BOOM: Use your Desktop to Accurately Predict the Performance
of Large Deep Neural Networks

Qidong Su
qdsu@cs.toronto.edu
University of Toronto &
Vector Institute & CentML
Toronto, Canada

ABSTRACT

The intensive computational requirements of training deep neural
networks (DNNs) have significantly driven the adoption of DNN
accelerators like Graph Processing Units (GPU). However, select-
ing the most suitable GPU from all candidates with drastically
different specifications and prices is still a challenging problem.
While directly measuring the performance of DNN training tasks
on every candidate is prohibitive, and not always available due to
hardware shortage, an accurate performance predictor can assist
in the decision-making. However, most existing performance pre-
dictors cannot predict the GPU memory footprint in an accurate,
generalizable, and interpretable manner, which is crucial to the fea-
sibility and performance of running the DNN model on real GPUs.
Moreover, many optimizations for DNN training, such as mixed
precision training and checkpointing, can significantly impact per-
formance. However, such hardware-dependent optimizations are
not considered by existing performance predictors.

In this work, we propose a novel performance predictor contain-
ing (1) a memory footprint predictor with better generalizability
and interoperability; (2) a runtime predictor supporting hardware-
dependent optimizations. Experiments show that our memory foot-
print predictor achieves an average error of 2.7% on CNN models
and 0.9% on transformers, and the runtime predictor achieves an
average error of 10.5% on the CNN and transformer models.

CCS CONCEPTS

- Software and its engineering — Software performance.

KEYWORDS

performance profiling, deep neural networks, machine learning

1 INTRODUCTION

Recent advances of deep learning (DL) in various fields such as
computer vision [25, 31, 74], natural language processing [14, 23, 75,
76], recommendation systems [83], and game playing [51, 68] have
spurred the development of accelerators for deep neural networks
(DNN) (e.g., GPUs [43], TPUs [40], and NPUs [2, 3, 8, 39, 47-49, 54]).

Among them, GPUs are one of the most popular families of accel-
erators. To support different budgets and scenarios such as training
and inference, the hardware vendors and cloud service providers
offer a wide spectrum of GPUs with different prices and specifica-
tions, including computation capability and device memory size.
For example, public cloud providers such as Amazon Web Services

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record is available at https://dl.acm.org/
doi/abs/10.1145/3656019.3676950.

Jiacheng Yang
jiacheng.yang@mail.utoronto.ca
University of Toronto &
Vector Institute
Toronto, Canada

Gennady Pekhimenko
pekhimenko@cs.toronto.edu
University of Toronto &
Vector Institute & CentML
Toronto, Canada

(AWS), Microsoft Azure, and Google Cloud Platform (GCP) have
different pricing strategies [1, 57] for GPUs with different comput-
ing capabilities. While it manifests a more accessible spectrum of
GPUs to users, it is also critical for users to choose the most suitable
GPU depending on their time or budget constraints.

One way to achieve this target is to manually deploy the DNN
model on different GPUs to analyze the feasibility and the perfor-
mance of the DNN workload. However, this method is not always
feasible due to the limited availability of hardware resources [55].
It requires access to every possible GPU in advance, but the desired
devices are not always available due to the limited quota. To make
things worse, this method is often laborious and not cost-efficient.
If a DNN memory and performance predictor was available, choos-
ing the most suitable GPU could be done automatically without
deploying and benchmarking the DNN model on actual GPUs, and
users only need to pick up a candidate from the predicted price-
performance Pareto optimal boundary.

To satisfy the needs, many existing works propose performance
prediction techniques [28, 30, 52, 64, 87]. However, they are still
not satisfactory due to two main limitations. First, many works
merely focus on performance prediction but ignore the prediction
of memory usage, while existing memory usage predictors suffer
from heavy human intervention [29] or insufficient generalizabil-
ity [28]; Second, existing performance predictors are unaware of
optimizations that depend on hardware specifications, which limits
the applicability of DNN performance predictors and hence leads
to inaccurate and ineffective predictions.

Memory usage is a decisive factor in the performance of DNN
applications, which can affect choosing the optimal GPU model. It
decides the upper bound of the model size and the maximal batch
size, which influences the throughput significantly, especially for a
tight memory budget and small batch sizes, as shown in Figure 2.
Without an accurate memory predictor, the performance prediction
could be invalidated as the execution of the DNN may not even
be feasible on a particular GPU. The recent breakthrough of large
models such as GPT [62] has further deteriorated the feasibility
of existing DNN predictors since their increasing model size im-
plies a more stringent requirement of on-device memory [58, 65].
Furthermore, memory is also an important indicator for decision-
making in optimizations since many DNN optimizations are trading
between memory and runtime, which, in turn, results in inaccu-
rate performance predictions. For example, gradient checkpoint-
ing [11, 17, 37, 45, 84] discards some intermediate activation values
during the forward pass. It can significantly reduce the memory
footprint of DNN training, which enables more economic GPU
models, as shown in Table 1. If the performance predictor does not

https://dl.acm.org/doi/abs/10.1145/3656019.3676950
https://dl.acm.org/doi/abs/10.1145/3656019.3676950

Qidong Su, Jiacheng Yang, and Gennady Pekhimenko

Building Stage (on target device)

i . \
1 can be re-used given ;

Deploy Stage (on local device)

RTX 2080Ti, {matmul, Model
RTX 3090, Profile ini
Tesats, XK convzd, TS m
Tesla V100... batchnorm,...}
GPUs profiled
(target device) operator set data

the same GPU model :

timeline/t on the local device
imeline/trace i input model

Memory footprint prediction
(Section 3)

operator runtime
predictor
(for each GPU model)

Runtime prediction
(Section 4)

Figure 1: Overview of BOOM. The whole workflow of BOOM consists of two stages: (1) Building stage (discussed in Section 4),
where it builds operator runtime predictor for each target device (GPU model) based on the collected runtime information. In

BOOM, we use an NN-based predictor for complicated oper.

ators like convolutions, while using linear projection for simple

operators like element-wise operators. The procedure of data collecting and prediction model training is carried out only once
for each GPU model. (2) Deploy stage, where the predictor built in the previous stage predicts the performance of the input
model, hyper-parameters, and workloads. In this stage, the predictor can be reused if the GPU model is the same. BOOM runs

the model on the local device and collect traces and runtime

information. With our proposed fake memory allocator (discussed

in Section 3), we can run models exceeding the local device’s memory constraint, which is a bottleneck for prior works like

Habitat and Skyline. Memory footprint is also done during
with collected traces to produce runtime prediction.

Table 1: How memory capacity and hardware-dependent op-
timizations affect the choice of the optimal GPU models.
Gradient checkpointing (ckpt in the table) enables training a
GPT-like language model on much cheaper (4x cheaper) com-
modity GPUs (e.g. RTX 3090 or 4090) by reducing memory
footprint. Without it, users have to use expensive high-end
GPUs such as A100. The price data is from vast.ai [9], a GPU
rental service.

‘ ‘ Memory ‘ Throughput ‘ Throughput/$ ‘

A100 40 GiB 100% 100%
RTX 3090 24 GiB OOM OOM
RTX 3090 + ckpt 24 GiB 60% 380%
RTX 4090 24 GiB OOM OOM
RTX 4090 + ckpt 24 GiB 80% 260%

25

straint
" memory constrain %atch size =3

hd batch size = 2
@ batch size = 1

w

Memory Usage
(GiB)
S

6 7 8 9
Throughput (request/second)

Figure 2: Memory capacity determines the maximum batch
size, which significantly affects the final throughput. Mea-
sured on running GPT2,rge on an RTX 3090. If we overesti-
mate memory usage by 10%, we will wrongly predict that it
will run out of memory, and thus we have to fall back using
batch size=2, which causes 10% throughput drop.

consider memory usage, these options will be neglected, causing
potentially unnecessary overspending.

