
Computer Science 2426F Fall, 2018
St. George Campus University of Toronto

Notes #3 (for Lecture 6)

Pseudo-Random Function Generators With Unbounded Inputs
We now want to discuss a more general kind of pseudo-random function generator, where the

functions generated are defined on inputs of all lengths.

Definition: (See Goldreich, section 3.6.4.2 .)
A function generator F with unbounded inputs associates with each n bit key k ∈ {0, 1}n a function
Fk : {0, 1}∗ → {0, 1}n. We insist that Fk(x) be computable in time polynomial in the lengths of k
and x.

By pseudo-random for such a generator, we mean the obvious thing: the Distinguisher adversary
D is given a function f : {0, 1}∗ → {0, 1}n and can query f on inputs of any length (although since
the adversary runs in polynomial time, the queries must be of polynomial length). We define pD(n)
as the probability that D accepts Fk for randomly chosen k ∈ {0, 1}n. It is a bit trickier to define
rD(n) because it doesn’t make sense to say, “choose a random function f : {0, 1}∗ → {0, 1}n” since
there are infinitely many such functions. So let us assume that D (for key length n) never makes
queries longer than ne, and let {0, 1}≤ne

be the set of strings of length at most ne. We can now
define rD(n) as the probability that D accepts a randomly chosen f : {0, 1}≤ne → {0, 1}n.

We will now discuss a number of ways of constructing a pseudo-random function generator
with unbounded inputs. (Yet another way is described in Goldreich.) Sometimes it will be more
convenient (or more efficient) to construct a function generator F such that for k ∈ {0, 1}n, Fk is only
defined on inputs of length divisible by n, that is, Fk : ({0, 1}n)∗ → {0, 1}n. Given such a pseudo-
random generator F , we can construct one whose functions are defined on all input lengths, as
follows. Let e : {0, 1}∗ → ({0, 1}n)∗ be a one-one, easy to compute function; define, for k ∈ {0, 1}n,
F ′
k(x) = Fk(e(x)) for x ∈ {0, 1}∗. (For example, we can let e(x) = 0m1x where m is the smallest

nonnegative integer such that |0m1x| is divisible by n.) We leave it as an exercise to prove that F ′

is pseudo-random.

Construction 1:
Say that F is a “normal” pseudo-random function generator, that is, for k ∈ {0, 1}n,
Fk : {0, 1}n → {0, 1}n. Using the intuition from the previous lecture, define for k ∈ {0, 1}n,
F ′
k : ({0, 1}n)∗ → {0, 1}n by:

• F ′
k(λ) = k where λ is the empty string.

• F ′
k(xy) = FF ′

k(x)
(y) if y ∈ {0, 1}n and x ∈ ({0, 1}n)∗.

Is F ′ pseudo-random? As discussed in the previous notes, F ′ is pseudo-random with respect to
adversaries that are restricted so that for any given input function f , all of the adversary’s queries to
f are of the same length. (Exercise: prove this.) What about adversaries that are not so restricted?
Clearly F ′ is not pseudo-random: if f : ({0, 1}n)∗ → {0, 1}n is pseudo-randomly generated then for
any y ∈ {0, 1}n and x ∈ ({0, 1}n)∗, f(xy) = Ff(x)(y).

1

We can fix this up by (properly) incorporating the length of the input string into our generator.
For x ∈ ({0, 1}n)ℓ, let ℓ be the n-bit representation of ℓ 1 and define F ′′

k (x) = F ′
k(ℓx) = F ′

Fk(ℓ)
(x).

Exercise: Prove F ′′ is pseudo-random (against unrestricted adversaries).
Exercise: Prove that if we had defined F ′′

k (x) = F ′
k(xℓ) then F ′′ would not be pseudo-random.

