Solutions for Homework Assignment #2

Answer to Question 1.
Suppose that F' is not pseudo-random (against unrestricted adversaries). We will show how to break the pseudo-randomness of F with a restricted adversary; we will either break the inner application of F or the outer application.

Assuming the nonuniform model, Let $D = \{D_n\}$ be an adversary for distinguishing F' and define $p_D(n)$ and $r_D(n)$ in the usual way. Say (without loss of generality) that $p_D(n) - r_D(n) > 1/n^c$ for infinitely many n. Consider such an n.

Now consider the following additional experiment.
Choose a random function f that maps $\{0,1\}^n$ to $\{0,1\}^n$;
then define function $f' : \{0,1\}^* \rightarrow \{0,1\}^n$ as follows: for $x \in \{0,1\}^*$, $f'(x) = F_{f(\ell)}(x)$, where
\[
\ell \text{ is the } n \text{-bit representation of the length of } x;
\]
run D_n with its function gates interpreted as f'.
Define $q_D(n)$ to be the probability that D_n accepts.

Then at least one of the following must hold:
\begin{itemize}
 \item $p_D(n) - q_D(n) > \frac{1}{2n^c}$
 \item $q_D(n) - r_D(n) > \frac{1}{2n^c}$
\end{itemize}
This gives rise to the following two cases:

Case 1: $p_D(n) - q_D(n) > \frac{1}{2n^c}$.
We will describe a circuit C_n for distinguishing F. C_n will be restricted to only make queries of length n, so we will view C_n as operating on a function $f : \{0,1\}^n \rightarrow \{0,1\}^n$. (That is, its function gates are interpreted as f.) C_n will run D_n with D_n’s function gates interpreted as f' where $f'(x) = F_{f(\ell)}(x)$ where ℓ is the n-bit representation of the length of x, and C_n will accept iff D_n accepts.

Let $p_C(n)$ be the probability that if k is randomly chosen from $\{0,1\}^n$ and C_n is run with its function gates interpreted as F_k, then C_n accepts. Clearly, $p_C(n) = p_D(n)$.

Let $r_C(n)$ be the probability that if f is a randomly chosen function mapping $\{0,1\}^n$ to $\{0,1\}^n$ and C_n is run with its function gates interpreted as f, then C_n accepts. Clearly, $r_C(n) = q_D(n)$.

Then $p_C(n) - r_C(n) > \frac{1}{2n^c}$.

Case 2: $q_D(n) - r_D(n) > \frac{1}{2n^c}$.
Since $\{D_n\}$ is a polynomial-size family, there must exist a polynomial $l(n)$ such that for all n, each query made by D_n to its function gates is no longer than $l(n)$ bits. Assume n is sufficiently large so that $l(n) < 2^n$ (so that every length $\leq l(n)$ has a unique n bit representation).

We begin by describing a sequence of experiments that are hybrids between the experiment that gives rise to $r_D(n)$ and the experiment that gives rise to $q_D(n)$. The idea for the i-th experiment
is that if \(|x| \leq i\), we will use a truly random key \(s_{|x|}\) depending on the length of \(x\) and compute \(F_{s_{|x|}}(x)\); we will compute a random function of \(x\) otherwise.

So for \(-1 \leq i \leq l(n)\), consider the following experiment:

Select \(i + 1\) strings \(s_0, s_1, ..., s_i\) randomly from \(\{0, 1\}^n\);
select a random function \(f\) that maps strings of length \(\leq l(n)\) to \(\{0, 1\}^n\);
then define function \(f'\) that maps strings of length \(\leq l(n)\) to \(\{0, 1\}^n\) as follows:

for \(x \in \{0, 1\}^*\), if \(|x| \leq i\) then \(f'(x) = F_{s_{|x|}}(x)\), and if \(|x| > i\) then \(f'(x) = f(x)\);
run \(D_n\) with its function gates interpreted as \(f'\);
define \(q_i(n)\) to be the probability that \(D_n\) accepts.