Existing DNN memory prediction techniques [28, 29] try to ad-
dress these challenges by directly analyzing the computational
graphs. However, they need either heavy engineering effort and

this procedure. BOOM then calls the operator runtime predictor

expert knowledge, or building an end-to-end ML pipeline, making
it hard to maintain and adapt to new operators and optimizations.
Another method is profile-then-extrapolate, which runs the model
on devices we already have in hand (local device, e.g. a commodity
GPU and extrapolate [80] based on the profiling result. Their im-
plementation is much simpler, but they are limited by the memory
constraint of the local devices.

In this work, we propose a new cross-device DNN memory and
performance predictor called BOOM (Before Out-Of-Memory), of
which the overview is shown in Figure 1. For memory predictions,
BOOM leverages two insights that 1) we can measure memory foot-
print by tracing calls to the device memory allocator and 2) the cor-
rectness of computational result is not necessary for accurate memory
footprint measurement since the control flows of DNN workloads
usually do not depend on the data in the device memory. BOOM can
hence allow the device memory allocator to reuse allocated memory,
which enables allocation exceeding the memory constraint of the
local device. As a result, BOOM only needs to measure the memory
footprint to produce accurate DNN memory usage predictions.

For more accurate performance predictions, we observe that the
vanilla MLPs used in existing ML-based predictors fail to capture
the highly discontinuous patterns of GPU performance curves. To
handle this problem, we propose a data augmentation technique,
which significantly improves its generalization ability to handle
the discontinuous pattern of GPU performance curves. Compared
with previous approaches, BOOM produces more accurate DNN
performance predictions on the target accelerator with the consid-
eration of hardware-dependent optimizations, which have not been
well-studied to our best knowledge.

Our main contributions can be summarized as follows:

e We are the first to identify the problem of existing approaches
on accurate memory and performance prediction of DNNs that
involve hardware-dependent optimizations;

e We propose a novel memory prediction method by overriding
the memory allocator, which is more generalizable, explainable,
and extensible to new operators and optimizations, with the least

BOOM: Use your Desktop to Accurately Predict the Performance of Large Deep Neural Networks

human interference. It achieves an average error of 2.7% on CNN
models, 0.9% on transformers, and 3.5% on NAS models.

e We improve the accuracy of runtime prediction by data augmen-
tation and extend it to support more optimizations. It achieves
an average error of 10.5%.

2 BACKGROUND
2.1 DNN Optimizations

DNN training has been notorious for being costly in time, money,
and energy [56, 72, 86], and the techniques to improve the efficiency
of DNNSs training are highly demanded. There are many works
targeted at optimizing DNNs. Table 2 lists some optimizations for
DNN training. Among these, many are optional and not enabled
in popular DL frameworks by default because they are trading off
among several metrics. While they have the potential to improve
one metric, they also run the danger of harming others. Users need
to decide whether to turn them on, considering the workload and
hardware. For example, checkpointing discards some intermediate
results during forward computation and re-computes them when
needed, trading computational redundancy for a lower memory
footprint. It is helpful when we train a large model on a device with
a tight memory constraint. We call such optimizations hardware-
dependent optimizations.

2.2 Framework-Level Memory Management

Instead of directly using CUDA’s memory management APIs like
cudaMalloc and cudaFree, DL frameworks usually have their own
device memory management between CUDA and the user pro-
grams [29] to leverage more DL-specific optimizations. For exam-
ple, PyTorch uses its own caching allocator [7, 60]. When the user
program requests to release a tensor, PyTorch will cache its memory
space for potential future reuse instead of directly calling cudaFree,
which might cause slow down. PyTorch’s allocator also has param-
eters specifically tuned for DL to avoid fragmentation, such as 512
bytes as the minimal unit of allocation. Figure 3a shows how the
PyTorch allocator bridges user programs and lower-level libraries.

2.3 Profiling Tools of DNNs

The foundation of performance prediction is to accurately measure
the duration of each component of a DNN model, where profiling
tools play an essential role. DL frameworks usually provide their
own profiling utilities. Compared with hardware-level profilers (e.g.
Nsight Systems [6] and Nsight Compute [5]), they have a higher-
level interface with richer semantic information specific to the DNN
workloads. For example, PyTorch has a built-in profiling tool [60]
producing a clear timeline structure, which can be seen as the result
of serialization of the computational graph. It provides extra DNN-
specific information like the call stack from the top-level module
to basic operators and links between GPU kernels and their CPU
callers, which significantly simplifies further analysis. Our runtime
predictor is built on top of PyTorch’s profiler.

CUDA Allocator Virtual Allocator
A

A

CudaMalloc o CudaMalloc
v nvidia-smi v

PyTorch Allocator

A
@ € [0.target_addr]
reserved

JJ malloc

O € [0.target_addr]

PyTorch Allocator

cached O OO
allocated D O O O
7y 4
malloc O o
A

User Program

(a) PyTorch Memory Allocator

% € [0.local_addr]

User Program

(b) Fake Memory Allocator

Figure 3: Two-layer allocator: (a) shows how PyTorch’s allo-
cator acts as an intermediate role between the user programs
and the underlying CUDA allocator. It also shows the ranges
of memory included by different memory usage measure-
ment APIs; (b) shows how we enable the allocator to ‘allocate’
more space than the real device memory. The grey blocks are
modified components. We replace the CUDA allocator with
a virtual allocator running on a larger target address space
and use an address mapping component to map it back to
the local address space which is accessible to user programs.

3 MEMORY USAGE PREDICTOR

In this section, we analyze the challenges of DNN memory predic-
tion and then propose a novel memory footprint prediction tech-
nique that allows the allocator to “allocate” more space than the
local device memory limit, thereby reducing the memory prediction
problem into memory measurement.

3.1 Challenges

The difficulties of accurate DNN memory prediction include:
Distribution of memory usage across the software stack. Mem-
ory usage is distributed across different layers of the software stack
including drivers, libraries, frameworks, and user programs, which
leads to different results when profiling the memory usage at dif-
ferent layers. For example, in PyTorch, max_memory_allocated re-
turns the memory used by all tensors, while max_memory_reserved
returns all memory managed by PyTorch caching allocator [7],
including freed but cached memory areas and fragmentation.
nvidia-smi is a tool provided by NVIDIA to monitor the status of
GPUs, including temperature, clock, and memory. Its total mem-
ory usage numbers are the most accurate and inclusive. Figure 4
visualizes the non-negligible difference (at gigabyte granularity) of
measured memory footprints via different APIs. Hence, an accu-
rate memory predictor must align with the most inclusive API, i.e.,
nvidia-smi.

Sensitivity of memory footprint to details in user code. The
final memory footprint is sensitive to many tiny options and details
in the code, and it is hard to model all of them manually. For exam-
ple, enabling the set_to_zero option when zeroing the gradient
tensor at the beginning of each training iteration might lead to
different behaviors of the memory allocator. Moreover, the algo-
rithm selection of cuDNN [19] can affect memory usage, which has
several options exposed to the users. However, existing memory

Qidong Su, Jiacheng Yang, and Gennady Pekhimenko

Table 2: Optimizations for DNN.) means improvements such as reducing computational redundancy or memory usage, and
) means deterioration such as more redundancy, more memory usage, or lower accuracy. “?” means the effects depend on

«_»

specific techniques. means remaining unchanged.

High-performance Kernels

TVM [16], CUTLASS [44]

Vertical Fusion

DNNFusion [59]

Optimization ‘ Examples ‘ Redundancy Memory Accuracy

Gradient Checkpointing Checkmate [37], DTR [45] Q3 (@] =
Offloading vDNN [67], SwapAdvisor [33] Q (@] =
Graph Transformations TASO [38], PET [77] &} ? =
Compression JPEG-ACT [26], Gist[36] ? (6] ?
Low Precision QNN [35], AMP [22] &) &) Q)
Sparsification Sparse Transformers [13, 15] [§] [§] =

0 ?