In fact, this method of incorporating the length can be used more generally. Say we are given
a function generator F ′ with unbounded inputs, and say that F ′ is pseudo-random with respect to
adversaries that are restricted so that for any given input function f , all of the adversary’s queries
to f are of the same length. We can then define F ′′

k (x) = F ′
F ′
k(ℓ)

(x) where ℓ is the length of x.

Exercise: Prove F ′′ is pseudo-random (against unrestricted adversaries).

Construction 2: We use cipher-block chaining.
Say that F is a “normal” pseudo-random function generator, that is, for k ∈ {0, 1}n,
Fk : {0, 1}n → {0, 1}n. Using the intuition from the previous lecture, define for k ∈ {0, 1}n,
CBCk : ({0, 1}n)∗ → {0, 1}n by:

• CBCk(λ) = Fk(0) where λ is the empty string.

• CBCk(xy) = Fk(y ⊕ CBCk(x)) if y ∈ {0, 1}n and x ∈ ({0, 1}n)∗.

Is CBC pseudo-random? As above, CBC is pseudo-random with respect to adversaries that are
restricted so that for any given input function f , all of the adversary’s queries to f are of the
same length. (Difficult Exercise: prove this.) What about adversaries that are not so restricted?
Clearly CBC is not pseudo-random: if f : ({0, 1}n)∗ → {0, 1}n is pseudo-randomly generated then
f(f(λ)) = f(λ).

As above, we can fix this up by defining
F ′′
k (x) = CBCFk(ℓ)

(x) where x ∈ ({0, 1}n)ℓ.
Alternatively, we can define
F ′′
k (x) = CBC(ℓx).

Alternatively, we can change the base case of CBC so that on λ it evaluates to Fk(ℓ) where ℓ is the
length of the input we are ultimately interested in.
Any of these constructions yield F ′′ pseudo-random against unrestricted adversaries. The reader
should try to prove these statements. The proof of the last two are especially subtle. The reader
should note, and try to prove, that if we had defined
F ′′
k (x) = CBC(xℓ) then F ′′ would not be pseudo-random against unrestricted adversaries (no matter

what function generator F we started with).

Construction 3: A third way of creating a pseudo-random function generator with unbounded
inputs, is by “hashing” the input down (or up) to a string of length exactly n, and then applying a
normal pseudo-random function generator. By “hashing”, we mean applying a function chosen at
random from a family that satisfies a particular type of randomness property. For the construction
described here, we need the family to be “privately collision resistant”. The family will contain
functions mapping {0, 1}∗ to {0, 1}n and have the property that if a random function is chosen from
the family and you don’t know what it is, then you will not be able to find two strings that map to
the same string.

Definition: A privately collision resistant hash family H satisfies the following.

1A technicality: in order for this to technically make sense for all values of ℓ, we should let ℓ be the n-bit
representation of ℓ mod 2n.

2

• For each security parameter n, for every key k of length n there is a function
Hk : {0, 1}∗ → {0, 1}n. There is an algorithm that given k and m, runs in time polynomial in
n and |m| and computes Hk(m).
(In practice, we may allow the keys associated with security parameter n to be of length some
polynomial in n, rather than of length exactly n.)

• The security property says that no two distinct strings of length polynomial in n have a
significant chance of mapping to the same string by a random Hk. More formally:
for every c and e, for sufficiently large n, for every two distinct strings m1 and m2 of length
at most nc, if a random k of length n is chosen, then the probability that Hk(m1) = Hk(m2)
is ≤ 1

ne .

Theorem: Let F be a (normal) pseudo-random function generator, and let H be a privately
collision resistant hash family. Define the function generator F ′ as follows such that on a key k of
length 2n, F ′

k will map {0, 1}∗ to {0, 1}n. Let k1 and k2 be strings of length n; for every m ∈ {0, 1}∗
define F ′

k1k2
(m) = Fk2(Hk1(m)).

Then F ′ is pseudo-random.

Proof: This is not hard, and is left as an exercise.