Clearly, \(q_{-1}(n) = r_D(n)\). Also, note that the experiment that gives rise to \(q_{l(n)}(n)\) is equivalent to the experiment that gives rise to \(q_D(n)\) (the main idea is that for each input length we randomly select a seed for \(F\), and hence \(q_{l(n)}(n) = q_{D}(n)\)). So there exists an \(i\), \(-1 \leq i < l(n)\), such that \(q_{i+1} - q_i > \frac{1}{2(l(n) + 1)^{n^e}}\); fix such an \(i\).

We now describe a probabilistic circuit \(C_n\) for distinguishing \(F\), such that \(C_n\) is restricted to having all of its function queries the same length, namely \(i + 1\). The function gates of \(C_n\) are interpreted as some function \(g: \{0, 1\}^{i+1} \rightarrow \{0, 1\}^n\). \(C_n\) will choose \(i + 1\) strings \(s_0, s_1, ..., s_i\) randomly from \(\{0, 1\}^n\). \(C_n\) will then simulate \(D_n\). However, \(C_n\) will handle \(D_n\)'s function gate queries in a special way, depending on the length of the query. When the query \(x\) is of length \(\leq i\), \(C_n\) will use \(F_{s_{|x|}}(x)\) as the result of the query. When the query \(x\) is of length \(i + 1\), \(C_n\) will use one of its own function gates to answer the query, that is, the result of the query will be \(g(x)\). Finally, for each new query of length \(> i + 1\), \(C_n\) will select a string randomly from \(\{0, 1\}^n\) and use this string as the result of the query. \(C_n\) will accept iff \(D_n\) accepts. It is important to note that only queries of length \(i + 1\) are made to \(C_n\)'s function gates, so all queries to \(g\) are of this same length.

Let \(p_C(n)\) be the probability that if \(k\) is randomly chosen from \(\{0, 1\}^n\) and \(C_n\) run with its function gates interpreted as \(F_k\), then \(C_n\) accepts. Clearly, \(p_C(n) = q_{i+1}(n)\).

Let \(r_C(n)\) be the probability that if \(g\) is a randomly chosen function mapping \(\{0, 1\}^{i+1}\) to \(\{0, 1\}^n\) and \(C_n\) is run with its function gates interpreted as \(g\), then \(C_n\) accepts. Clearly, \(r_C(n) = q_i(n)\).

Then, \(p_C(n) - r_C(n) > \frac{1}{2(l(n) + 1)^{n^e}}\). By appropriately fixing the random bits of \(C_n\) we can make a normal, deterministic circuit \(C'_n\) that does at least as well as \(C_n\) as an adversary against \(F\).

Answer to Question 2. The main idea we will use is that for all \(k\), we have \(F'_k(\overline{0} F'_k(\lambda)) = F'_k(2 F'_k(\overline{0} F'_k(\lambda)))\). However, for a random function \(f\), it is extremely unlikely that we will have \(f(\overline{0} f(\lambda)) = f(2 f(\overline{0} f(\lambda))).\)

We begin by showing that for all \(n\), if \(k\) is an \(n\) bit string then \(F'_k(\overline{0} F'_k(\lambda)) = F'_k(2 F'_k(\overline{0} F'_k(\lambda)))\).

So let \(k \in \{0, 1\}^n\).

