
Computer Science 2426F Fall, 2018
St. George Campus University of Toronto

Notes #1.5
Removing Randomness From Nonuniform Adversaries

Probabilistic Nonuniform Adversaries
The goal of this note is to prove the exercise from the bottom of Page 1 of Notes #1. We want to

show that for adversaries against pseudo-randomness, nonuniform adversaries that use randomness
are no more powerful than nonuniform adversaries that are deterministic – that is, that do not use
randomness. (A similar theorem will be true about nonuniform adversaries in other settings.)

So let G be a number generator, where |G(s)| = l(|s|). What do we mean by a nonuniform
adversary that uses randomness? We mean a family D = {D1, D2, . . . } of circuits; Dn has l(n)
input bits and one output bit; for some c and sufficiently large n, Dn has size ≤ nc. In addition
to the usual gates, Dn is allowed to use coin-tossing gates, where a coin-tossing gate has no inputs
and chooses its output bit randomly whenever the circuit is run. pD(n) and rD(n) now mean the
obvious things. For example, to define pD(n) we consider the following experiment:
Choose a random n−bit string s; compute G(s); run Dn on G(s), choosing the outputs of the
coin-tossing gates randomly.
Then pD(n) is the probability that D accepts (that is, outputs 1).

Say (w.l.o.g) that pD(n)− rD(n) > 0. We wish to show that there is a deterministic circuit D′

that is no bigger than D, such that pD′(n)− rD′(n) ≥ pD(n)− rD(n). We will do this by fixing the
outputs of the coin-tossing gates appropriately.

Say that Dn has m coin-tossing gates. For each m−bit string u, define pD(n, u) to be the
probability that D accepts in the above experiment when the coin-tossing gates are fixed to output
u (that is, the first coin-tossing gate always outputs the first bit of u, the second one always outputs
the second bit of u, etc.). Define rD(n, u) similarly. We now have

pD(n) = Eu(pD(n, u)) and rD(n) = Eu(rD(n, u))

where Eu(α) is the expected (or average) value of α as u varies randomly over m−bit strings. We
therefore have (by the additivity of expectations)

pD(n)− rD(n) = Eu(pD(n, u)− rD(n, u))

So there must be some u – call it u0 – such that

pD(n, u0)− rD(n, u0) ≥ Eu(pD(n, u)− rD(n, u)) = pD(n)− rD(n)

We now form the deterministic circuit circuit D′ by fixing the output wires of the coin-tossing gates
to be u0. We have

pD′(n)− rD′(n) = pD(n, u0)− rD(n, u0) ≥ pD(n)− rD(n)

How can we find an appropriate u0. In fact, we have no efficient, deterministic way to do this.
The whole point of nonuniformity is that we don’t have to have a way of finding u0; u0 is hardwired
into the circuit.

1

