We will now continue discussing security of shared-private-key cryptosystems, or session protocols. Last time we defined integrity, or “unchangeability security”. In practice, for most people most of the time, this is much more important than privacy. You may not be happy if an adversary were to learn the balance of your bank account, but you would be much less happy if he were to transfer its contents to his own account. You may wish to keep your medical records secret, but it is much more important that an adversary should not be able to change the medication that has been prescribed for you.

We will now define privacy, or “indistinguishability security”. We will later define “total security” as unchangeability security plus indistinguishability security (integrity plus privacy).

Definition of privacy or indistinguishability security

Let \((\text{ENC}, \text{DEC})\) be a shared-private-key cryptosystem (that is, session protocol). We will define privacy, or indistinguishability security in the “nonuniform adversary” setting. The adversary \(D\) will be a polynomial size family of circuits \(\{D_1, D_2, \ldots\}\), where \(D_n\) is the adversary for security parameter \(n\) (that is, usually, key size \(n\)). The adversary will choose all of the pieces to be encrypted except for, say, the \(i\)-th piece. He will choose each such piece after seeing the encryption of the preceding pieces, until he gets to the \(i\)-th piece. His goal is to “learn something” about the \(i\)-th piece. We will model this by allowing the adversary to choose two possible pieces, and then give him an encryption (at random) of one of them; he will try to guess which one has been encrypted. Before making this guess, he will continue, for a polynomial amount of time, to choose pieces and see encryptions of them. When he is done doing this, he is allowed to get some information from \(B\). That is, he is allowed to now create a string and send it to \(B\). The adversary then sees if, and when, \(B\) outputs \text{FAIL}. Then the adversary has to guess which of the two pieces were encrypted as piece \(i\). (The reader may ask why we don’t allow the adversary to see more information about what \(B\) outputs. The reason is that the adversary may as well assume that as long as \(B\) does not output \text{FAIL}, he outputs (in order) the correct pieces that \(A\) encrypted; if this is not the case, then the more important property of unchangeability security has already been broken. Whether or not the reader approves of this definition, at least there should be no problem with our definition of “total security”.)

We will define the syntax of \(D_n\), and the experiment involving \(D_n\), and the associated probability \(q_D(n)\), all at once and somewhat more intuitively than in our definition of an adversary in the last lecture.

Firstly, \(D_n\) chooses, or has associated with it, an integer \(i\); \(D_n\) will be trying to learn what the \(i\)-th piece of the message is. (We probably should use the more rigorous notation \(i_n\).)

A random \(n\)-bit \(k\) is chosen, but \(D_n\) doesn’t see it.

\(D_n\) chooses piece \(m_0\) (of length \(z(n)\)) and sees \(e_0\), a (possibly randomized) encryption of \(m_0\) by \(\text{ENC}\) using key \(k\);

then \(D_n\) chooses piece \(m_1\) and sees an encryption \(e_1\);

this continues through piece \(m_{i-1}\).

Then \(D_n\) chooses two pieces \(m^0\) and \(m^1\).

A random bit \(b\) is chosen but \(D_n\) doesn’t see it, and then \(D_n\) sees an encryption \(e_i\) of \(m^b\).
Then D_n chooses piece m_{i+1} and sees an encryption e_{i+1}; then D_n chooses piece m_{i+2} and sees an encryption e_{i+2}; this continues for a polynomial amount of time.

Then D_n computes a polynomial length string α.

D_n then learns something about the result of applying DEC to α using key k, that is, D_n learns if, and for which piece, B would output FAIL.

Then D_n outputs b', a guess at b.

(Of course, each time D_n makes a choice, he may base his decision on everything he has seen so far.)

Define $q_D(n) = \text{probability}(b' = b)$. Note that the randomness in this experiment includes the choice of k and b, as well as all the randomness, if any, used by ENC.

Definition: We say a shared-private-key encryption scheme (or session protocol) satisfies privacy (or is indistinguishability secure) if for every adversary $D = \{D_n\}$ as described above, $q_D(n) \leq \frac{1}{2} + \frac{1}{n^c}$ for each c and sufficiently large n.

End of Definition of privacy or indistinguishability security

This definition is stronger and more robust than it might at first appear. For example, it might appear that it could help the adversary if we let him choose which piece he is going to decrypt based on the encryptions he sees, rather than force him to choose i in advance. However it is possible to show that if a scheme is secure in the sense we defined above, then it is also secure in this stronger sense (Exercise!). It is also possible to show that it can’t help an adversary to be able to send (supposedly) encrypted pieces to B early on, before (or while) he is choosing pieces for A to encrypt, seeing if and when FAIL occurs (Exercise!). One might ask at this point if was really necessary in the definition to allow the adversary to send stuff to B at all, observing possible failure. It turns out that this part of the definition is necessary, and we leave this as an exercise as well. We also leave it as an exercise to show that it would not weaken the definition if we forced the adversary to choose m_0 and m_1 so that they differed only in exactly one bit.