We have:

\[
F'_k(\overline{0} F'_k(\lambda)) = F'_k(\overline{0} \ CBC(\overline{0}))
= F'_k(\overline{0} \ F_k(F_k(\overline{0})))
= CBC(\overline{0} \ F_k(F_k(\overline{0}))) \ 2
= F_k(2 \oplus F_k(F_k(\overline{0}))) \oplus F_k(\overline{0} \oplus F_k(\overline{0})))
= F_k(2 \oplus F_k(\overline{0}F_k(\overline{0}))) \oplus F_k(F_k(\overline{0})))
= F_k(2 \oplus F_k(\overline{0}))
\]
We also have:

\[
F_k'(\bar{2} F_k'(0 F_k'(\lambda))) = F_k'(\bar{2} F_k(2 \oplus F_k(0))) = CBC(2 F_k(2 \oplus F_k(0)) \bar{2}) = F_k(\bar{2} \oplus F_k(\bar{2} \oplus F_k(0)) \oplus F_k(\bar{2} \oplus F_k(0))) = F_k(\bar{2} \oplus F_k(0))
\]

Therefore, we have \(F_k'(\bar{0} F_k'(\lambda)) = F_k'(\bar{2} F_k'(\bar{0} F_k'(\lambda)))\).

Now, fix \(n\). We will describe a circuit \(D_n\) for distinguishing \(F'\). The only inputs to \(D_n\) will be the constants 0 and 1. The “function” gates of \(D_n\) are interpreted as some function \(f : (\{0, 1\}^n)^* \rightarrow \{0, 1\}^n\). \(D_n\) will accept if \(f(\bar{0} f(\lambda)) = f(\bar{2} f(\bar{0} f(\lambda)))\), and \(D_n\) will reject otherwise.

Let \(p_D(n)\) be the probability that if \(k\) is randomly chosen from \(\{0, 1\}^n\) and \(D_n\) is run with its “function” gates interpreted as \(F_k'\), then \(D_n\) accepts. Clearly, \(p_D(n) = 1\).

Let \(r_D(n)\) be the probability that if \(f\) is a randomly chosen function mapping \((\{0, 1\}^n)^* \rightarrow \{0, 1\}^n\) and \(D_n\) is run with its “function” gates interpreted as \(f\), then \(D_n\) accepts. Note that if \(f\) is a randomly chosen function mapping \((\{0, 1\}^n)^* \rightarrow \{0, 1\}^n\), the probability that \(f(\bar{0} f(\lambda)) = f(\bar{2} f(\bar{0} f(\lambda)))\) is \(1/2^n\). This means that \(r_D(n) = 1/2^n\).

Answer to Question 3. The main idea is that if we have an adversary that breaks the pseudo-randomness of \(F'\), then either

- this adversary can distinguish between \(F_{k_2} \circ H_{k_1}\) and \(f \circ H_{k_1}\) (where \(k_1\) and \(k_2\) are randomly chosen \(n\)-bit strings, and \(f\) is a randomly chosen function mapping \(\{0, 1\}^n\) to \(\{0, 1\}^n\)),

- OR this adversary can distinguish between \(f \circ H_{k_1}\) and \(f'\) (where \(f'\) is a randomly chosen function mapping \(\{0, 1\}^n\) to \(\{0, 1\}^n\)).

If the adversary can distinguish between \(F_{k_2} \circ H_{k_1}\) and \(f \circ H_{k_1}\), it is straightforward to show how to break the pseudo-randomness of \(F\).

If the adversary can distinguish between \(f \circ H_{k_1}\) and \(f'\), we show that when the adversary is run with its “function” gates interpreted as \(f \circ H_{k_1}\) (for randomly chosen \(f\) and \(k_1\)), it must, with non-negligible probability, make at least one pair of queries (to its “function” gates) that collide under \(H_{k_1}\). We then show that even if the adversary’s queries are answered with randomly chosen values, it still must, with non-negligible probability, make at least one pair of queries that collide under \(H_{k_1}\) for randomly chosen \(k_1\). Extending this idea, we show that there exists a polynomial-size fixed set of strings \(Q\) such that for randomly chosen \(k_1\) we will have, with non-negligible probability, that some pair of strings in \(Q\) collide under \(H_{k_1}\). Finally, we show that some fixed pair of strings in \(Q\) collide with non-negligible probability under \(H_{k_1}\) for randomly chosen \(k_1\), and this is a violation of the security property of \(H\).

