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Abstract: Monitoring river ice is crucial for planning safe navigation routes, with ice–water classifica-
tion being one of the most important tasks in ice mapping. While high-resolutions satellite imagery,
such as synthetic aperture radar (SAR), is well-suited to this task, manual interpretation of these data
is challenging due to the large data volume. Machine learning approaches are suitable methods to
overcome this; however, training the models might not be time-effective when the desired result
is a narrow structure, such as a river, within a large image. To address this issue, we proposed a
model incorporating a graph neural network (GNN), called learnable weights graph convolution
network (LWGCN). Focusing on the winters of 2017–2021 with emphasis on the Beauharnois Canal
and Lake St Lawrence regions of the Saint Lawrence River. The model first converts the SAR image
into graph-structured data using simple linear iterative clustering (SLIC) to segment the SAR image,
then connecting the centers of each superpixel to form graph-structured data. For the training model,
the LWGCN learns the weights on each edge to determine the relationship between ice and water.
By using the graph-structured data as input, the proposed model training time is eight times faster,
compared to a convolution neural network (CNN) model. Our findings also indicate that the LWGCN
model can significantly enhance the accuracy of ice and water classification in SAR imagery.

Keywords: graph neural network; river ice; classification; synthetic aperture radar

1. Introduction

Classifying ice from water in river ice imagery is challenging due to the sparse river
structure and the influence of various factors on ice formation and development, such
as air temperature, river flow characteristics, and water temperature [1]. Ice mapping
using remote sensing images, particularly synthetic aperture radar (SAR), is a widely used
technique [2]. SAR sensors, which utilize active remote sensing, provide advantages such
as high spatial resolution (unlike passive microwave data) and the capability to penetrate
cloud cover (unlike optical and thermal infrared data). However, generating ice maps with
extensive spatial coverage and high temporal resolution necessitates a fully or partially
automated analysis of SAR imagery.

Ice and water classification is one of the most important tasks when it comes to ice
mapping. Recent studies have underscored the effectiveness of machine learning methods such
as convolutional neural networks (CNNs) in river ice and water classification (e.g., [3–6]). The
lack of sufficient ground-truth pixel-based samples limits the training of fully supervised
CNN-based methods, making their reliability uncertain across different times and locations.
Moving from pixel-level to polygon-based (or region-based) classification offers more
robust and easily acquired labels [7]. To address limited training data, semi-supervised
graph-based neural networks (GNNs) have been used for image classification in previous
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studies (e.g., [8,9]). The GNNs, particularly graph convolutional networks (GCNs) [10],
effectively capture the intrinsic geometry of complex spatial domains (such as rivers) and
can offer reduced computational costs compared to pixel-based methods.

In this study, we proposed a graph-based classification method to identify superpixels
in SAR imagery as either ice or water, aiming to establish an efficient, timely, and cost-
effective pipeline for river ice monitoring. Our model, named learnable weight graph neural
network (LWGNN), employs simple linear iterative clustering (SLIC) [11] to segment SAR
images into superpixels. The centers of these superpixels are then connected to form nodes
in a GNN, with edges representing the connections between neighboring superpixel centers.
Before training, land areas are removed from the graph to enhance the model performance.
The performance of the proposed model is then compared with a CNN, a super vector
machine (SVM), and the original GNN.

2. Materials and Methods
2.1. Study Region

The Beauharnois Canal and Lake Saint Lawrence sections of the Saint Lawrence were
selected for sea ice classification from January to March over five consecutive years of
2017–2021 (Figure 1). These sections are part of a major corridor supporting significant
vessel traffic and various infrastructure assets. The Beauharnois Canal, upstream of Mon-
treal, is a key shipping route bypassing rapids and connecting Lake Saint Francis to Lake
Saint Louis. Lake Saint Lawrence, a reservoir upstream of the Moses–Saunders power dam,
plays an essential role in controlling water flow and managing ice conditions during winter
to prevent issues like ice jams and build-up of frazil ice, which can clog water intakes
and cause flooding [12]. Ice and water classification in these sections can be helpful for
ensuring the safe and efficient management of the waterway and mitigating the future risks
associated with climate change.
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Figure 1. The study region consists of the Beauharnois Canal and Lake Saint Lawrence. The
central coordinates for the Beauharnois Canal are approximately 45.26◦ N and 73.94◦ W. The central
coordinates for Lake Saint Lawrence are approximately 44.99◦ N and 74.88◦ W.