0 0

L&} Q

Horizontal Fusion

HTFA[78], Retiarii[82]

@ ——nvidia-smi
) 10 || —#—max_memory_reserved
E max_memory_allocated
£
“8‘ 5 M
z | o
2 —
s 0 — T
= 4 16 28 40 52 6 1 4 7 10 13 16
Batch Size Batch Size
(a) ResNet50 (b) BERTBASE

Figure 4: Memory footprint measured by different APIs

predictors suffer from either prohibitive engineering efforts of man-
ually encoding rules or the lack of generalizability and extensibility.
We will discuss it in detail in Section 7.

3.2 Key Idea: Fake Memory Allocator

The key idea of our memory prediction technique is to actually “run”
the DNN model and measure the memory footprint, which naturally
solves the two challenges mentioned above. However, it requires
that the local device we have in hand has sufficient memory, which
cannot be satisfied with large input models. To make things worse,
running large models is also time-consuming. To address these
two problems, we adopt two techniques: 1) using a fake memory
allocator to loosen the memory constraint of the local device; 2)
skipping unnecessary tensor computation. They are based on the
following two observations:

Observation 1: Large blocks of memory, including all tensors,
are managed by the framework memory allocator. By track-
ing the calls to the memory allocator, we can record all memory
allocation and free requests, hence the memory usage throughout
the execution.

Observation 2: The control flow and memory access pattern
of most DNN models do not depend on exact tensor values.
Specifically, if we view DNN models in the graph-kernel hierarchy,
most models have no graph-level control flow. For example, sequen-
tial models like VGG [69] are always executed sequentially. While
some other models [31, 73] have branches in the computational
graph, both branches need to be fully executed regardless of the

Target Address Space (Mutually exclusive)

/A ASSSS S|

block 1 block 2 free

Local Address Space (with overlap)

block 1 block 2 free

Figure 5: How we map the larger target address space to the
smaller local address space by allowing overlapping between
memory blocks, done in address mapping in Figure 3b.

inputs. At the kernel level, the order of all memory accessing in-
structions of most kernels is exactly identical if the shape of inputs
is fixed, regardless of the exact values stored in the tensor.

Based on these two observations, our first idea is to replace
the CUDA memory allocator with a fake allocator that works on
an imaginary address space that has the same size as the target
device memory (target memory space), as shown in Figure 3b. It
has the same APIs as the original CUDA allocator, so the caching
mechanism of PyTorch still works properly with it.

However, since the address space is imaginary, we must map
it to an accessible memory region on the local device in order to
prevent user programs from invalid memory accesses. This address
mapping process is done before the address is returned to down-
stream programs, as shown in Figure 3b. Specifically, our solution
to make mapping a larger memory space onto a smaller region
possible is to lift the constraint of mutual exclusivity. As shown in
Figure 5, memory blocks in the target memory space are mutually
exclusive, but they are allowed to overlap with each other after
address mapping.

As a result of lifting mutual exclusivity, we lose the guarantee
of the correctness of numeric computations. Nevertheless, this is
acceptable as we are only concerned with precise memory consump-
tion measurement. Observations 1 and 2 lead to a corollary that the
exact tensor data will not affect when and where the memory allo-
cation and free will be called. Thus, if we manipulate the memory
allocator and return a wrong but accessible address, the kernels
should still work normally. While the results will be numerically

BOOM: Use your Desktop to Accurately Predict the Performance of Large Deep Neural Networks

incorrect, given Observation 2, the calls to the memory manage-
ment functions will not be affected, and hence we can book-keep
the memory usage correctly.

Furthermore, since the computation results are not important
for memory usage measurement, we can skip the computation of
an operator whenever it does not affect memory measurement.
It also enables our memory predictor to support operators with
constraints on their inputs (e.g. logarithm, which requires the input
to be positive) since the numerical operations will not be triggered.
We skip the CUDA computation by a) override cudaKernellLaunch,
b) remove the calls to libraries such as cuBlas and cuDNN.

There are still exceptions where we cannot skip the computation,
such as the operators involving algorithm selections of cuDNN
(e.g. convolution) since different algorithms can lead to different
memory footprints. Hence, the fake allocator still guarantees a
range of accessible memory for them.

3.3 Implementation

In this section, we discuss the implementation details of the memory
consumption predictor. Shown as the two grey blocks in Figure 3b,
it consists of two parts: 1) a virtual allocator running on the address
space of the target device; 2) an address mapping component trans-
lating addresses from the target device address space to that of the
local device. We call the combination of them a fake allocator.
Two-level Fake Allocator. We override the CUDA allocator with
a purely virtual allocator working on the target address space. It
simulates the behavior of a normal allocator on the target device
with a potentially larger address space. The addresses it returns
always satisfy mutual exclusivity. We call them target addresses.
For the framework allocator, to map a target address to an ac-
cessible local address, it will first allocate a large memory pool
(we call it the scratchpad) when being launched, onto which the
target address will be projected. We organize the scratchpad as a
ring. We maintain a pointer starting from the address 0 (w.r.t. the
scratchpad). Each time there is an allocation request, we return
the address where the pointer is as the local address, increase the
local address and its corresponding target address to the address
map, and move forward the pointer as many bytes as the requested
size. If the pointer exceeds the end of the scratchpad, we take the
remainder of the pointer divided by the scratchpad size as the new
pointer, which means it restarts from the head. If the pointer is
too close to the end of the scratchpad that the remaining space is
less than the requested size, we need to move the pointer back to
ensure the requested size of bytes after it is accessible. Finally, if
the allocator finds that the address has already been occupied by
an entry in the map, it will look backward to find an empty slot.
The dependency of these two levels is not unidirectional. When
the framework allocator calls cudaFree, we need to find the target
address which the requested local address was translated into. So
we need another map from the local address to its corresponding
target address.
Infeasibility of a single-level fake allocator. Another way
to manipulate the allocator is to directly override cudaMalloc
and cudaFree. This solution is simple and appealing as it is non-
intrusive — we do not need to modify even a single line of the
framework.

However, this solution is infeasible for a fundamental reason —
the conflicts between the framework allocator and the lower-level
allocator. The correctness of the behavior of framework-level allo-
cators relies on the mutual exclusivity of the lower-level allocator,
which the fake allocator has broken. A counterexample is shown
in Figure 6, where PyTorch’s caching allocator splits a freed but
cached memory block and returns the split point (marked with
the red triangle) as the response to an allocation request with a
smaller size. However, the lower-level allocator is unaware of this
allocation. Without mutual exclusivity, our fake allocator might
still return the split point for another allocation request even if it is
already used, causing a collision.

Step 1: allocate using (fake)cudaMalloc
| allocated | free

Step 2: free, but cached by PyTorch
[cached [free |

Step 3: PyTorch allocator reuses the cached space
(cudaMalloc is unaware of this)
[cached [allocated [free |

Step 4: cudaMalloc reuses this address, causing a collision!

[cached [allocated [free |
A

Figure 6: An example of collisions of the framework alloca-
tor and the lower level allocator. As they are decoupled, the
framework allocator cannot signal to the lower-level alloca-
tor that an address is used, causing collisions.

Memory footprint beyond cudaMalloc. The memory usage mea-
surement given by the fake allocator is supposed to be equal to
the total amount of memory managed by the framework (which
can be queried using torch.cuda.max_memory_reserved in Py-
Torch). But there is still a gap between it and the number given by
nvidia-smi. The gap is mainly due to the memory consumed by
the drivers, libraries, and CUDA contexts [29]. The gap measured
by three different APIs is shown in Figure 4. We find that the gap
is a constant depending on what libraries the task involves. For
instance, vision tasks requiring cuDNN libraries usually require
more memory due to the extra dependencies. Fortunately, the gap
is a constant which can be measured by running a small matrix
multiplication and a small convolution.