Theorem: Assuming the function generator F is pseudo-random, Cryptosystem I (defined in the last lecture) satisfies privacy.

Proof Outline: Note that B never outputs fail, so we need only consider an adversary $D = \{D_n\}$ that only gets information from seeing the encryptions of pieces. Let $\{q_D(n)\}$ be as defined above, and assume that for infinitely many n, $q_D(n) > \frac{1}{2} + \frac{1}{n^c}$; fix such an n. We will construct a distinguisher for F on key length n. Let $i_n = i$ be the index of the piece that D_n is trying to guess the decryption of.

Consider an alternative experiment where instead of using F_k for random k to form the encryptions $e_j = m_j \oplus F_k(j)$, we use a randomly chosen function f, so that $e_j = m_j \oplus f(j)$. In this case, the only information the adversary sees about b is $m^b \oplus f(i)$, where none of the other encryptions involve $f(i)$. So in this case the adversary would get no information at all about b, and so his success at guessing b would be $1/2$. ¹

We therefore propose the following adversary D'_n for breaking F. Given a (black box for a) function $f : \{0,1\}^n \rightarrow \{0,1\}^n$, D'_n simulates both A and D_n; whenever D_n wants an encryption of a j-th piece m_j, D'_n creates $e_j = m_j \oplus f(j)$. Also, D'_n simulates the person choosing the random

¹Technically, this will be only true if n is sufficiently large that the (polynomial in n) number of encrypted pieces that D_n sees is less than 2^n.

2
bit b. So at the end of the simulation, D'_n knows whether or not b', the bit output by the simulated
D_n, is equal to b; if it is then D'_n accepts, otherwise D'_n rejects.

The probability D'_n accepts when f is chosen to be F_k for a random k is exactly
$p(n) > \frac{1}{2} + \frac{1}{n^c}$.

The probability D'_n accepts when f is chosen completely randomly is exactly 1/2. So the difference
between these two probabilities is at least $\frac{1}{n^c}$.

We now consider some other attempts to create session protocols satisfying privacy. The fol-
lowing system uses probabilistic encryption, but no history need be remembered for encryption or
decryption.

Cryptosystem III. Let F be a (hopefully pseudo-random) function generator.

For an n-bit k and n-bit message pieces m_0, m_1, m_2, \ldots, define the $2n$-bit encryptions
$e_i = [r_i, m_i \oplus F_k(r_i)]$, where the $\{r_i\}$ are randomly chosen n bit strings.

DEC works in the obvious way.

Theorem: If the function generator used in Cryptosystem III is pseudo-random, then the system
satisfies privacy.

Proof: Exercise.

Cryptosystem IV. Let F be a (hopefully pseudo-random) permutation generator.

For an n-bit k and n-bit message pieces m_0, m_1, m_2, \ldots, define the n-bit encryptions
$e_i = F_k(m_i)$.

DEC works in the obvious way, namely for each i we decrypt e_i by computing $m_i = F_k^{-1}(e_i)$.

Theorem: No matter how the permutation generator F is chosen, Cryptosystem IV does not
satisfy privacy.

Proof: The intuition is that an adversary can tell if a message piece repeats, by seeing if the
encryption repeats.

More formally, the adversary chooses $i = 1$, chooses m_0 to be anything, chooses $m_0 = m_0$ and
$m^1 \neq m_0$; if $e_0 = e_1$ then he outputs 0, otherwise he outputs 1. It is easy to see that $q(n) = 1$.

Cryptosystem V. Let F be a (hopefully pseudo-random) permutation generator.

For an n-bit k and n-bit message pieces m_0, m_1, m_2, \ldots, define the n-bit encryptions
$e_i = F_k(m_i)$.

DEC works in the obvious way, namely for each i we decrypt e_i by computing $m_i = F_k^{-1}(e_i)$.

Theorem: If the permutation generator used in Cryptosystem V is pseudo-random, then the
system satisfies privacy.

Proof: Exercise.

The following cryptosystem uses cipher-block chaining. It is often asserted in the informal
literature that it satisfies privacy, but according to our definition it does not.

Cryptosystem VI. Let F be a (hopefully pseudo-random) permutation generator.

For an n-bit k and n-bit message pieces m_0, m_1, m_2, \ldots, define the n-bit encryptions e_0, e_1, e_2, \ldots
as follows:

$e_{-1} = F_k(\emptyset)$;
$e_i = F_k(e_{i-1} \oplus m_i)$ for $i \geq 0$.

DEC works in the obvious way.
Theorem: No matter what permutation generator is used, Cryptosystem VI does not satisfy privacy.

