We now want to talk about public-key signature schemes. Before we do this, it will be useful to discuss different security properties for families of hash functions. Recall that a family of hash functions satisfies the privately collision resistant property defined above if, without seeing the key or anything about the function except the parameter n, it is nearly impossible to find a pair of distinct inputs that will hash to the same string. We can prove (without any assumptions) that such families exist.

We will define a hash family to be “publicly collision resistant” if, even after seeing the key of the hash function, a polynomial time adversary cannot (except with negligible probability) find a pair of distinct inputs that hash to the same string. We will define a hash family to be “weakly publicly collision resistant” if a polynomial time adversary cannot (except with negligible probability) choose one input before seeing the key of the hash function, then see the key of the hash function, then choose a second input, such that the two inputs hash to the same string.

Definitions: (Nomuniform adversary setting)

By a family of hash functions H we mean that for a key length $l(n)$ (that can be computed, in unary, in time polynomial in n), we associate with every $l(n)$-bit key k, a function $H_k : \{0,1\}^* \rightarrow \{0,1\}^n$; it must be the case that given k and x, $H_k(x)$ can be computed in time polynomial in n and $|x|$. (We assume that $l(n)$ uniquely determines n.)

- We say H is publicly collision resistant if the following holds for every $\{C_n\}$.

 Let $\{C_n\}$ be a polynomial size family of circuits, such that C_n has $l(n)$ input bits, and such that C_n outputs two binary strings s and t; the lengths of s and t may depend upon the input to C_n. (Note that since from a strictly syntactic point of view C_n must output a string of fixed length, we will view this syntactic output as coding for s and t in some natural way.) Let $p(n)$ be the probability that, if a random $l(n)$-bit string k is chosen and given to C_n, and C_n outputs s and t, then $s \neq t$ and $H_k(s) = H_k(t)$. Then $p(n) \leq \frac{1}{n^c}$ for each c and sufficiently large n.

- We say H is weakly publicly collision resistant if the following holds for every $\{C_n, s_n\}$.

 Let $\{s_n\}$ be a polynomial size family of strings and let $\{C_n\}$ be a polynomial size family of circuits, such that C_n has $l(n)$ input bits, and such that C_n outputs a binary string t; the length of t may depend upon the input to C_n.

 Let $p(n)$ be the probability that, if a random $l(n)$-bit string k is chosen and given to C_n, and C_n outputs t, then $s_n \neq t$ and $H_k(s_n) = H_k(t)$. Then $p(n) \leq \frac{1}{n^c}$ for each c and sufficiently large n.

 (Note that in the uniform adversary model, the adversary is given 1^n, computes (probabilistically) for polynomial in n steps, outputs s, sees k, outputs t.)

We do not know how to prove the existence of publicly collision resistant hash families merely by assuming that one-way functions or pseudo-random generators exist. The most usual assumption is
the stronger assumption that “claw-free families” exist. These can be proven to exist from certain assumptions about the computational difficulty of integer factorization; the reader can consult Chapter 2 of Goldreich for more information on this. In practice, if one wants to choose a random function from a publicly collision resistant hash family, one just uses a fixed, “standard” function such as MD5 : \{0, 1\}^* \rightarrow \{0, 1\}^{128} or SHA-1 : \{0, 1\}^* \rightarrow \{0, 1\}^{160} or SHA-2(256) : \{0, 1\}^* \rightarrow \{0, 1\}^{256} or SHA-3(256) : \{0, 1\}^* \rightarrow \{0, 1\}^{256}. The implied belief is that the function has been chosen at random from a suitable family, even though it is not really clear how it was chosen, or why. At this time, MD5 has been badly broken, and SHA-1 has been somewhat broken. (SHA stands for “secure hashing algorithm”. Both SHA-2 and SHA-3 come in 4 versions, enabling output sizes of 224, 256, 384 or 512 bits. SHA-3 is the most recent of these, having been accepted as a standard by NIST only in October, 2012. The NIST web site contains complete details of these algorithms.)

We can, however, use one-way functions to construct weakly publicly collision resistant hash families, which in turn can be used to construct secure public-key signature schemes. However, neither of these constructions are used in practice. Instead, one uses something like the SHA-families, which in turn can be used to construct secure public-key signature schemes. However, A

Definition: A public-key signature scheme \(S \) consists of the following.

- A generating function GEN. GEN has as input a string \(1^n \) together with random bits, and should be computable in time polynomial in \(n \). The output of GEN is a pair of strings pub (a public key) and pri (a private key). We assume that the lengths of pub and pri depend only on \(n \), and that \(n \) is determined by either of these lengths.