4 RUNTIME PREDICTOR

In this section, we discuss the challenges of runtime prediction
of deep learning. Then we will propose a new runtime prediction
technique to address these challenges.

4.1 Challenges

Hardware-dependent optimizations. As mentioned in Section 2.1,
there are many optional hardware-dependent optimizations left for
DL developers or auto-tuning policies to decide whether to turn
them on. These optimizations could influence the runtime dramati-
cally. However, to the best of our knowledge, existing works [30,
52, 53, 64, 71] do not take those optimizations into consideration,

g T4 Single Layer T4 VGG13 ’g
2 1250 r30 2
4 - 320 =
& 1000 F28 - clock [320 .
S 750 | 6 ——tme L3103
[T T T T T T T T E
© Time (s) Time (s) 2
g 2080Ti Single Layer 2080Ti VGG13 'g\
€ 1900 - g K
= L 140 E
g 1800 - 93 e
S 1700 - 1 138 §

Fo92 2
E T T T T T T T T g
© 0 200 400 600 0 200 400 600 =

Time (s) Time (s)

Figure 7: How GPU frequency and the running time of a sin-
gle convolution layer and a whole model change as time goes
by. Note that we use the same Y-axis scale for GPU frequen-
cies for different workloads on the same device, showing
different clocks they are running under.

severely restricting their usefulness in real-life optimization scenar-
ios. While Daydream [87] supports predicting the performance of
DNN:ss after optimization, it only runs on the local device, making
it unsuitable for cross-device performance prediction.
Consistency of GPU frequencies. Many existing performance
prediction techniques adopt the assumptions [30, 37, 38] that 1)
the total runtime of the DNN model is approximately equal to the
sum of the runtime of each operator, and 2) the runtime of each
operator can be measured independently, i.e. the duration of an
operator as a part of a DNN model should be the same as that if
we measure it separately. However, these two assumptions hold
only if the GPU clock is consistent between individual operator
measurements and the whole model execution. We have observed
the measurement results can be time-varying and dependent on
the specific workloads. We find that there are at least two scenarios
during the measurement worth noticing (see Figure 7):

(1) In along-term task, we have observed a decrease in GPU fre-
quency over time. Consequently, even when repeating the same
task, the measured time gradually increases before reaching
a stable value. It often requires several hundred warm-up it-
erations to achieve a steady GPU frequency. The difference
between the measurements of the first several iterations and
the stable value can be up to more than 10%, as demonstrated
in Figure 7.

(2) GPUs might use different frequencies for different workloads. In
our case, it is possible for a single-operator and a whole-model
measurement to run under different clock frequencies due to
their different computational intensities. As a result, different
GPU clock frequencies are observed. The difference between
the GPU clock speeds during two different tasks can be up to
25% as shown in Figure 7.

In comparison, Habitat does not account for the consistency
of GPU frequencies, so its predictions must be calibrated using
both the predicted and measured runtime on the local device. This
process involves training a prediction model specifically for the

Qidong Su, Jiacheng Yang, and Gennady Pekhimenko

30 20
¢ Measured

Predicted
Predicted (augmented)

&)
<@

Time (ms)
Time (ms)

[

5 10 15 20 25 30 35 40 45 50 55 60 30 160 240 320
Batch Size Output Channels

Figure 8: Discontinuous patterns of performance curves (mea-
sured on RTX2080Ti). The batch size is 32 in the right plot.

\/\/\/\/V\NVW/\/\N\/\/\N\/\/\/\M/\/\N\/\/\/\/\/\

1020 1030 1040 1050 1060 1070 1080 1090
X

Time (ms)
S = N W

Figure 9: Discontinuous patterns are more obvious with Ten-
sor Cores enabled. Measured running time of batched matrix
multiplication with input shapes [7, 128, 1024] and [7, 1024,
X] on Tesla T4. The X-Axis is X.

local device and running the model on the device itself, which takes
more time and is limited by the local device’s memory capacity.
Discontinuous patterns of GPU performance curves. We ob-
serve that when we change one dimension of the input shape, the
runtime does not necessarily scale continuously, but shows discon-
tinuous patterns like step functions, as shown in Figure 8. Directly
using vanilla MLPs as in existing works [30, 41] to fit the perfor-
mance curve will incur large errors as it is too smooth, especially
at discontinuities. The situation even deteriorates if we enable Ten-
sor Cores because libraries like cuBLAS [4] and cuDNN [19] will
only leverage Tensor Cores when the input shapes satisfy some
constraints (e.g., multiples of 4 or 8). So the performance curves are
highly discontinuous, as shown in Figure 9.

One argument is that although vanilla MLPs cannot fit the dis-
continuous patterns perfectly, they still capture the general trend of
performance curves and the prediction error of operators’ runtime
might offset with each other. However, the conjecture is not true,
due to two reasons:

(1) Certain hyperparameters remain constant across all layers, such
as the batch size. If the predictor consistently overestimates the
target values for a particular batch size, the final outcome will
be an accumulated overestimation.

(2) The discontinuous points in performance curves are usually
powers of two or multiples of them (e.g., 32, 64, 96). Unfortu-
nately, these numbers are also the most common parameters
used by DL models.

Therefore, the predictor should be able to capture the discontin-
uous patterns.

4.2 Our Design

Since neural networks can be represented by computational graphs
consisting of operators, runtime prediction can be done by predict-
ing each operator’s runtime and subsequently aggregating them.
One key difference between memory and runtime prediction is that

BOOM: Use your Desktop to Accurately Predict the Performance of Large Deep Neural Networks

the runtime is additive while the memory footprint is not. The run-
time of the whole model can be decomposed into operators, while
the memory usage changes with time as the program allocates and
releases memory. We use machine learning only in runtime pre-
diction because predicting the runtime of individual operators is
much simpler than building a predictor that takes whole models as
inputs.

Cost analysis of building ML-based predictor. ML-based pre-
diction may introduce certain overheads, which mainly come from
two aspects: 1) data collection; 2) model training. Since we use a
very light-weight NN-based model for our predictor that can be
trained in a short time, the major overhead comes from data collec-
tion. For BOOM’s runtime predictor, we collect data on the target
hardware, which is performed only once for each GPU model. Once
the predictor is trained, users can leverage BOOM to obtain pre-
dictions for DNN inference and training jobs across various neural
networks and hyper-parameters. This predictor can also be reused
by other users who have the same GPU model. Although the data
collection process can take several hours, this overhead is relatively
minor compared to the typically lengthy upgrade cycles of GPU
models. This step can be carried out by the vendor, cloud-service
providers, or volunteers who can access the target device, as the
target device is treated as a black box. The whole pipeline of the
ML-based predictor is shown in Figure 1. More discussion about
the cost of building datasets and the required amount of data can
be found in Section 5.2.

Complex operators. For each kind of large operator (e.g., conv2d,
linear, bmm), we build an 8-layer MLP model which takes the
parameters of the input operator (e.g., the number of input/output
channels, the size of filters, the size of input tensor) as the inputs,
and produces the predicted run time of the individual operator.
The training dataset is collected by measuring the runtime of each
operator with randomly generated inputs and parameters on the
target device. We use the same hyper-parameters and range of
shapes as Habitat [30], with additional features about data types.
For each operator, we uniformly sample hyper-parameters and
shapes of input tensors, discard invalid inputs, and measure the
time of three repetitive runs after three warm-up iterations.
Simple operators. DNNs contain numerous small element-wise
operators, especially in activation layers and optimizers. They are
usually memory-bound. We find that the runtime of element-wise
operators is approximately equal to the memory I/O divided by
the memory bandwidth, i.e. it scales linearly with I/O. For other
small operators that the NN-based predictor does not cover, we
treat them as element-wise operators, which might introduce some
errors. However, the error would not affect the final result too much
due to their small proportion in total runtime.