It is not hard to construct (provably) privately collision resistant hash families. Here is one way.
View an n-bit key as an integer α, and for every bit string m, let m′ be the integer resulting from
adding a 1 on to the left of m. We then define Hα(m) = the n-bit representation of (m′ mod α).
If an adversary can (without seeing α) construct distinct strings m1 and m2 that hash to the same
thing, then he can find a non-zero integer m′ (namely the absolute value of m′

1 − m′
2) such that

m′ mod α = 0, that is, α divides m′. But since every integer m′ of length polynomial in n is only
divisible by an exponentially small fraction of the n bit numbers, it is very unlikely that m′ will be
divisible by α.

Here is another way (not discussed in class) to construct a (provably) privately collision resistant
hash family. First, assume that for each n we have an n bit prime number pn > 2n−1. For security
parameter n, a key will be a random n− 1 bit string α; we wish to view α as an integer less than
pn. We now want to define Hα : {0, 1}∗ → {0, 1}n. Let m = m0m1 · · ·md−1 be a d bit string. We
define Hα(m) = (αd +

∑d−1
i=0 miα

i) mod pn.
Another way to look at this is that we associate with each stringm the distinct formal polynomial

Qm(u) = m0+m1u+m2u
2+ · · ·+md−1u

d−1+ud, where we view this as a polynomial over the ring
Zpn = {0, 1, · · · , pn − 1}, where arithmetic is performed mod pn; we then have Hα(m) = Qm(α).

Say now that m1 and m2 are two distinct messages, each of length at most nc. Then Hα(m1) =
Hα(m2) if and only if (Qm1 −Qm2)(α) = 0 where Qm1 −Qm2 is a nonzero polynomial of degree at
most nc. This means that Qm1 − Qm2 can have at most nc roots in Zpn . There are 2n−1 possible
values for α, so the probability is at most nc

2n−1 that a random α will cause (Qm1 −Qm2)(α) = 0.
Note that a more efficient version of this idea is to view m not as a sequence of bits, but rather

as a sequence of n − 1 bit integers, and to treat these integers as the coefficients of a polynomial.
We could also use Horner’s method to evaluate the polynomial more efficiently:
Hα(m) = ((α +md−1) · α +md−2) · α +md−3

Note that in this and the previous example of a hash family, Hα(m) can be evaluated from left
to right as the blocks of m come in, so it is not necessary to know all of m – or even the length of
m – in advance.

3

This polynomial evaluation example of a hash family doesn’t exactly conform to our definition
since we didn’t say where the primes {pn} come from. If we wanted to make it conform, we could
do the following. We “simply” include in the key all the random bits we need to select a prime pn;
these would include all the randomness involved in choosing random numbers and testing them for
primality. (Alternatively, we could merely include a seed for a pseudo-random number generator
that generates these bits.) Note that it wouldn’t hurt if all these random bits, as well as pn, were
made public and fixed for all time. We therefore treat these primes as pre-existing, and not as part
of the key.

Message Authentication Codes
One important application of pseudo-random function generators with unbounded inputs is to

“shared-private-key signature schemes” where two people share a secret key that allows one of them
to sign messages to the other. Rather than define this concept carefully, we will instead define the
special case known as “message authentication codes”, or MACs.

Formally, a MAC is just a function generator F with unbounded inputs. We say a MAC is
secure if a polynomially bounded adversary, given oracle access to f = Fk for randomly chosen
k ∈ {0, 1}n, is unable, except for negligible probability, to predict the value of f(x) for some x for
which f has not been queried. (We leave it as an exercise for the reader to give a more formal
definition.) It is clear that every pseudo-random function generator is also a secure MAC, although
the converse is not true.

A secure MAC can be used as follows. Say that two people have shared a secret random key k.
One of them can “sign” a string x to the other by sending (together with x itself) the “signature”
σ = Fk(x); the other can verify the signature by checking that σ = Fk(x). An adversary should not
be able to sign any string that he has not already seen signed.

