1. (10 marks)
In this question we will present a reasonable key exchange protocol that turns out to be insecure.
We will assume the Setting for Discrete Log Conjectures as on Page 3 of Notes #8, and the DDHH assumption from Page 5.

GEN works as follows on security parameter n, which we will assume is even. Informally, GEN generates a Diffie-Hellman pair of keys, as well as a pair of keys for a secure signature scheme. More formally, on security parameter n:

Let $p = p_n$ and $g = g_n$. GEN chooses a random member of $\{1, 2, \ldots, p - 1\}$ represented as an n-bit string $\text{pri}1$ and computes the n-bit string $\text{pub}1 = g^{\text{pri}1} \mod p$. GEN also chooses a pair of keys for a secure signature scheme; let us say that these n-bit keys are $\text{pri}2$ and $\text{pub}2$, and signatures are of length n.

The private key then becomes $[\text{pri}1, \text{pri}2]$ and the public key becomes $[\text{pub}1, \text{pub}2]$.

The protocol, informally, is as follows:

(A, B, 0) encrypts a random $n/2$-bit string r to (B, A, 1), together with an appropriate signature;

(B, A, 1) then encrypts a random $n/2$-bit string s to (A, B, 0), together with an appropriate signature; the parties output $r \oplus s$ as the $n/2$-bit session key. More rigorously, we present the role-0 and the role-1 algorithm separately.

Process (A, B, 0) works as follows. We denote A’s private key as $[\text{pri}1A, \text{pri}2A]$ and B’s public key as $[\text{pub}1B, \text{pub}2B]$.

- Choose a random $x \in \{0, 1, 2, \ldots, p - 2\}$ and compute the n-bit string
 $\alpha \leftarrow g^x \mod p$, the $n/2$-bit string
 $r \leftarrow h(\text{pub}1B^x \mod p)$, and the n-bit string
 $\beta \leftarrow \text{SIGN}_{\text{pri}2A}(\alpha, A, B)$. (Recall that A and B are n-bit strings.)
 Send string $[\alpha, \beta]$ on the output channel.

- (To understand this part, see the second part of the role-1 protocol below.)
 Receive n-bit strings γ and δ on the input channel.
 Use $\text{pub}2B$ to verify that δ is a signature by B of $[\alpha, \gamma, A, B]$, and if not abort with output FAIL.
 Check that $\gamma \in \{1, 2, \ldots, p - 1\}$, and if not abort with output FAIL.
 Compute $s \leftarrow h(\gamma^{\text{pri}1A} \mod p)$.
• Output \(r \oplus s \) as the \(n/2 \)-bit session key.

Process \(\langle B, A, 1 \rangle \) works as follows. We denote \(B \)'s private key as \([\text{pri1}_B, \text{pri2}_B]\) and \(A \)'s public key as \([\text{pub1}_A, \text{pub2}_A]\).

• Receive \(n \)-bit strings \(\alpha \) and \(\beta \) on the input channel.
 Use \(\text{pub2}_A \) to verify that \(\beta \) is a signature by \(A \) of \([\alpha, A, B]\), and if not abort with output \text{FAIL}.
 Check that \(\alpha \in \{1, 2, \ldots, p - 1\} \), and if not abort with output \text{FAIL}.
 Compute \(r \leftarrow h(\alpha^{\text{pri1}_B} \pmod{p}) \).

• Choose a random \(y \in \{0, 1, 2, \ldots, p - 2\} \) and compute the \(n \)-bit string
 \(\gamma \leftarrow g^y \pmod{p} \), the \(n/2 \)-bit string
 \(s \leftarrow h(\text{pub1}_A^y \pmod{p}) \), and the \(n \)-bit string
 \(\delta \leftarrow \text{SIGN}_{\text{pri2}_B}(\alpha, \gamma, A, B) \).
 Send string \([\gamma, \delta]\) on the output channel.

• Output \(r \oplus s \) as the \(n/2 \)-bit session key.

Prove that this protocol is not secure. You do not have to do any “number theory” here. In fact, any protocol in which \(A \) encrypts a random string \(r \) to \(B \) using \(B \)'s infrastructure public key, and \(B \) encrypts a random string \(s \) to \(A \) using \(A \)'s infrastructure public key, and they use \(r \oplus s \) as the exchanged key, will be insecure, even if everything is properly signed.