4.3 Implementation

In this section, we discuss how we handle the challenges we men-
tioned in Section 4.1.

Hardware-Dependent Optimizations. Many hardware-
dependent optimizations can be represented in the graph-operator
hierarchy. As a proof of concept, we showed how to support several
popular optimizations such as changing batch size, automatic
mixed precision training (AMP), and gradient checkpointing. For

the rest of the optimizations, we discuss our approach to their
prediction in Section 6.

e Changing batch size: Changing batch size does not change the
timeline, but only scales the length of each operator. Batch size is
already an input feature of the NN predictor, so it can naturally
support variable batch sizes.

e Low-precision: We build an operator performance dataset for
each precision and add one dimension of the input feature to
represent the data type to the NN predictor. Some type casting
operators might be introduced, which are treated as element-wise
operators.

e Gradient Checkpointing: Checkpointing discards some in-
termediate computational results during forward propagation
and re-computes them during backward propagation when they
are needed. Its modification to the computational graph is lim-
ited to adding some forward computation operators in the re-
computation phase. The PyTorch profiler can capture these mod-
ifications and include them in the timeline, and the newly added
operators can be supported by the operator runtime predictor.

Consistency of GPU clocks. During sampling and measuring, the
GPU keeps executing kernels with high computational intensity,
leading to a lower clock speed as shown in Figure 7. We add sleep
instructions between two measurements and adjust the interval to
ensure the GPU clock speed is aligned with real-world scenarios.
During testing, we need a long period of warm-up to ensure the
GPU clock speed converges to be stable.

Data Augmentation. We enhance the ability of MLPs to fit dis-
continuous curves by data augmentation. In Figure 8 we find the
period of discontinuity in terms of batch size is 16, so we add the
remainder of the batch size divided by 16 to the input feature. We
further convert it into a one-hot representation to strengthen its ex-
pressive power. So the feature representing the batch size fiatch_size
can be formally written as (where @ means concatenation):

Soatch_size = [batch_size] @ onehot(batch_size%16)

We apply similar augmentations to other parameters including
input/output channels and image size, and concatenate the aug-
mented features. Divisors other than 16 to get optimal accuracy
also can be used. Since the time for training an NN-based predic-
tor is negligible compared to that used in data sampling, we can
perform a grid search to find the optimal parameters. This hyper-
parameter is fixed after the prediction model is built. More details
of the hyper-parameters used can be found in Table 3.

5 EVALUATION

BOOM is designed for cross-device performance prediction for DNN
models, encompassing both memory and runtime prediction. There-
fore our evaluations aims to determine: 1) BOOM can accurately
predict the memory footprint of DNN models with different op-
tions and optimizations (batch size, AMP, gradient checkpointing);
2) BOOM can accurately predict the runtime of DNN models with
different optimizations; 3) BOOM can predict the performance of
DNN models exceeding the memory constraint of the local de-
vice. Additionally, we also compare BOOM with state-of-the-art
baselines in terms of functionality and prediction accuracy.

Table 3: Details of feature engineering. Listed features are
used to train the prediction model together with the one-
hot representation of the resulting modulo (the remainder
when divided by a chosen constant). Kernel size and stride
in conv2d are also encoded as one-hot vectors.

batched matmul
(bsz X L X M X N) H conv2d
bsz bsz %8 bsz bsz %32
L L%8 in_channels in_channels % 64
M M%8 out_channels | out_channels % 64
N N %8 image_size image_size % 4

Table 4: Hardware platforms we use in evaluation

GPU | GPURAM | Micro Arch | FP32 TFLOPS
RTX 2080Ti | 12 GiB Turing 13.45
RTX 3090 24 GiB Ampere 35.58
T4 (AWS) 16 GiB Turing 8.14
V100 (AWS) | 16 GiB Volta 14.13
RTX 2070 | 8GiB | Turing | 7.47

Hardware. We use four different NVIDIA GPUs as the target de-
vice: RTX 2080 Ti, RTX 3090, T4, and V100. We use RTX 2070 as
our local device. These devices belong to different generations of
microarchitecture and are offered in different forms. RTX 2070,
RTX 2080, and RTX 3090 are offered as bare-metal machines, while
Tesla T4 and Tesla V100 are offered as cloud instances (G4 and P3
respectively) by Amazon Web Services. They also vary in memory
size and computation power (represented as FP32 TFLOPS in the
table), among which the local device is the weakest one.

Software. We use PyTorch 1.12 and CUDA 11.6. Since we modified
the source code of PyTorch, we need to build it from the source.

Baselines. We choose state-of-the-art performance prediction tools
as baselines to compare in our evaluation. However, there are no
open-source cross-device memory predictors available to the best of
our knowledge. To address this, we re-implemented DNNPerf [28]
based on the description in their paper. For runtime prediction,
Daydream [87] and Skyline [80] are not designed for cross-device
prediction. Habitat [30] is a cross-device runtime predictor that
employs wave scaling and ML-based prediction. Therefore, we
select Habitat as the baseline for comparison.

5.1 Evaluating Memory Predictor

In this section, we evaluate our memory predictor on different
models including CNNs and transformers. We also evaluate the
predictor with Automatic Mixed Precision (AMP). We implement a
two-layer fake memory allocator in PyTorch as shown in Section 3a
and block the launch of many operators, with less than 500 lines of
code committed. We use RTX 2070 (8 GiB) as our local device and
RTX 3090 (24 GiB) as the target device to highlight the substantial
difference in GPU memory capacity.

Qidong Su, Jiacheng Yang, and Gennady Pekhimenko

)
2
=15
210 |] 7 1
23 F i (A T o Tl (I
20 vl LR R
E 32 64 12832 64 9 | 64 128 256
=

resnet50 densenet201 mobilenet large
OMeasured @ Predicted @Measured (AMP) @ Predicted (AMP)

(a) Memory usage prediction on CNNs

N
[SECR=I

gc (GiB)
ocwo

Memory Usage

bert-large

gpt2-medium albert-large

OMeasured B Predicted @ Measured (AMP) G Predicted (AMP)

(b) Memory usage prediction on transformers

Figure 10: Memory footprint prediction of different input
models and batch sizes. The memory constraint of the local
device (8 GiB) is highlighted in red.

CNNs. We tested our memory predictor on three CNN models from
Torchvision [21], namely ResNet50 [31], DenseNet201 [34] and
MobileNetV3age [32]. We turn on the cuDNN benchmark option
and exclude the first iteration where the benchmark happens. We
choose three different batch sizes for each model. Figure 10a shows
the result. Note that the GPU memory of the local device is 8 GiB.
So the results beyond 8 GiB show the ability of the predictor to
simulate models exceeding the local device memory constraint. The
overall prediction error of the test cases is 2.7%.

Transformers. We use three transformer models for sequence pre-
diction from HuggingFace’s transformers library [79], namely
BERTLARGE [23], GPT2Mmeprum [62] and ALBERTY ARGE [46]. We
set the sequence length as 512 and vary the batch sizes. Figure 10b
shows the result. The overall prediction error of the test cases is
0.9%. We find the error of predicting the memory footprint of trans-
former models is smaller than CNN models and we attribute it to
the inconsistency generated in the algorithm selection of cuDNN
in different hardware.

Comparison to state-of-the-art baseline. We compare our predictor
with the ML-based memory predictor in DNNPerf [28]. Since it’s
not open-source, we implement it according to the description in
the paper. We collect 9,062 CNN models from NATS-Bench [24], a
NAS dataset, and measure their memory footprint. We randomly
sample 70% data as the training dataset and leave the rest for testing.
We also measure ResNet18 with the image size as 224 x 224 and
batch sizes from 8 to 128 as the unseen testing set.

