
Computer Science 2426F Fall, 2018
St. George Campus University of Toronto

Notes #7 (for Lecture 9)

We now want to talk about public-key signature schemes. Before we do this, it will be useful to
discuss different security properties for families of hash functions. Recall that a family of hash
functions satisfies the privately collision resistant property defined above if, without seeing the key
or anything about the function except the parameter n, it is nearly impossible to find a pair of
distinct inputs that will hash to the same string. We can prove (without any assumptions) that
such families exist.

We will define a hash family to be “publicly collision resistant” if, even after seeing the key of the
hash function, a polynomial time adversary cannot (except with negligible probability) find a pair
of distinct inputs that hash to the same string. We will define a hash family to be “weakly publicly
collision resistant” if a polynomial time adversary cannot (except with negligible probability) choose
one input before seeing the key of the hash function, then see the key of the hash function, then
choose a second input, such that the two inputs hash to the same string.

Definitions: (Nonuniform adversary setting)
By a family of hash functions H we mean that for a key length l(n) (that can be computed, in unary,
in time polynomial in n), we associate with every l(n)-bit key k, a function Hk : {0, 1}∗ → {0, 1}n;
it must be the case that given k and x, Hk(x) can be computed in time polynomial in n and |x|.
(We assume that l(n) uniquely determines n.)

• We say H is publicly collision resistant if the following holds for every {Cn}.
Let {Cn} be a polynomial size family of circuits, such that Cn has l(n) input bits, and such
that Cn outputs two binary strings s and t; the lengths of s and t may depend upon the input
to Cn. (Note that since from a strictly syntactic point of view Cn must output a string of
fixed length, we will view this syntactic output as coding for s and t in some natural way.)
Let p(n) be the probability that, if a random l(n) bit string k is chosen and given to Cn, and
Cn outputs s and t, then s 6= t and Hk(s) = Hk(t).
Then p(n) ≤ 1

nc
for each c and sufficiently large n.

• We say H is weakly publicly collision resistant if the following holds for every {Cn, sn}.
Let {sn} be a polynomial size family of strings and let {Cn} be a polynomial size family of
circuits, such that Cn has l(n) input bits, and such that Cn outputs a binary string t; the
length of t may depend upon the input to Cn.
Let p(n) be the probability that, if a random l(n) bit string k is chosen and given to Cn, and
Cn outputs t, then sn 6= t and Hk(sn) = Hk(t).
Then p(n) ≤ 1

nc
for each c and sufficiently large n.

(Note that in the uniform adversary model, the adversary is given 1n, computes (probabilis-
tically) for polynomial in n steps, outputs s, sees k, outputs t.)

We do not know how to prove the existence of publicly collision resistant hash families merely by
assuming that one-way functions or pseudo-random generators exist. The most usual assumption is

1

the stronger assumption that “claw-free families” exist. These can be proven to exist from certain
assumptions about the computational difficulty of integer factorization; the reader can consult
Chapter 2 of Goldreich for more information on this. In practice, if one wants to choose a random
function from a publicly collision resistant hash family, one just uses a fixed, “standard” function
such as MD5 : {0, 1}∗ → {0, 1}128 or SHA-1 : {0, 1}∗ → {0, 1}160 or SHA-2(256) : {0, 1}∗ → {0, 1}256
or SHA-3(256) : {0, 1}∗ → {0, 1}256. The implied belief is that the function has been chosen at
random from a suitable family, even though it is not really clear how it was chosen, or why. At
this time, MD5 has been badly broken, and SHA-1 has been somewhat broken. (SHA stands for
“secure hashing algorithm”. Both SHA-2 and SHA-3 come in 4 versions, enabling output sizes of
224, 256, 384 or 512 bits. SHA-3 is the most recent of these, having been accepted as a standard
by NIST only in October, 2012. The NIST web site contains complete details of these algorithms.)

We can, however, use one-way functions to construct weakly publicly collision resistant hash
families, which in turn can be used to construct secure public-key signature schemes. However,
neither of these constructions are used in practice. Instead, one uses something like SHA-3(256) for
collision-resistance, and something like the DSS (for Digital Signature Standard) for signatures.

Theorem: (Naor and Yung, Rompel) If one-way functions exist, then weakly publicly collision
resistant hash families exist.