2.2. Dataset
2.2.1. Sentinel-1 SAR Data

The SAR data used in this study, with a 10 m pixel spacing, correspond to the
VV (vertical transmit, vertical receive) polarization channel from Sentinel-1 (C-band,
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5.410 GHz). These Level-1-detected, high-resolution dual-polarization (GRD-HD) im-
ages were acquired from the Alaska Satellite Facility [13] in the interferometric wide mode.
The total number of available scenes was 70 for the Beauharnois Canal and 35 scenes for
Saint Lawrence Lake.

2.2.2. MODIS Data

To complement the SAR analysis, we checked the optical imagery from the moderate
resolution imaging spectroradiometer (MODIS) satellite using NASA Worldview [14]. This
step was done to facilitate accurate differentiation between ice and water for dates when
clear-sky imagery was available, to aid the manual labeling process.

2.2.3. Land Coverage Data

To accurately exclude land from the SAR analysis, we obtained land coverage data
from ESRI Land Cover Explorer [15]. This repository provides a series of land cover datasets
derived from ESA Sentinel-2 satellite imagery at 10 m resolution.

2.2.4. Air Temperature Data

Given the correlation between air temperature and ice formation, we incorporated
this variable into the proposed model. The air temperature data, in Celsius, was obtained
from Moose Creek Wells station (the central coordinates for this station are approximately
45.26◦ N and 74.97◦ W), the nearest weather station to Lake Saint Lawrence. The data
was downloaded from the Government of Canada, Environment and Natural Resources
website [16]. The air temperature values were obtained at the same time as the SAR
acquisition on the specified date.

2.2.5. Data Preprocessing

Thermal noise correction and calibration (for σ0) for the Sentinel-1 SAR scenes in the
dataset were carried out using the NERSC algorithm [17]. The scenes were then precisely
cropped to focus on the Beauharnois Canal and Lake Saint Lawrence.

2.2.6. Class Imbalance Issue

Our analysis showed that the ice occupies mostly below 50% of the Beauharnois Canal
and Lake Saint Lawrence during different times of the study period. This class imbalance
issue was a challenge since the model tended to disproportionately classify the regions as
water. To address this issue, we applied class weights to the loss function. These weights
were calculated as the inverse frequency of each class to ensure their sum equaled one,
thereby attributing equal importance to both classes despite their differing representation
in the dataset.

2.3. Methods
2.3.1. Learnable Weights Graph Convolution Network (LWGCN)

Inspired by Ouyang et al. [18], the proposed model involves employing a GNN for ice
and water classification. The first step is converting SAR imagery into graph-structured
data. For an illustration, the original SAR image for an arbitrary chosen date (2017-01-12) is
shown in Figure 2a for the Beauharnois Canal; we used a similar approach for Lake Saint
Lawrence. To achieve the segmentation of the SAR image, we utilized the SLIC algorithm
for segmenting the image into superpixels. The SLIC effectively groups pixels into coherent
regions. A segmented graph is shown in Figure 2b. To construct a graph, we considered the
centroids of these superpixels as nodes and defined the edges by connecting these centers,
shown in Figure 2c. The land area was subsequently excluded, see Figure 2d, and this is
the graph structure used in the LWGCN model.
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Figure 2. The process of generating graphs from SAR imagery for an arbitrary chosen date
(2017-01-12) in the Beauharnois Canal. (a) Sentinel-1 SAR image. (b) Use simple linear iterative
clustering (SLIC) to segment the image into superpixels. (c) Connect the centers of each superpixel.
(d) Remove the land area (this is the graph structure used in the LWGCN model).

Our proposed approach to leveraging a GNN for the analysis of SAR imagery is
anchored in the pioneering study by Kipf and Welling [10]. They proposed a GCN model
structure consisting of a non-linear activation function, σ(·), usually using ReLu, propaga-
tion operator, P, a feature matrix at the lth layer H(l) ∈ RN×Dl , and layer-specific learnable
weights W(l) ∈ RDl×Dl+1 . At each layer, l, the features are updated by the features on the
previous layer l − 1. The equation governing the GCN operation is [10]

H(l+1) = σ
(

PH(l)W(l)
)

(1)

To prevent the values in the hidden states from exploding during the weighted multi-
plication, a normalization step can be applied to the adjacency matrix using the diagonal

node degree matrix
∼
D of

∼
A, ensuring each row sums to one. Kipf et al. [10] recommend

node E denotes the number of edges, P =
∼
D
− 1

2 ∼
A

∼
D
− 1

2
with the degree matrix D ∈ RN×N

and adjacency matrix A ∈ RN×N . Additionally,
∼
A = A + IN and

∼
D = D + IN represent the

adjacency and degree matrix with self-loops on the original graph, where IN ∈ RN×N is
the identity matrix. Our model is built upon the existing GCN framework. To capture the
relationships between nodes and determine the relative importance of each connection, we
introduced learnable weights on the edges. The modified equation is as follows