As shown in Table 5, BOOM achieves a comparable accuracy on
the NAST dataset while winning by a wide margin on the unseen
ResNet tests. Note that the NAST training and testing sets are very
similar, so it is an optimistic measurement for DNNPerf. It shows
our method has a stronger generalization ability.

BOOM: Use your Desktop to Accurately Predict the Performance of Large Deep Neural Networks

Table 5: Accuracy comparison of memory footprint predic-
tion between BOOM and DNNPerf

| BOOM DNNPerf

NAST 35% 3.3%
ResNet (unseen) 6.6% 25.2%

5.2 Evaluating Runtime Predictor

End-to-end prediction accuracy. We test our runtime predictor on
three CNN models (VGG19 [69], ResNet50 [31], InceptionV3 [73])
from Torchvision and two transformer models BERTgasg and GPT2
from Hugging Face transformers, with different batch sizes in
both FP32 and AMP training. We measure the wall-clock time of
100 contiguous end-to-end training iterations after 100 iterations of
dry run to avoid the GPU clock inconsistency problem (Section 4.1).

For FP32 training, we compare BOOM with Habitat, of which the
result is shown in Figure 11. The prediction error given by BOOM
is 7.8%, while the error of Habitat is 13.5%. Since Habitat does not
support automatic mixed precision (AMP), we only report the error
of BOOM, as shown in Figure 12. BOOM achieves an average error
of 13.3% on AMP. The overall testing error including FP32 and AMP
training of BOOM is 10.5%.

In conclusion, BOOM can achieve higher accuracy than Habitat,
support predicting DNNs exceeding the local device memory, and
support more features such as AMP.

Data amount and operator runtime prediction accuracy. Sampling
and measuring are the most costly stages in the process of building
an NN-based prediction model. Hence, it is important to estimate
the required amount of data for training an accurate enough model.
We randomly sample subsets of different sizes from the entire train-
ing set, train NN predictors on them respectively, and test them
on the testing set. Figure 13 shows the testing error-data amount
curves. We observe that with a dataset size of 1.5 X 10°, the testing
error can be lower than 15%. The testing error converges around
the data amount equal to 4 x 10° (including both FP32 and AMP).
For other operators, a dataset with a size of 10* can produce a sat-
isfactory result. We utilize this as a reference for data collection on
other platforms.

5.3 Evaluating the Support of Checkpointing

In this section, we test the accuracy of BOOM’s runtime and mem-
ory usage predictor on training with the optimization.

We use RTX 2070 (8 GiB) as the local device and RTX 3090 (24
GiB) as the target device. We use two models GPT2yprum and
GPT21 ARGE, With three different batch sizes. These models are so
large that they cannot run on the target device. Figure 14 shows
the result. The memory usage predictor achieves an average error
of 1.3%, and the runtime predictor 4.5%, showing our predictors
can work well with gradient checkpointing. Note that the memory
footprint is larger than the local device memory (8 GiB) in some test
cases even after enabling gradient checkpointing, showing BOOM
can work with models exceeding the local device memory.

The required code modifications to support gradient check-
pointing are minimal. For memory prediction, BOOM seamlessly

supports it without any changes to the source code. For run-
time prediction, the checkpointed operators are wrapped as a
CheckpointFunction by PyTorch, of which the operators can be
extracted by a few additional lines of code.

5.4 Prediction Time

We measure the time spent by BOOM on end-to-end prediction for
different models and compare it with Habitat, as shown in Figure 15.
While BOOM eliminates most of the unnecessary computation for
performance prediction, it also suffers from the overhead of switch-
ing between the fake and original PyTorch environment. These two
factors offset each other, hence BOOM and Habitat have comparable
prediction overhead. In some cases where computation is heavier
such as BERTgasg, BOOM runs faster because it eliminates more
unnecessary computations. In comparison, Habitat requires fully
running the model on the local device to calibrate its predictions,
which cannot be skipped. In conclusion, the prediction overhead of
BOOM is around 10 seconds and acceptable in practice.

6 DISCUSSION

Besides the optimizations we mentioned in Section 4.3, many other
optimizations can also be supported under our framework as ex-
tensions. We leave these as future work.

Distributed. BOOM can be extended to support distributed train-
ing. One possible solution is to replace distributed primitives such
as all_reduce with their corresponding fake versions, similar to
BOOM’s memory fake allocators. This will let us track the network
traffic volume and calculate the communication cost using network
bandwidth accurately.

Offloading. One solution to insufficient device memory is to swap
some weight or activation tensors to the host device and load them
back to the device when needed [33, 61, 65-67]. For memory pre-
diction, if the CPU memory is large enough that we can view it as
infinitely large, then BOOM can naturally support it. Otherwise,
we need to manipulate the CUDA memory copy APIs.
Sparsification. Sparsification is a class of techniques to accelerate
the training and inference of DNNs. Some of them use fixed spar-
sified operators [15, 20], which can be handled by the NN-based
operator performance predictor. Memory usage prediction can also
be naturally supported by BOOM.

Kernel Fusion. Kernel fusion merges contiguous operators in the
computational graph [59]. It can reduce redundant data movements
by reusing intermediate results of contiguous operators, which
can be approximated by the amount of I/O and device memory
bandwidth. Memory usage prediction of both kinds of kernel fusion
can be naturally supported by BOOM.

7 RELATED WORK

Memory prediction of deep learning. Existing DNN memory
prediction techniques can be categorized into (i) computational
graph-based methods and (ii) profile-then-extrapolate methods. How-
ever, they are all not satisfactory in terms of handling the afore-
mentioned challenges (Section 3.1). The former takes the compu-
tational graphs as the input and directly analyzes them to make
predictions. Both analytical models [29, 64] and ML-based memory
predictors [28] require substantial engineering efforts, either to

[OHabitat ®@BOOM] Habltat BBOOM

[}

Norm. Preidcted Time
f=J
W

32 64|16 32 64| 4

16 8

vegg resnet50 inception

(a) RTX 2080 Ti

OHabitat @BOOM

Norm. Preidcted Time
IS}
Wi

16 32 48|16 32 4816 32 64|14 8 16| 4 8 12

vgg resnet50 inception | bert-base gpt2

(c) Tesla T4

Qidong Su, Jiacheng Yang, and Gennady Pekhimenko

W

OHabitat BBOOM

S
o=

(=1

Norm. Preidcted Time

8

16 32 48|16 32 64

bert-base

resnet50

vgg inception

(b) RTX 3090

OHabitat BBOOM

(=}

Norm. Preidcted Time
f=]
Wi

16 32 4816 32 4816 32 64| 8 12 16| 8 12 16

veg resnet50 inception | bert-base ept2

(d) Tesla V100

Figure 11: Predicted runtime given by BOOM and Habitat, normalized with respect to the ground truth. Ground truth 1 is
highlighted in red. OOM represents the data points where Habitat fails due to insufficient memory of the local device.

1000

2 OMeasured
E B Predicted
QE) 500

£

g

£ 0

8

16 32 4816 32 48|16 32 64|14 8 16|14 8 12

vgg resnet50 | inception | bert-base gpt2

(a) RTX 2080 Ti

300

OMeasured
B Predicted

[
[=3
(=}

Iteartion Time (ms)
=
(=]

0
8 16 32(16 32 64(16 32 644 8 1214 6 8
vgg resnet50 [inception | bert-base gpt2
(c) Tesla T4

300
g OMeasured
£ 200 || ®Predicted
£
Z 100
g
=
§ 16 32 48|16 32 64|16 32 64|14 8 16|14 8 16

vgg resnet50 | inception | bert-base gpt2
(b) RTX 3090

300 =
g OPredicted
= 200 B Measured
()
g
Z 100
g
=
E» 16 32 48|16 32 48|16 32 64| 8 12 16| 8 12 16

vgg resnet50 | inception | bert-base gpt2
(d) Tesla V100

Figure 12: End-to-end evaluation of the runtime predictor with the Automatic Mixed Precision (AMP).

manually model the memory footprint, or build a machine learn-
ing pipeline. It is also possible to predict memory footprint in a
profile-then-extrapolate way(e.g. Skyline [80]), where we first run
the DNN program on the local device users already have in hands,
and extrapolate based on collected runtime data (like memory foot-
print). However, such a strategy would not work for large models
where the memory footprint exceeds the device memory constraint,
even with a batch size equal to one.