Proof: Difficult and omitted.

Definition: A public-key signature scheme S consists of the following.

• A generating function GEN. GEN has as input a string 1n together with random bits, and
should be computable in time polynomial in n. The output of GEN is a pairs of strings pub
(a public key) and pri (a private key). We assume that the lengths of pub and pri depend
only on n, and that n is determined by either of these lengths.

• A signing algorithm SIGN that has as input a key pri (generated from security parameter n)
and a message m ∈ {0, 1}∗. SIGN should be computable in time polynomial in the lengths
of the inputs; we allow SIGN to be probabilistic (that is, to have random bits as input). We
write SIGN pri(m) for SIGN (pri,m). The length of SIGN pri(m) should depend only on the
security parameter n, and not on the length of the message being signed. (Although it is no
loss of generality to assume that |SIGN pri(m)| = n, it will be convenient not to insist on this.)

• A verifying function VER that has as input a key pub, a messagem and a supposed signature σ,
and outputs a single bit. VER should be computable in time polynomial in the lengths of the
inputs. It should be the case that for every n, and for every pair (pub, pri) that can be output
by GEN on 1n, and for every message m, if σ = SIGNpri(m), then V ER(pub,m, σ) = 1.

Definition: (Nonuniform adversary setting)
A signature scheme S is secure if the following holds for every adversary A:

Let A = {An} be a polynomial size family of circuits. An has as input a string pub; An creates
a binary string m0 and sees an n-bit string σ0; An then creates a binary string m1 and sees an n-bit
string σ1; this continues for some (polynomial in n) number of stages; (if signing is probabilistic,
then An may choose to create the same binary string more than once); at the end, An outputs a
string m and an n-bit string σ, such that m is different from every mi.

Consider the following experiment. A pair (pub, pri) is randomly generated from 1n using GEN;
then An is run on pub, and for each mi that is created, we give σi = SIGN pri(mi) to An; eventually

2

An outputs m (different from every mi) and σ.
Let p(n) be the probability that VER(pub,m, σ) = 1.
Then p(n) ≤ 1

nc
for each c and sufficiently large n.

Theorem: (Goldwasser,Micali,Rivest) If one-way functions exist, then (deterministic) secure sig-
nature schemes exist.

Proof: The rather complicated construction is outlined below.

The construction proceeds in a number of stages. We will explain each stage below for security
parameter n.

First, assume that we have a signature scheme S which is secure with respect to the signing of
messages that have length exactly n; that is, adversaries for S are only allowed to see signatures
of messages of length n, and must try to forge a message of length n; say that the algorithms of S
are GEN, SIGN, VER. We wish to construct a signature scheme S ′ that will be secure for signing
messages of arbitrary lengths.

One way we can do this is by using a publicly collision resistant hash family H. To generate
a key pair for S ′, we generate a key pair (pub, pri) for S and a key k for H (assuming security
parameter n); the public key for S ′ will then be [pub, k] and the private key will be [pri, k]. The
signature of a string m in S ′ will be σ′ = SIGN pri(Hk(m)). We verify σ′ in S ′ by checking that
VER(pub,Hk(m), σ′) holds. We leave it as an exercise to prove that this is secure. The only problem
with the above construction is that it assumes a publicly collision resistant hash family, and we don’t
know how to prove that these exist by only assuming the existence of a one-way function.

We will therefore give an alternative way of constructing S ′ from S that only uses a weakly
publicly collision resistant hash family, H. We generate a key pair for S ′ by choosing a key pair
(pub, pri) for S, and using the same pair for S ′. The signature of message m in S ′ will be computed
as follows. First we choose a random key k for H (assuming security parameter n). The signature
for m in S ′ will then be the pair σ′ = (k, SIGNpri[k,Hk(m)]). We verify σ′ = (k, σ) in S ′ by
checking that VER(pub, [k,Hk(m)], σ) holds. We leave the proof of security as an exercise.

Actually, we have cheated in two ways here. For one thing, we assumed that the length of
messages being signed by S was not n, but rather n plus the length of a key for H (on security
parameter n). This is not a problem, as the construction for S (see below) can be easily modified
to sign messages of this particular length. (Alternatively, one can choose H so that on security
parameter n, |k|+ |Hk(m)| = n.)