Proof: The adversary chooses \(i = 2\), chooses \(m_0\) to be anything, sees \(e_0\), chooses \(m_1 = e_0\), sees \(e_1 = F_k(\overline{0})\), chooses \(m^0 = e_1\) and \(m^1 \neq m^0\) and sees \(e_2\); if \(e_2 = e_1\) then he outputs 0, otherwise he outputs 1. It is easy to see that \(q(n) = 1\). \(\square\)

The reader may complain that the adversary just described doesn’t seem very harmful, since he is just learning something about uninteresting message pieces. However it is often the case that what at first appears to be a minor insecurity becomes, with greater inspection, a more major insecurity. That is the case here. For example, an adversary can choose \(m_{100} = e_{99}\), causing \(e_{100} = F_k(0)\); later he can choose \(m_{200} = e_{199}\), causing \(e_{200} = F_k(0) = e_{100}\). In this way, he can tell whether or not the piece sequence \(m_{101}, m_{102}, \ldots, m_{199}\) equals \(m_{201}, m_{202}, \ldots, m_{299}\).

It is interesting to note that if we weakened our adversary model by not allowing our adversary to see any \(e_j\) until he has chosen \(m_{j+1}\), then (I think) Cryptosystem VI would become secure. However, without changing our definitions we can make this cryptosystem secure by slightly modifying it:

Cryptosystem VI’. Let \(F\) be a (hopefully pseudo-random) function generator. (It need not be a permutation generator.)

For an \(n\)-bit \(k\) and \(n\)-bit message pieces \(m_0, m_1, m_2, \ldots\), define the \(n\)-bit encryptions \(e_0, e_1, e_2, \ldots\) as follows:

\[
e_{-1} = 0;
\]

\[
e_i = F_k(e_{i-1}) \oplus m_i \quad \text{for} \quad i \geq 0.
\]

DEC works in the obvious way.

Theorem: If the function generator used in Cryptosystem VI’ is pseudo-random, then the system satisfies privacy.

Proof: Slightly difficult exercise.

Total Security

Definition: We say a shared-private-key cryptosystem or session protocol, is **totally secure** if it satisfies both unchangeability security (integrity) and indistinguishability security (privacy).

It is not hard to show that if pseudo-random generators exist, then totally secure cryptosystems exist.

Cryptosystem VII. Let \(F\) be a (hopefully strongly pseudo-random) permutation generator where for an \(n\)-bit \(k\), \(F_k : \{0,1\}^{2n} \to \{0,1\}^{2n}\).

For an \(n\)-bit \(k\) and \(n\)-bit message pieces \(m_0, m_1, m_2, \ldots\), define the \(2n\)-bit encryptions:

\[
e_i = F_k(\overline{im_i}).
\]

DEC works in the obvious way. To decrypt \(e'_0, e'_1, \ldots\) using key \(k\) where each \(|e'_i| = 2n\), we do the following for each \(i\):

\[
\text{compute } [u, v] = F_k^{-1}(e'_i) \text{ where } |u| = |v| = n; \text{ if } u = \overline{1} \text{ then output } v, \text{ otherwise output } \text{FAIL and abort.}
\]

Theorem: If the permutation generator used in Cryptosystem VII is strongly pseudo-random, then the system is totally secure.

Proof: Exercise. (Do you see why it is necessary that the permutation generator be strongly pseudo-random?)
Cryptosystem VIII. One general way to create a totally secure shared-private-key cryptosystem is to encrypt so as to satisfy privacy, and then, with an independent key, encrypt the encrypted pieces so as to satisfy integrity. For example, we can combine Cryptosystems I and II (from last week) by using two \(n \)-bit keys \(k_1 \) and \(k_2 \), and encrypting piece \(m_i \) as

\[
e_i = [m_i \oplus F_{k_1}(i), F_{k_2}(i, m_i \oplus F_{k_1}(i))].
\]

DEC works in the obvious way.

(Note that we are assuming that \(F \) is just a function generator and that \(F_k \) takes as inputs – and is pseudo-random with respect to – inputs of length \(n \) and \(2n \).) (Of course, if one only wants to use a single \(n \)-bit key, one can use a pseudo-random number generator to expand it two a \(2n \)-bit key.)

More generally, this idea works as follows. We use key \(k_1 \) with an indistinguishability secure system \(S_1 \) to encrypt message pieces \(m_0, m_1, \ldots \) as \(e_0, e_1, \ldots \); we then treat \(e_0, e_1, \ldots \) as the message pieces in a unchangeability secure system \(S_2 \) and encrypt them with key \(k_2 \) to obtain \(f_0, f_1, \ldots \)

Let’s call this new system \(S_3 \). We decrypt in \(S_3 \) in the obvious way: Say we are given strings \(f_0', f_1', \ldots \) of the right size to decrypt; we decrypt each \(f_i' \) as follows (assuming we have not already aborted): we use \(k_2 \) as in \(S_2 \) to decrypt \(f_i' \) and if this results in \(\text{FAIL} \) then \(S_3 \) outputs \(\text{FAIL} \) and we abort; if this succeeds and outputs \(e_i' \), then we use \(k_1 \) as in \(S_1 \) to decrypt \(e_i' \) as \(m_i' \); if this results in \(\text{FAIL} \) then \(S_3 \) outputs \(\text{FAIL} \) and aborts, otherwise \(S_3 \) outputs \(m_i' \).