In some settings, the length of string to be MACed will be fixed. Also, in some settings, the
good guys will only ever MAC one string; in this case, it is possible to have a secure MAC without
any complexity theory assumptions.

Pseudo-Random Permutation Generators
Before discussing encryption and sessions, we will discuss one more kind of pseudo-random

generator which is sometimes used in encryption.

Definition: Let F be a function generator where, for k ∈ {0, 1}n, Fk : {0, 1}n → {0, 1}n. We say
F is a permutation generator if each Fk is one-one (and hence onto) and easy to invert, given k.
That is, the function that for k, α ∈ {0, 1}n maps (k, α) to F−1

k (α) is polynomial-time computable.

Our definition of “pseudo-random” for a permutation generator is the same as for any function
generator: an adversary shouldn’t be able to tell the difference between a randomly generated
function and a pseudo-randomly generated function. Note that it wouldn’t have mattered if we
had replaced the word “function” in the preceding sentence by the word “permutation”, since we
certainly (in a polynomial in n number of queries) cannot tell the difference between a randomly
generated function and a randomly generated permutation from {0, 1}n to {0, 1}n.

However, for many applications, we need a stronger definition of pseudo-randomness for a permu-
tation generator.

Definition: Let F be a permutation generator. A strong adversary for F is given a black box for a
permutation f : {0, 1}n → {0, 1}n as well as a black box for f−1; pD(n) is defined as the probability
that D accepts (f, f−1) for a pseudo-randomly generated f , and rD(n) is defined as the probability

4

that D accepts (f, f−1) for a randomly chosen permutation f ; the adversary must be polynomial
size (in the nonuniform setting) or probabilistic polynomial-time (in the uniform setting).

We say F is strongly pseudo-random if for every strong adversary D, all c and sufficiently
large n, |pD(n)− rD(n)| ≤ 1/nc.

We will see later how to use an arbitrary pseudo-random function generator to construct a
strongly pseudo-random permutation generator. We will also see that DES and AES are defined in
such a way that they are automatically permutation generators.

Secure Sessions
We will now talk in detail about one of the main applications of pseudo-random generators:

shared-private-key cryptosystems, or sessions.
We have two good guysA andB who have shared a random n bit key k. A wishes to communicate

a (long) message to B using an insecure channel. More accurately, a “process” spawned by A is
communicating (or trying to) with a “process” spawned by B; we call this a session. Keep in mind
that there is only one message we are concerned with, but it can be very long and it consists of
everything the A-process wishes to say during the seconds or minutes or centuries that the session
lasts.

In the simpler setting, the adversary is able to listen in on the channel, but not interfere with it
at all. He is trying to break privacy by learning something about the message that he “shouldn’t
know”. Who is choosing the message? We will let the adversary choose the message (“chosen
plain-text attack”) except for one bit that he will try to guess. The adversary will chose a piece of
the message, see the encryption, chose the next piece, see the encryption, etc. Thus, the adversary
in effect completely determines the environment in which the session is taking place.

In the more complicated and more realistic setting, the adversary is able to completely control
the bits on the channel, adding and deleting and changing them at will. In this setting the adversary
is trying to do one of two different things, and the system is insecure if he is successful at either
one. One thing he may try to do is break privacy, but the definition is now more complicated. The
other thing he may try to do is break integrity by tricking B into outputting something wrong.

5

key

message bits . . .

BA

ADV ERSARY

Consider the following example, that we will also talk about later in more detail.
We have a pseudo-random permutation generator F .
The key k is of length n, and the message consists of a sequence of n-bit pieces m0,m1,
A encrypts this by sending e0 = Fk(m0), e1 = Fk(m1), . . . and B decrypts in the obvious way.

This system certainly doesn’t satisfy integrity, since the adversary can replace e0, e1, . . . with
anything he likes, and B will still decrypt without complaining.

But it also doesn’t satisfy privacy. It is easy for an adversary to tell which message pieces are
equal to which other message pieces.

6