A more serious problem is that the signing process we have described for S ′ is in reality a
probabilistic algorithm, whereas our theorem specifies that it should be deterministic. We can fix
this as follows. We create from S ′ a deterministic scheme S ′′. We let the private key for S ′′ contain,
in addition to the private key of S ′, an n bit seed s for a pseudo-random function generator F ′,
such that F ′s : {0, 1}∗ → {0, 1}l(n) where l(n) is length of a key for H (on security parameter n).
Then instead of using a random k when we sign m as in S ′, we will use k = F ′s(m). Again, we leave
the proof of security as an exercise.

We now want to show how to create a signature scheme that is secure for signing messages of
length n. (Note that not all of this construction was presented in class.)

First we construct a signature scheme S1 that is only for signing a single, n bit message. That
is, the adversary gets to see one n bit message of his choice signed, and then must try to forge the
signature of a new n bit message. We assume we have a one-way function f : {0, 1}n → {0, 1}n.

3

To generate a key pair, we choose 2n random n bit strings: x01, x
1
1, x

0
2, x

1
2, · · · , x0n, x1n. We then

compute ybi = f(xbi) for b ∈ {0, 1} and 1 ≤ i ≤ n. We then assign pub = (y01, y
1
1, y

0
2, y

1
2, · · · , y0n, y1n)

and pri = (x01, x
1
1, x

0
2, x

1
2, · · · , x0n, x1n).

To sign the n bit message m = b1b2 · · · bn, we compute SIGN 1
pri(m) = (xb11 , x

b2
2 , · · · , xbnn).

To verify, we do the obvious thing. VER1(pub,m, σ) = 1 if and only if σ consists of n, n-bit
strings σ = (σ1, σ2, · · · , σn) and f(σ1) = yb11 , f(σ2) = yb22 , · · · , f(σn) = ybnn . It is not hard to show
that S1 is secure in the desired sense.

We will now construct a signature scheme S2 that is secure for signing (any number of) n-bit
messages. We assume we have the above scheme S1, as well as a pseudo-random function generator
F and a weak publicly collision resistant family H.

We generate a key pair as follows. First we choose a random n-bit seed s for F ; then we choose
a key pair (pub, pri) for S1; then we choose a random key k for H. The public key for S2 will then
consist of pub and k; the private key will consist of s, pri and k.

Signing an n bit message will be complicated. First, imagine the depth n+ 1 binary tree, where
we identify each node with a binary string of length ≤ n + 1; the root is λ, the empty string; the
children of α are α0 and α1. We want to identify with each node α a pair (pubα, priα). We do this
by setting pubλ = pub and priλ = pri. For the other nodes α, we would like to generate values
randomly, using the generating algorithm for S1. Instead we generate them pseudo-randomly using
Fs. We assume that Fs(α) is long enough, and we use Fs(α) as the random bits needed to generate
(pubα, priα) for S1. The idea is that the message to be signed will determine a path through the
tree, and we will sign the message by giving a chain of signatures, at each node in the path signing
a hash of the public information at the two nodes beneath it.

For each α of length ≤ n, let σα = pubα0, pubα1SIGN 1
priα(Hk[pubα0, pubα1]). If we want to sign

an n bit message m in S2, let mi be the i bit prefix of m, for 0 ≤ i ≤ n; the signature of m is
defined to be the sequence σm0 , σm1 , · · · , σmn . The Verification algorithm works in the obvious way.

We will now informally discuss why S2 is secure.
Imagine that the values at each node were generated using randomly, rather than pseudo-randomly,
generated bits. Each node is used in exactly one way, namely to sign (using S1) the public infor-
mation of its children; the information at each node is randomly generated, and only used to sign
(in S1) exactly one message, although that same signature may appear in the signatures for many
different m in S2. Therefore, because of the security of S1, to forge a signature for a new message in
S2, it will be necessary, for some α of length at most n, to compute [pub′α0, pub

′
α1] 6= [pubα0, pubα1]

such that Hk[pub
′
α0, pub

′
α1] = Hk[pubα0, pubα1]. Note that [pubα0, pubα1] is generated completely

independently of k. Therefore, an algorithm for finding such a [pub′α0, pub
′
α1] would break the weak

public collision resistance of H.

4