H(l+1) = σ
(
(PE)H(l)W(l)

)
(2)

Additional parameter E ∈ Rn is applied to each edge in the normalized adjacency
matrix P. After experimenting with different initial weight settings, either as random values
or set to 1n×n, we observed that initializing the weights to 1n×n yields better performance.
The node features we adapted in this model are listed in Table 1, where the intensity
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is calculated by averaging the intensity at each superpixel. The standard deviation is
calculated as follows:

standard deviation =

√
1
N∑N

i=1(xi − µ)2 (3)

where N is the number of pixels, µ is the mean of the intensities, and xi is the pixels
inside each superpixel. The standard deviation is calculated for each superpixel, recording
the variance of intensity on the map. In the ice and water classification task, ice and
water exhibit distinct variance patterns due to their reflectance in the SAR data. Ice, with
its textured appearance, results in a higher standard deviation, while water generally
shows lower variance. We only used variance as the SAR texture features because, similar
to [19], we did not find higher order features, such as those from grey-level co-occurence
matrices, to be useful for our problem. The air temperature is mapped to each superpixel
in the domain. The model architecture is listed in Table 2. Our model begins with an
LWGCN layer with an input size defined by the number of nodes and features, as shown in
the equation.

Table 1. Geometric, texture, and environmental features computed for each node in the LWGCN model.

Number Features Category

1 Intensity Textural

2 Standard deviation Textural

3 Air temperature Environmental

Table 2. The LWGCN model architecture, where n is the number of nodes, h is the hidden size, and
cout is the output size.

Input Size Layer Output Size

n × Number of features LWGCN layer n × h

n × h ReLU n × h

n × h Dropout layer n × h

n × h LWGCN layer n × cout

n × cout Log Softmax n × cout

This is followed by a ReLU activation function and then a dropout layer. Another
LWGCN layer follows the dropout layer. Finally, a log softmax function is applied to
produce the output.

2.3.2. Support Vector Machine (SVM)

SVMs [20] classify ice and water in SAR images by learning from the same feature
vectors as the GNN. During training, SVMs find an optimal hyperplane to separate data
points into ice and water, maximizing the margin between the closest points of each class.
We optimized the regularization strength parameter, C, to 10, balancing training and testing
error, and set the gamma parameter to 1 to observe its effect. The radial basis function
(RBF) kernel was selected after testing.

2.3.3. Convolutional Neural Network (CNN)

The CNN has three convolutional layers with filter sizes of 32, 64, and 128 and
kernel sizes of 7 × 7, 5 × 5, and 3 × 3, followed by three groups of residual blocks. Max
pooling layers downsample, and dropout layers with a 0.5 rate prevent overfitting. An
adaptive average pooling layer reduces spatial dimensions to 1 × 1, which is flattened and
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passed through two fully connected layers, ending with a sigmoid activation for binary
classification. ReLU activation is applied after each convolution within the residual blocks.

2.4. Experimental Set-Up

We adopted the Adam optimizer [21], and we conducted an exhaustive grid search
to fine-tune the hyperparameters, ensuring optimal model convergence and effectiveness.
The specific hyperparameter configurations utilized are documented in Table 3. To facilitate
our research on GNNs, we utilized the PyTorch [22] and PyTorch-Geometric [23] libraries.
Our computational experiments were executed on the Cedar cluster by Compute Canada
on A100 GPU. The entire dataset comprised SAR imagery from the winter months (January
to March) for the years 2017 to 2021, capturing the temporal evolution of environmental
conditions. Cross-validation was used to assess model performance by dividing the dataset
into five subsets, each representing one year from 2017 to 2021. In each iteration, one year is
held out as the test set, while the remaining four years are used for training. This process is
repeated five times, ensuring each year is tested once. The performance metrics from each
iteration are aggregated to provide an overall assessment, ensuring a robust evaluation of
the model’s ability to predict across different years. The convergence of our model is set
to 20 epochs. The choice of 20 epochs was determined based on preliminary experiments
that indicated this number of epochs was generally sufficient for observing convergence
behavior in our specific task without overfitting.

Table 3. Hyper-parameters used in the LWGCN model over the Lake Saint Lawrence for years 2017
to 2021.