- A signing algorithm SIGN that has as input a key pri (generated from security parameter \(n \)) and a message \(m \in \{0, 1\}^* \). SIGN should be computable in time polynomial in the lengths of the inputs; we allow SIGN to be probabilistic (that is, to have random bits as input). We write \(SIGN_{\text{pri}}(m) \) for \(SIGN(\text{pri}, m) \). The length of \(SIGN_{\text{pri}}(m) \) should depend only on the security parameter \(n \), and not on the length of the message being signed. (Although it is no loss of generality to assume that \(|SIGN_{\text{pri}}(m)| = n \), it will be convenient not to insist on this.)

- A verifying function VER that has as input a key pub, a message \(m \) and a supposed signature \(\sigma \), and outputs a single bit. VER should be computable in time polynomial in the lengths of the inputs. It should be the case that for every \(n \), and for every pair \((\text{pub}, \text{pri}) \) that can be output by GEN on \(1^n \), and for every message \(m \), if \(\sigma = SIGN_{\text{pri}}(m) \), then \(VER(\text{pub}, m, \sigma) = 1 \).

Definition: (Nonuniform adversary setting) A signature scheme \(S \) is secure if the following holds for every adversary \(A \):

Let \(A = \{A_n\} \) be a polynomial size family of circuits. \(A_n \) has as input a string pub; \(A_n \) creates a binary string \(m_0 \) and sees an \(n \)-bit string \(\sigma_0 \); \(A_n \) then creates a binary string \(m_1 \) and sees an \(n \)-bit string \(\sigma_1 \); this continues for some (polynomial in \(n \)) number of stages; (if signing is probabilistic, then \(A_n \) may choose to create the same binary string more than once); at the end, \(A_n \) outputs a string \(m \) and an \(n \)-bit string \(\sigma \), such that \(m \) is different from every \(m_i \).

Consider the following experiment. A pair \((\text{pub}, \text{pri}) \) is randomly generated from \(1^n \) using GEN; then \(A_n \) is run on pub, and for each \(m_i \) that is created, we give \(\sigma_i = SIGN_{\text{pri}}(m_i) \) to \(A_n \); eventually
A_n outputs m (different from every m_i) and σ.
Let p(n) be the probability that VER(pub, m, σ) = 1.
Then p(n) ≤ \frac{1}{n^c} for each c and sufficiently large n.

Theorem: (Goldwasser, Micali, Rivest) If one-way functions exist, then (deterministic) secure signature schemes exist.

Proof: The rather complicated construction is outlined below.

The construction proceeds in a number of stages. We will explain each stage below for security parameter n.

First, assume that we have a signature scheme S which is secure with respect to the signing of messages that have length exactly n; that is, adversaries for S are only allowed to see signatures of messages of length n, and must try to forge a message of length n; say that the algorithms of S are GEN, SIGN, VER. We wish to construct a signature scheme S' that will be secure for signing messages of arbitrary lengths.

One way we can do this is by using a publicly collision resistant hash family H. To generate a key pair for S', we generate a key pair (pub, pri) for S and a key k for H (assuming security parameter n); the public key for S' will then be [pub, k] and the private key will be [pri, k]. The signature of a string m in S' will be σ' = SIGN_{pri}(H_k(m)). We verify σ' in S' by checking that VER(pub, H_k(m), σ') holds. We leave it as an exercise to prove that this is secure. The only problem with the above construction is that it assumes a publicly collision resistant hash family, and we don’t know how to prove that these exist by only assuming the existence of a one-way function.

We will therefore give an alternative way of constructing S' from S that only uses a weakly publicly collision resistant hash family, H. We generate a key pair for S' by choosing a key pair (pub, pri) for S, and using the same pair for S'. The signature of message m in S' will be computed as follows. First we choose a random key k for H (assuming security parameter n). The signature for m in S' will then be the pair σ' = (k, SIGN_{pri}(k, H_k(m))). We verify σ' in S' by checking that VER(pub, [k, H_k(m)], σ') holds. We leave the proof of security as an exercise.

Actually, we have cheated in two ways here. For one thing, we assumed that the length of messages being signed by S was not n, but rather n plus the length of a key for H (on security parameter n). This is not a problem, as the construction for S (see below) can be easily modified to sign messages of this particular length. (Alternatively, one can choose H so that on security parameter n, |k| + |H_k(m)| = n.)

A more serious problem is that the signing process we have described for S' is in reality a probabilistic algorithm, whereas our theorem specifies that it should be deterministic. We can fix this as follows. We create from S' a deterministic scheme S''. We let the private key for S'' contain, in addition to the private key of S', an n bit seed s for a pseudo-random function generator F', such that F'_s : \{0, 1\}^* \rightarrow \{0, 1\}^{l(n)} where l(n) is length of a key for H (on security parameter n). Then instead of using a random k when we sign m as in S', we will use k = F'_s(m). Again, we leave the proof of security as an exercise.