We now do the proof more formally. Suppose that \(F'\) is not pseudo-random. We will show that either \(F\) is not pseudo-random or \(H\) is not a privately collision resistant hash family.

Let \(\{D_n\}\) be an adversary for distinguishing \(F'\); For each \(n\), define

\[p_D(n) = \text{the probability that if } k_1 \text{ and } k_2 \text{ are each randomly chosen from } \{0, 1\}^n \text{ and } D_n \text{ is run with its “function” gates interpreted as } F'_{k_1 k_2} \text{, then } D_n \text{ accepts};\]

\[r_D(n) = \text{the probability that if } f \text{ is a randomly chosen function mapping } \{0, 1\}^* \text{ to } \{0, 1\}^n \text{ (what
we mean here is that the result of each new query to f is randomly chosen from $\{0, 1\}^n$ and D_n is run with its “function” gates interpreted as f, then D_n accepts.

Furthermore, for each n, consider the following experiment, which we will refer to as Experiment 1: Choose a random function f that maps $\{0, 1\}^n$ to $\{0, 1\}^n$. Choose a string k_1 randomly from $\{0, 1\}^n$. Then, define function $f': \{0, 1\}^n \to \{0, 1\}^n$ as follows: for $x \in \{0, 1\}^n$, $f'(x) = f(H_{k_1}(x))$. Run D_n with its “function” gates interpreted as f'. Define $q_D(n)$ to be the probability that D_n accepts.

Then $|p_D(n) - r_D(n)| > 1/n^c$ for some c and infinitely many n. Say without loss of generality that $p_D(n) - r_D(n) > 1/n^c$ for some c and infinitely many n.

This gives rise to the following two cases:

Case 1: $p_D(n) - q_D(n) > \frac{1}{2n^e}$ for infinitely many n.

Fix n and say that $p_D(n) - q_D(n) > \frac{1}{2n^e}$. We will describe a circuit C_n for distinguishing F. The “function” gates of C_n are interpreted as some function $f : \{0, 1\}^n \to \{0, 1\}^n$. C_n will choose a string k_1 randomly from $\{0, 1\}^n$. Then, define function $f' : \{0, 1\}^n \to \{0, 1\}^n$ as follows: for $x \in \{0, 1\}^n$, $f'(y) = f(H_{k_1}(x))$. C_n will run D_n with D_n’s “function” gates interpreted as f', and C_n will accept iff D_n accepts.

Let $p_C(n)$ and $r_C(n)$ be as in the definition of pseudo-random function generator. Then $p_C(n) = p_D(n)$ and $r_C(n) = q_D(n)$. Then $p_C(n) - r_C(n) > \frac{1}{2n^e}$.

Case 2: $q_D(n) - r_D(n) > \frac{1}{2n^e}$ for infinitely many n.

Consider Experiment 1 again. Define $s_D(n)$ to be the probability that there exist queries x and y, made by D_n to its “function” gates, such that $x \neq y$ but $H_{k_1}(x) = H_{k_1}(y)$. That is, $s_D(n)$ is the probability that some pair of distinct queries made by D_n collides under H_{k_1}. Define $a_D(n)$ to be the probability that D_n accepts given that some pair of distinct queries made by D_n collides under H_{k_1}. Similarly, define $b_D(n)$ to be the probability that D_n accepts given that no pair of distinct queries made by D_n collides under H_{k_1}. Then, $q_D(n) = a_D(n) \cdot s_D(n) + b_D(n) \cdot (1 - s_D(n))$.

Now, note that when no pair of distinct queries made by D_n collides under H_{k_1}, the responses to D_n’s distinct queries are distributed identically to values chosen independently and randomly from $\{0, 1\}^n$. It follows that the probability that no pair of distinct queries made by D_n collides under H_{k_1} and D_n accepts is at most $r_D(n)$. That is, $b_D(n) \cdot (1 - s_D(n)) \leq r_D(n)$. This means that we have $q_D(n) \leq s_D(n) + r_D(n)$.