2. (10 marks)
Prove that the following key exchange protocol is insecure. This protocol is similar to Protocol 2 of Notes #9, except instead of signing the role bits, we have Party 0 going first and Party 1 going second.

We use the same \text{GEN} as in Protocol 2, that is, \text{GEN} generates keys for a secure signature scheme, and we use the same notation for the signing algorithm. We describe the role 0 and the role 1 protocol separately.

\textbf{Protocol 2'}:

Process \(\langle A, B, 0 \rangle \) works as follows:

• Choose a random \(x \in \{0, 1, \ldots, p - 2\} \), compute \(\alpha = g^x \pmod{p} \), and send out the \(2n \)-bit message: \([\alpha, \text{SIGN}_A(\alpha B)]\). (Note that \(A \)'s private key is used to sign a \(2n \) bit string.)

• Receive a \(2n \)-bit message \([\beta, \delta]\) where \(|\beta| = |\delta| = n \).
 Check that \(\beta \in \mathbb{Z}_p^* \), and use \(B \)'s public key to check that \(\delta \) is a valid signature of \([\beta A]\); if not, halt and output \text{FAIL}.

• Output \(h(\beta^x \pmod{p}) \) as the session key.
Process \(\langle B, A, 1 \rangle \) works as follows:

- Receive a 2\(n \)-bit message \([\alpha, \sigma] \) where \(|\alpha| = |\sigma| = n\).
 Check that \(\alpha \in \mathbb{Z}_p^* \), and use A’s public key to check that \(\sigma \) is a valid signature of \([\alpha B]\); if not, halt and output \text{FAIL}.
- Choose a random \(y \in \{0, 1, \ldots, p-2\} \), compute \(\beta = g^y \mod p \), and send out the 2\(n \)-bit message: \([\beta, \text{SIGN}_B(\beta A)]\). (Note that B’s private key is used to sign a 2\(n \) bit string.)
- Output \(h(\alpha^y \mod p) \) as the session key.

3. (15 marks – extra credit) It turns out that if we are careful, we can get a secure key exchange protocol by using an arbitrary semantically secure (as defined in Notes #10) public key encryption primitive instead of DDH in Protocol 2 from Notes #9. Say that \(G, E, D \) are the generating, encrypting, and decrypting functions for a \textbf{semantically secure} public key encryption primitive for encrypting strings of length \(n \).

As in Protocol 2, the public key infrastructure will consist of keys for a secure signature scheme.

Vaguely, the new protocol will work as follows. The role-1 party will use \(G \) to generate new keys \(pub \) and \(pri \); he will then send \(pub \), together with an appropriate signature, to the role-0 party. The role-0 party will then encrypt (using \(pub \)) a random session key \(k \) to the role-1 party, together with an appropriate signature.

More formally:

\(< B, A, 1 > \) works as follows:

- Use \(G \) to generate encryption keys \(pub \) and \(pri \).
 Compute \(\sigma = \text{SIGN}_B(1 A pub) \).
 SEND \(pub, \sigma \).
- RECEIVE strings \(e, \sigma' \) of the proper length.
 Verify that \(V E R_A([0 B pub] e, \sigma') = 1 \). (If not, \text{FAIL}.)
 Compute \(k = D_{pri}(e) \); if this decryption \text{FAILs}, then \text{FAIL}, else output \(k \) as the session key.

\(< A, B, 0 > \) works as follows:

- RECEIVE strings \(pub, \sigma \) of the proper length.
 Verify that \(V E R_B([1 A pub], \sigma) = 1 \). (If not, send out a string of 0’s and \text{FAIL}.)
- Choose a random \(k \in \{0, 1\}^n \) and compute
 \(e = E_{pub}(k, \text{RANDOMBits}) \) and \(\sigma' = \text{SIGN}_A(0 B pub e) \).
 SEND \(e, \sigma' \).
- Output \(k \) as the session key.

Prove that this new protocol is secure, with an outline similar to that of Protocol 2 in the notes. Give sufficiently many details that it is clear, for example, why we needed \(A \) to sign \(pub \).