n bits. Define the function generator F as follows: for every key k and input x of length n,
Fk(x) = Hk(x) if x 6= k;
Fk(x) = 0 if x = k.
Since Fk(k) = 0, we have F ′k(0) = 0, and so it is easy to see that F ′ is not pseudo-random.

It remains to show that F is pseudo-random. Assume otherwise. Let {Dn} be a polynomial size
family of circuits that breaks the pseudo-randomness of F ; define the probabilities pD(n) and rD(n)
in the usual way for {Dn}, and say |pD(n)−rD(n)| > 1/(nc) for infinitely many n. We will describe a
family {D′n} for breaking the pseudo-randomness ofH. Fix n such that |pD(n)−rD(n)| = ε > 1/(nc).

The idea is that if Dn is “likely” to evaluate Fk on k, then we can use Dn to find the key of
Hk, allowing us to break H. If, on the other hand, Dn is “unlikely” to evaluate Fk on k, then Dn

behaves essentially the same way on Fk as on Hk, and we can use this fact to break H. It turns out
that we can use, for example, “≥ ε/2” for “likely”.

Let q(n) be the probability that, if a random k ∈ {0, 1}n is chosen and Dn is given Fk (that is,
the function gates are interpreted as Fk), then at some point the query k is made.

We first consider the case that q(n) ≥ ε/2. Then define D′n as follows on function f . D′n
simulates Dn on f ; afterwards, for each query x that was made and for some query y that was
not made, D′n evaluates f(y) and computes Hx(y), and accepts if these two strings are equal; if
no such equality is found, then D′n rejects. We leave it as an exercise to show that D′n breaks the
pseudo-randomness of H.

We lastly consider the case that q(n) ≤ ε/2. In this case we just let D′n be Dn. We leave it as
an exercise to show that D′n breaks the pseudo-randomness of H.

We will see later that pseudo-random generators exist if and only if “one-way functions” exist, if

2Technically, we should say that i is the n-bit representation of integer i mod 2n. For practical values of n and d
however, we will always have nd < 2n.

6

only if secure shared-private-key cryptosystems exist, if and only if secure signature schemes exist,
and we have constructions for each direction of each of these theorems. In practice, a presumed
pseudo-random function generator – let’s say AES – is constructed directly, and then AES is used
to construct one-way functions, secure shared-private-key cryptosystems, “message authentication
codes”, pseudo-random number generators, and other kinds (see the previous paragraph) of pseudo-
random function generators.

In practice, signature schemes are constructed using ideas related to “public-key” cryptography,
rather than by using AES.

7