To see why this is totally secure, first imagine that we can break the indistinguishability security (privacy) of \(S_3 \) using adversary \(D \). We will use \(D \) to break the indistinguishability security of \(S_1 \). We begin by randomly choosing a key \(k_2 \) for \(S_2 \). We then simulate \(D \) breaking \(S_3 \), using \(k_2 \) whenever necessary to simulate \(S_2 \). Here are the details.

\(D \) chooses a position \(i \), which is the position we will use to break \(S_1 \). \(D \) then chooses \(m_0 \), which is the value we use for \(m_0 \); we are then given a value \(e_0 \) (an encryption of \(m_0 \) using the unknown \(k_1 \)), which we encrypt using \(k_2 \) to \(f_0 \), which we give to \(D \); we continue in this way for \(m_1, e_1, f_1, \ldots, m_{i-1}, e_{i-1}, f_{i-1} \). \(D \) now chooses pieces \(m^0, m^1 \), which are the two pieces we choose as well. We are then given \(e_i \), an encryption of \(m^b \) using \(k_1 \), which we encrypt using \(k_2 \) to \(f_i \), which we give to \(D \). We then continue as before for \(m_{i+1}, e_{i+1}, f_{i+1}, \ldots, m_l, e_l, f_l \). We want to guess \(b \).

Now, \(D \) computes a sequence \(f'_0, f'_1, \ldots \), and he wants to know if and when this causes \(\text{FAIL} \) in \(S_3 \). Using \(k_2 \), we can compute if and when this causes \(\text{FAIL} \) in \(S_2 \), decrypting (up to that point) in \(S_2 \) to obtain \(e'_0, e'_1, \ldots, e'_p \); this may or may not be followed by \(\text{FAIL} \), but let us assume the more interesting case that it is. We then treat \(e'_0, e'_1, \ldots, e'_p \) as the string to send to \(B \) in attacking \(S_1 \), and we are told if and when this causes \(\text{FAIL} \) in \(S_1 \). If \(\text{FAIL} \) occurs at some point here, we give that point to \(D \), otherwise we give \(p+1 \) to \(D \). \(D \) then outputs a guess at \(b \) which will also be our guess, and we will succeed with the same probability that \(D \) does.

Now imagine that we can break the unchangeability security (integrity) of \(S_3 \) using adversary \(C \). We will use \(C \) to break the unchangeability security of \(S_2 \). We begin by randomly choosing a key \(k_1 \) for \(S_1 \). We then simulate \(C \) breaking \(S_3 \), using \(k_1 \) whenever necessary to simulate \(S_1 \). This simulation chooses pieces \(m_0, m_1, \ldots \) creates and creates their encryption under \(S_1 \), \(e_0, e_1, \ldots \), and we will treat \(e_0, e_1, \ldots \) as the input pieces we will use to break \(S_2 \). \(C \) sees encryptions in \(S_2 \) of these pieces, and then creates a string \(f'_0, f'_1, \ldots \) to send to \(B \) to break \(S_3 \). \(C \) succeeds if and only if some \(f'_i \) decrypts in \(S_3 \) to something besides \(\text{FAIL} \) and \(m_i \), but (because we have properly simulated \(S_1 \)) this will happen only if some \(f'_i \) decrypts in \(S_2 \) to something besides \(\text{FAIL} \) and \(e_i \). So we will use the same string \(f'_0, f'_1, \ldots \) to try to break \(S_2 \), and we will succeed with the same probability that \(C \) does.
There are other ways of creating totally secure systems. For example we could use:

\[e_i = [m_i \oplus F_{k_1}(\overline{t}), F_{k_2}(\overline{t}, m_i)] \]

where \(B \) decrypts in the obvious way. We leave it as an exercise to prove that this is totally secure if \(F \) is pseudo-random.

One last remark about unchangeability security. Note that the unchangeability secure Cryptosystem II encrypted each piece of size \(n \) by a string of length \(2n \), thereby sending a bit stream that is twice as long as the actual message. However, more generally, it is easy to see how to encrypt each piece of size \(z(n) \) by a string of length \(z(n) + n \) and obtain unchangeability security. We can therefore reduce the communication overhead, if we are willing to increase the granularity \(z(n) \) of our system.