Then $s_D(n) \geq q_D(n) - r_D(n)$. This means that $s_D(n) \geq \frac{1}{2n^e}$ for infinitely many n.

Fix n such that $s_D(n) > \frac{1}{2n^e}$. We will show that the security property of H does not hold.

Consider Experiment 1 again. The key idea we will use is this: Until D_n sees the response to a query that collides under H_{k_1} with a previous query, the responses to D_n’s distinct queries are distributed identically whether they are produced using $f \circ H_{k_1}$ or whether they are produced by randomly selecting values from $\{0, 1\}^n$. This means that the probability that some pair of queries made by D_n collides under H_{k_1} does not change if D_n’s queries are answered using randomly chosen values from $\{0, 1\}^n$ rather than using $f \circ H_{k_1}$.

So consider a probabilistic circuit D_n' that works as follows. D_n' simulates D_n. For each new query made by D_n to its “function” gates, D_n' randomly selects a string from $\{0, 1\}^n$ and uses this string as the response to the query.

Let $s_{D'}(n)$ be the probability that if k_1 is randomly chosen from $\{0, 1\}^n$ and D_n' is run, then some pair of queries seen by D_n' collide under H_{k_1}. Then, using the idea discussed above, we have $s_{D'}(n) = s_D(n)$.

Now, by appropriately fixing the random bits of \(D'_n \), we can make a deterministic circuit \(D''_n \) that does at least as well as \(D'_n \) in finding collisions under \(H_{k_1} \) for random \(k_1 \). More precisely, we can make a deterministic circuit \(D''_n \) so that \(s_{D''}(n) \geq s_{D'}(n) \), where \(s_{D''} \) is defined analogously to \(s_{D'} \).

Since \(D''_n \) is a deterministic circuit, the queries that it sees will not change from one run to the next. So let \(Q \) be the set of queries that \(D''_n \) sees. Now, define \(s_Q(n) \) to be the probability that if \(k_1 \) is randomly chosen from \(\{0, 1\}^n \), then there exist distinct \(x, y \in Q \) such that \(H_{k_1}(x) = H_{k_1}(y) \). We have \(s_Q(n) = s_{D''}(n) \geq s_{D'}(n) = s_D(n) \).

Then \(s_Q(n) > \frac{1}{2^{n^c}} \). Now, there are fewer than \(|Q|^2 \) different pairs of distinct strings from \(Q \). Then there must exist a fixed such pair \(x, y \in Q \), such that if \(k_1 \) is randomly chosen from \(\{0, 1\}^n \) then the probability that \(H_{k_1}(x) = H_{k_1}(y) \) is \(> \frac{1}{2^{n^c}|Q|^2} \). (Do you see why?)

Since the size of \(D''_n \) is polynomial in the size of \(D_n \) (and hence polynomial in \(n \)), \(|Q| \) must be polynomial in \(n \). This means there exists \(e \) such that for sufficiently large \(n \) we have that if \(k_1 \) is randomly chosen from \(\{0, 1\}^n \) then the probability that \(H_{k_1}(x) = H_{k_1}(y) \) is \(> \frac{1}{n^e} \). But this means that \(H \) is not a privately collision resistant hash family.

Answer to Question 4. We break the integrity of this protocol as follows.

- Choose any two distinct \(n \)-bit strings \(m_0 \) and \(m_1 \).
- We then see \(e_0 = [m_0 \oplus F_{k_1}(\overline{0}), F_{k_2}(m_0)], e_1 = [m_1 \oplus F_{k_1}(\overline{1}), F_{k_2}(m_1)]. \)
- We therefore know \(F_{k_1}(\overline{0}) \) and \(F_{k_2}(m_1) \). We therefore compute \(e'_0 = [m_1 \oplus F_{k_1}(\overline{0}), F_{k_2}(m_1)] \), which will cause \(B \) to output \(m'_0 = m_1 \), breaking integrity.