We now want to show how to create a signature scheme that is secure for signing messages of length n. (Note that not all of this construction was presented in class.)

First we construct a signature scheme S^1 that is only for signing a single, n bit message. That is, the adversary gets to see one n bit message of his choice signed, and then must try to forge the signature of a new n bit message. We assume we have a one-way function f : \{0, 1\}^n \rightarrow \{0, 1\}^n.
To generate a key pair, we choose $2n$ random n bit strings: $x_1^0, x_1^1, x_2^0, x_2^1, \ldots, x_n^0, x_n^1$. We then compute $y_i^b = f(x_i^b)$ for $b \in \{0, 1\}$ and $1 \leq i \leq n$. We then assign $pub = (y_1^0, y_1^1, y_2^0, y_2^1, \ldots, y_n^0, y_n^1)$ and $pri = (x_1^0, x_1^1, x_2^0, x_2^1, \ldots, x_n^0, x_n^1)$.

To sign the n bit message $m = b_1 b_2 \ldots b_n$, we compute $SIGN_{pri}^1(m) = (x_1^{b_1}, x_2^{b_2}, \ldots, x_n^{b_n})$.

To verify, we do the obvious thing. $VER_{pub}^1(m, \sigma, \sigma) = 1$ if and only if σ consists of n, n-bit strings $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_n)$ and $f(\sigma_1) = y_1^{b_1}, f(\sigma_2) = y_2^{b_2}, \ldots, f(\sigma_n) = y_n^{b_n}$. It is not hard to show that S^1 is secure in the desired sense.

We will now construct a signature scheme S^2 that is secure for signing (any number of) n-bit messages. We assume we have the above scheme S^1, as well as a pseudo-random function generator F and a weak publicly collision resistant family H.

We generate a key pair as follows. First we choose a random n-bit seed s for F; then we choose a key pair (pub, pri) for S^1; then we choose a random key k for H. The public key for S^2 will then consist of pub and k; the private key will consist of s, pri and k.

Signing an n bit message will be complicated. First, imagine the depth $n + 1$ binary tree, where we identify each node with a binary string of length $\leq n + 1$; the root is λ, the empty string; the children of α are $\alpha 0$ and $\alpha 1$. We want to identify with each node α a pair (pub_α, pri_α). We do this by setting $pub_{\alpha 0} = pub$ and $pri_{\alpha 0} = pri$. For the other nodes α, we would like to generate values randomly, using the generating algorithm for S^1. Instead we generate them pseudo-randomly using F_s. We assume that $F_s(\alpha)$ is long enough, and we use $F_s(\alpha)$ as the random bits needed to generate (pub_α, pri_α) for S^1. The idea is that the message to be signed will determine a path through the tree, and we will sign the message by giving a chain of signatures, at each node in the path signing a hash of the public information at the two nodes beneath it.

For each α of length $\leq n$, let $\sigma_\alpha = pub_{\alpha 0}, pub_{\alpha 1}SIGN_{pri_\alpha}^1(H_k[pub_{\alpha 0}, pub_{\alpha 1}])$. If we want to sign an n bit message m in S^2, let m_i be the i bit prefix of m, for $0 \leq i \leq n$; the signature of m is defined to be the sequence $\sigma_{m_0}, \sigma_{m_1}, \ldots, \sigma_{m_n}$. The Verification algorithm works in the obvious way.

We will now informally discuss why S^2 is secure.

Imagine that the values at each node were generated using randomly, rather than pseudo-randomly, generated bits. Each node is used in exactly one way, namely to sign (using S^1) the public information of its children; the information at each node is randomly generated, and only used to sign (in S^1) exactly one message, although that same signature may appear in the signatures for many different m in S^2. Therefore, because of the security of S^1, to forge a signature for a new message in S^2, it will be necessary, for some α of length at most n, to compute $[pub'_{\alpha 0}, pub'_{\alpha 1}] = H_k[pub_{\alpha 0}, pub_{\alpha 1}]$ such that $H_k[pub'_{\alpha 0}, pub'_{\alpha 1}] \neq [pub_{\alpha 0}, pub_{\alpha 1}]$. Note that $[pub_{\alpha 0}, pub_{\alpha 1}]$ is generated completely independently of k. Therefore, an algorithm for finding such a $[pub'_{\alpha 0}, pub'_{\alpha 1}]$ would break the weak public collision resistance of H. \qed