Probabilistic Nonuniform Adversaries

The goal of this note is to prove the exercise from the bottom of Page 1 of Notes #1. We want to show that for adversaries against pseudo-randomness, nonuniform adversaries that use randomness are no more powerful than nonuniform adversaries that are deterministic – that is, that do not use randomness. (A similar theorem will be true about nonuniform adversaries in other settings.)

So let \(G \) be a number generator, where \(|G(s)| = l(|s|) \). What do we mean by a nonuniform adversary that uses randomness? We mean a family \(D = \{D_1, D_2, \ldots \} \) of circuits; \(D_n \) has \(l(n) \) input bits and one output bit; for some \(c \) and sufficiently large \(n \), \(D_n \) has size \(\leq n^c \). In addition to the usual gates, \(D_n \) is allowed to use coin-tossing gates, where a coin-tossing gate has no inputs and chooses its output bit randomly whenever the circuit is run.

\(p_D(n) \) and \(r_D(n) \) now mean the obvious things. For example, to define \(p_D(n) \) we consider the following experiment: Choose a random \(n \)-bit string \(s \); compute \(G(s) \); run \(D_n \) on \(G(s) \), choosing the outputs of the coin-tossing gates randomly. Then \(p_D(n) \) is the probability that \(D \) accepts (that is, outputs 1).

Say (w.l.o.g) that \(p_D(n) - r_D(n) > 0 \). We wish to show that there is a deterministic circuit \(D' \) that is no bigger than \(D \), such that \(p_{D'}(n) - r_{D'}(n) \geq p_D(n) - r_D(n) \). We will do this by fixing the outputs of the coin-tossing gates appropriately.

Say that \(D_n \) has \(m \) coin-tossing gates. For each \(m \)-bit string \(u \), define \(p_D(n, u) \) to be the probability that \(D \) accepts in the above experiment when the coin-tossing gates are fixed to output \(u \) (that is, the first coin-tossing gate always outputs the first bit of \(u \), the second one always outputs the second bit of \(u \), etc.). Define \(r_D(n, u) \) similarly. We now have

\[
p_D(n) = E_u(p_D(n, u)) \quad \text{and} \quad r_D(n) = E_u(r_D(n, u))
\]

where \(E_u(\alpha) \) is the expected (or average) value of \(\alpha \) as \(u \) varies randomly over \(m \)-bit strings. We therefore have (by the additivity of expectations)

\[
p_D(n) - r_D(n) = E_u(p_D(n, u) - r_D(n, u))
\]

So there must be some \(u \) – call it \(u_0 \) – such that

\[
p_D(n, u_0) - r_D(n, u_0) \geq E_u(p_D(n, u) - r_D(n, u)) = p_D(n) - r_D(n)
\]

We now form the deterministic circuit circuit \(D' \) by fixing the output wires of the coin-tossing gates to be \(u_0 \). We have

\[
p_{D'}(n) - r_{D'}(n) = p_D(n, u_0) - r_D(n, u_0) \geq p_D(n) - r_D(n)
\]

How can we find an appropriate \(u_0 \). In fact, we have no efficient, deterministic way to do this. The whole point of nonuniformity is that we don’t have to have a way of finding \(u_0 \); \(u_0 \) is hardwired into the circuit.