Loss Learning Rate Weight Decay Channels Dropout Hidden Size (h)

Cross Entropy Loss 0.01 5 × 10−4 2 0.2 4

3. Results

We present a comparative analysis of our proposed GNN approach for classifying
ice and water in SAR images with GCN, CNN, and SVM models on both the Beauharnois
Canal and Lake Saint Lawrence. The evaluation criteria include classification accuracy
and computational efficiency. Our LWGCN method demonstrates superior classification
accuracy compared to other models. Due to the simplicity of the ice condition of the
Beauharnois Canal, there is minimal difference in performance among the methods. There-
fore, we focused more on the results for Lake Saint Lawrence. Table 4 presents the model
accuracy from 2017 to 2021 for the four different methods tested on Lake Saint Lawrence.

Table 4. Binary average accuracies of different models for different years in percentage. The best
performances are highlighted in bold.

Model 2017 2018 2019 2020 2021

GCN 84.3723 79.1782 83.2189 75.8912 82.6316
SVM 62.1278 78.2825 72.1287 65.1813 81.9825
CNN 80.1228 77.9495 83.2096 77.3942 86.2384

LWGCN 84.6034 81.3472 85.4234 88.0293 88.6345

The accuracy is calculated by comparing the predicted labels to the true labels. For
binary classification tasks, the model’s output is first passed through a sigmoid function,
and the results are rounded to obtain binary predictions. The number of correct predictions
is then summed and divided by the total number of samples to yield accuracy. Our LWGCN
model outperforms the other three approaches. The LWGCN model excels in capturing
these complexities by effectively learning features from the spatial surroundings through its
adaptive weighting of the edges in the graph. We also selected a specific date, 2018-01-07, as
a reference date. We chose this date because there is a very prominent shipping lane across
the lake, which appears brighter than its surroundings. This brightness is due to the ship
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breaking the ice, leaving a trail of broken ice with high backscatter. The LWGCN model
output for an arbitrary date, 2018-01-07, is shown in Figure 3, and the color indications
are shown in Table 5. Based on this figure, it is evident that there were minimal errors
in classifying the shipping lane, with surrounding areas correctly identified as ice. This
accuracy is attributed to the capability of GNNs to capture spatial relationships effectively.
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arbitrary chosen date is 2018-01-07.

Table 5. The color presentation in the LWGCN model output image.

Correctly Labeled Incorrectly Labeled

Ice Yellow Green

Water Blue Red

Our method of using graphs to classify ice and water reduces the time it needs to train
and predict the result. Table 6 records the time it needs to train 20 epochs on Lake Saint
Lawrence; our LWGCN is about 8 times faster than the CNN method.

Table 6. Processing time in seconds for different models for different years. The best times are
highlighted in bold.

Time (s) 2017 2018 2019 2020 2021

CNN 3992.1835 3827.0839 3893.7901 3993.2819 3940.2834

LWGCN 554.3452 453.4839 593.2892 468.3008 532.9503

4. Discussion

In this study, we evaluated the performance of LWGCN, GCN, CNN, and SVM models
for classifying ice and water in SAR images, focusing on Lake Saint Lawrence. Our results,
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as depicted in Table 4, underscore the superior performance of LWGCN compared to GCN,
CNN, and SVM across the years 2017–2021. This superiority is particularly pronounced
given the complex ice conditions of Lake Saint Lawrence, where LWGCN consistently
achieved higher accuracy. Notably, the model’s ability to leverage spatial relationships
effectively enabled accurate classification of intricate features such as shipping lanes and ice
formations (Figure 3). Comparing our findings with traditional CNN and SVM approaches,
we observed that LWGCN outperformed in scenarios requiring nuanced spatial under-
standing. Between the two GNNs, we observe that our proposed model LWGCN slightly
outperforms GCN. This improvement can be attributed to the additional learnable weights
assigned to the edges in LWGCN. Despite the promising outcomes, our study encountered
limitations related to dataset availability and feature variability. Future research will priori-
tize expanding datasets to encompass diverse environmental conditions and enhancing the
variability of node features. This can be achieved by incorporating additional parameters
such as shape index, bathymetry, and river width [24]. Additionally, exploring advanced
GNN architectures, integrating multi-modal data sources, and conducting field validation
studies could further enhance the model robustness and applicability in real-world settings.

5. Conclusions

After evaluating the performance of different models including LWGCN, GCN, CNN,
and SVM, for classifying ice–water in SAR imagery, the findings indicate that leveraging
graph-based neural networks, especially LWGCN, can significantly enhance the accuracy
of ice and water classification in SAR imagery. Despite the promising results, the study
highlights the need for future research to expand the diversity of datasets and incorpo-
rate additional environmental features such as river corridor slope, effective width, and
river shape index [24]. These enhancements could further improve the models’ robust-
ness and applicability in varying conditions. This study underscores the potential of
LWGCN in remote sensing applications, paving the way for more advanced and precise
environmental monitoring.
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