Runtime prediction of deep learning. Daydream[87] is a heuristic-
based performance predictor for DNN optimizations applied on
a fixed device. Lin et al. [52] models CPU and GPU time in a
more fine-grained way, specifically for recommendation models.
PerfNetRT [50] proposes a platform-aware performance predictor

for optimized DL inference tasks, while our work supports model
training. Some of them target a specific class of kernels like convo-
lutions [53]. Habitat [30] uses heuristics for simple operators and
an ML-based method for complex operators where different kernels
might be selected for different input shapes. However, it does not
consider optimizations. Habitat also needs to run the model on
the local device to collect the trace, which is constrained by the
limited memory, while BOOM solves this problem with the fake
memory allocator. Skyline [80] predicts DNN runtime based on
local profiling results and linearly extrapolating, which requires
running the model on local devices.

Cost model in auto-tuning for DL models. Many DL optimiza-
tion techniques adopt auto-tuning, which often relies on a cost

BOOM: Use your Desktop to Accurately Predict the Performance of Large Deep Neural Networks

24%
= —e—conv2d
2 20% —— linear
m —8—bmm
& 16% ‘\‘N
S 12%

8%

1.E+03 1.E+04 1.E+05

Size of Training Dataset

Figure 13: How data amount affects the quality of the NN pre-
dictor, measured on RTX 2080Ti. To get an accurate enough
runtime prediction model, we need around 4x 10° data points
for 2D convolutions and 10* for the rest.

20 4000
2 DOMeasured| 7 DOMeasured
o 5 =]
= 15 B Predicted E3000 @Predicted
g o
210 £ 2000
£ B
= 5 2 1000
g s
2 0 H - 0
=
4 4 8 16 4 8 16
gpt2-medium gpt2-large

(a) Memory Usage Prediction (b) Runtime Prediction

Figure 14: End-to-end evaluation of the memory and runtime
15 || OHabitat
EBOOM

predictor with gradient checkpointing.
10
0

resnet50 (64) vggl3 (48) inception (64) bert-base (8) gpt2(4)

Prediction Time (s)

Figure 15: Time required to predict the runtime of different
models. The numbers in parentheses are the batch size we
use in each experiment.

model to predict the runtime. Auto-schedulers [10, 12, 18, 27, 42,
81, 85] for Tensor compilers like Halide [63] and TVM [16] of-
ten have an ML-based cost model. Srivastava [71] and Singh et
al. [70] propose using neural networks to predict the end-to-end
model inference performance optimized by tensor compilers. These
compiler-based optimizations are mostly targeted at sub-operator
levels like loops, which is different from our work which works on
the operator level.

8 CONCLUSION

We propose BOOM, a novel performance predictor supporting
accurate memory usage and runtime prediction of DNN tasks.
The memory usage predictor replaces the GPU memory alloca-
tor with a fake allocator which enables running large models be-
yond the memory constraint of the local device, hence reducing

memory usage prediction to memory usage measurement. The
runtime predictor supports predicting the runtime of models after
hardware-dependent optimizations, such as changing batch size,
mixed-precision training, and gradient checkpointing. Experiments
show that our memory footprint predictor achieves an average
error of 2.7% on CNN models and 0.9% on transformers, and the
runtime predictor achieves an average error of 10.5% on the CNN
and transformer models for FP32 and mixed precision training. For
DNN training with gradient checkpointing, BOOM achieves an
error of under 5%.

ACKNOWLEDGMENTS

We want to express our sincere gratitude to the anonymous PACT
reviewers and the shepherd for their valuable and constructive feed-
back and suggestions. The authors with the University of Toronto
are supported by the Canada Foundation for Innovation JELF grant,
NSERC Discovery grant, AWS Machine Learning Research Award
(MLRA), Facebook Faculty Research Award, Google Scholar Re-
search Award, and VMware Early Career Faculty Grant.

REFERENCES

[1] 2023. Amazon EC2 Instance Types. https://aws.amazon.com/ec2/instance-
types/.
] 2023. AWS Inferentia. https://aws.amazon.com/machine-learning/inferentia/.
] 2023. AWS Trainium. https://aws.amazon.com/machine-learning/trainium/.

[4] 2023. cuBLAS. https://docs.nvidia.com/cuda/cublas/.

] 2023. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-compute.

] 2023. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-systems.

1 2023. PyTorch Memory Management. https://pytorch.org/docs/stable/notes/
cuda.html#memory-management.

[8] 2023. SambaNova DataScale. https://sambanova.ai/products/datascale/.

[9] 2024. vast.ai. https://vast.ai/.

[10] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaél Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, et al. 2019. Learning to optimize halide with tree search and random
programs. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1-12.

[11] Muralidhar Andoorveedu, Zhanda Zhu, Bojian Zheng, and Gennady Pekhimenko.
2022. Tempo: Accelerating Transformer-Based Model Training through Memory
Footprint Reduction. arXiv preprint arXiv:2210.10246 (2022).

[12] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel
Abdous, Taha Arbaoui, Karima Benatchba, et al. 2021. A deep learning based
cost model for automatic code optimization. Proceedings of Machine Learning
and Systems 3 (2021), 181-193.

[13] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

[15] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and
Christopher Re. 2021. Pixelated butterfly: Simple and efficient sparse training
for neural network models. arXiv preprint arXiv:2112.00029 (2021).

[16] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
578-594.

[17] Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[18] Tiangi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to optimize
tensor programs. Advances in Neural Information Processing Systems 31 (2018).

[19] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[20] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating
long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019).

[21] Torch Contributors. 2021. Torchvision. models. visited June 28 (2021).

[22] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj D. Kalamkar,
Sasikanth Avancha, Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan,

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/trainium/
https://docs.nvidia.com/cuda/cublas/
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://pytorch.org/docs/stable/notes/cuda.html#memory-management
https://pytorch.org/docs/stable/notes/cuda.html#memory-management
https://sambanova.ai/products/datascale/
https://vast.ai/

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Bharat Kaul, Evangelos Georganas, Alexander Heinecke, Pradeep Dubey, Jests
Corbal, Nikita Shustrov, Roman Dubtsov, Evarist Fomenko, and Vadim O. Pirogov.
2018. Mixed Precision Training of Convolutional Neural Networks using Integer
Operations. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=H135uzZ0-

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. 2021. NATS-
Bench: Benchmarking NAS Algorithms for Architecture Topology and Size.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2021).
https://doi.org/10.1109/TPAMI.2021.3054824 doi:10.1109/TPAMI.2021.3054824.
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

R David Evans, Lufei Liu, and Tor M Aamodt. 2020. Jpeg-act: accelerating deep
learning via transform-based lossy compression. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 860-873.
Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang Lai, Zihao
Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, et al. 2022. Tensorir: An abstraction
for automatic tensorized program optimization. arXiv preprint arXiv:2207.04296
(2022).

Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2021.
Runtime Performance Prediction for Deep Learning Models with Graph Neural
Network. Technical Report. Technical Report MSR-TR-2021-3. Microsoft.

Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin,
and Mao Yang. 2020. Estimating gpu memory consumption of deep learning
models. In Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
1342-1352.

X Yu Geoffrey, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. 2021. Habitat:
A {Runtime-Based} Computational Performance Predictor for Deep Neural
Network Training. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). 503-521.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference
on computer vision. 1314-1324.

Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. Swapadvisor: Pushing deep
learning beyond the gpu memory limit via smart swapping. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 1341-1355.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700-4708.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1(2017), 6869-6898.

Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhi-
menko. 2018. Gist: Efficient data encoding for deep neural network training. In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 776-789.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph
Gonzalez, Kurt Keutzer, and Ion Stoica. 2020. Checkmate: Breaking the memory
wall with optimal tensor rematerialization. Proceedings of Machine Learning and
Systems 2 (2020), 497-511.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic
generation of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 47-62.

Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. 2019.
Dissecting the graphcore ipu architecture via microbenchmarking. arXiv preprint
arXiv:1912.03413 (2019).

Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. 2018. Motivation
for and evaluation of the first tensor processing unit. ieee Micro 38, 3 (2018),
10-19.

Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough.
2018. Predicting the computational cost of deep learning models. In 2018 IEEE
international conference on big data (Big Data). IEEE, 3873-3882.

Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip
Roy, Amit Sabne, and Mike Burrows. 2021. A learned performance model for
tensor processing units. Proceedings of Machine Learning and Systems 3 (2021),

[43

[44]

[45]

[53

[54

[55]

o
2

[57]

(58]

[60]

[61]

[64

Qidong Su, Jiacheng Yang, and Gennady Pekhimenko

387-400.

Stephen W Keckler, William] Dally, Brucek Khailany, Michael Garland, and
David Glasco. 2011. GPUs and the future of parallel computing. IEEE micro 31, 5
(2011), 7-17.

Andrew Kerr, Haicheng Wu, Manish Gupta, Dustyn Blasig, Pradeep Ramini,
Duane Merrill, Aniket Shivam, Piotr Majcher, Paul Springer, Markus Hohnerbach,
Jin Wang, and Matt Nicely. 2022. CUTLASS. https://github.com/NVIDIA/cutlass
Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike
He, Jared Roesch, Tiangi Chen, and Zachary Tatlock. 2020. Dynamic tensor
rematerialization. arXiv preprint arXiv:2006.09616 (2020).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942 (2019).

Rebecca Lewington. 2021. An AI Chip With Unprecedented Performance To Do
the Unimaginable. (2021).

Xiaoyao Liang. 2019. Ascend Al Processor architecture and programming.
Heng Liao, Jiajin Tu, Jing Xia, and Xiping Zhou. 2019. DaVinci: A Scalable
Architecture for Neural Network Computing.. In Hot Chips Symposium. 1-44.
Ying-Chiao Liao, Chuan-Chi Wang, Chia-Heng Tu, Ming-Chang Kao, Wen-Yew
Liang, and Shih-Hao Hung. 2020. PerfNetRT: Platform-Aware Performance
Modeling for Optimized Deep Neural Networks. In 2020 International Computer
Symposium (ICS). IEEE, 153-158.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control
with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
Zhongyi Lin, Louis Feng, Ehsan K Ardestani, Jaewon Lee, John Lundell, Changkyu
Kim, Arun Kejariwal, and John D Owens. 2022. Building a Performance Model
for Deep Learning Recommendation Model Training on GPUs. arXiv preprint
arXiv:2201.07821 (2022).

Guodong Liu, Sa Wang, and Yungang Bao. 2021. SEER: A Time Prediction Model
for CNNs from GPU Kernel’s View. In 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 173-185.
Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen,
and Tianshi Chen. 2016. Cambricon: An instruction set architecture for neural
networks. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 393-405.

Yao Lu, Song Bian, Lequn Chen, Yongjun He, Yulong Hui, Matthew Lentz, Beibin
Li, Fei Liu, Jialin Li, Qi Liu, Rui Liu, Xiaoxuan Liu, Lin Ma, Kexin Rong, Jianguo
Wang, Yingjun Wu, Yongji Wu, Huanchen Zhang, Minjia Zhang, Qizhen Zhang,
Tianyi Zhou, and Danyang Zhuo. 2024. Computing in the Era of Large Generative
Models: From Cloud-Native to Al-Native. arXiv:2401.12230 [cs.DC]

Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
et al. 2020. Mlperf training benchmark. Proceedings of Machine Learning and
Systems 2 (2020), 336-349.

Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,
and Matei Zaharia. 2020. Analysis and exploitation of dynamic pricing in the
public cloud for ml training. In VLDB DISPA Workshop 2020.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-Im. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-15.

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. 2021. DNN-
Fusion: accelerating deep neural networks execution with advanced operator
fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 883-898.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan
Yang, and Xuehai Qian. 2020. Capuchin: Tensor-based gpu memory management
for deep learning. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems.
891-905.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAl blog 1, 8 (2019), 9.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519-530.

Aditya Rajagopal and Christos-Savvas Bouganis. 2021. perf4sight: A toolflow to
model CNN training performance on Edge GPUs. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 963-971.

https://openreview.net/forum?id=H135uzZ0-
https://doi.org/10.1109/TPAMI.2021.3054824
10.1109/TPAMI.2021.3054824
https://github.com/NVIDIA/cutlass
https://arxiv.org/abs/2401.12230

BOOM: Use your Desktop to Accurately Predict the Performance of Large Deep Neural Networks

[65]

(66

[67

[69]

[70

[71

[72

[73]

[74]

[75]

[77]

[78]

[79]

[80

[81]

[82]

[83]

[84

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. Zero-infinity: Breaking the gpu memory wall for extreme scale deep
learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-14.

Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li. 2021.
Sentinel: Efficient tensor migration and allocation on heterogeneous mem-
ory systems for deep learning. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 598-611.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W
Keckler. 2016. vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1-13.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484-489.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Shikhar Singh, James Hegarty, Hugh Leather, and Benoit Steiner. 2022. A graph
neural network-based performance model for deep learning applications. In
Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Pro-
gramming. 11-20.

Ajitesh Srivastava, Naifeng Zhang, Rajgopal Kannan, and Viktor K Prasanna. 2020.
Towards high performance, portability, and productivity: Lightweight augmented
neural networks for performance prediction. In 2020 IEEE 27th International
Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE,
21-30.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2020. Energy and
policy considerations for modern deep learning research. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 34. 13693-13696.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2818-2826.

Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105-6114.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng,
Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. 2021. {PET}: Opti-
mizing Tensor Programs with Partially Equivalent Transformations and Auto-
mated Corrections. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). 37-54.

Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li, and Gennady Pekhimenko.
2021. Horizontally Fused Training Array: An Effective Hardware Utilization
Squeezer for Training Novel Deep Learning Models. Proceedings of Machine
Learning and Systems 3 (2021), 599-623.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational Lin-
guistics, Online, 38-45. https://www.aclweb.org/anthology/2020.emnlp-demos.6
Geoffrey X Yu, Tovi Grossman, and Gennady Pekhimenko. 2020. Skyline: Inter-
active In-Editor Computational Performance Profiling for Deep Neural Network
Training. In Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology. 126-139.

Yi Zhai, Yu Zhang, Shuo Liu, Xiaomeng Chu, Jie Peng, Jianmin Ji, and Yanyong
Zhang. 2023. Tlp: A deep learning-based cost model for tensor program tuning.
In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2. 833-845.

Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang, Zhe Liu, Mao Yang, and Li-
dong Zhou. 2020. Retiarii: A Deep Learning {Exploratory-Training} Framework.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(0SDI 20). 919-936.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 1-38.

Bojian Zheng, Nandita Vijaykumar, and Gennady Pekhimenko. 2020. Echo:
Compiler-based GPU memory footprint reduction for LSTM RNN training. In

(85]

(86]

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 1089-1102.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. 2020. Ansor:
Generating {High-Performance} Tensor Programs for Deep Learning. In 14th
USENIX symposium on operating systems design and implementation (OSDI 20).
863-879.

Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand Jayara-
jan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko. [n.d.].
Benchmarking and analyzing deep neural network training. In 2018 IEEE Inter-
national Symposium on Workload Characterization (IISWC). IEEE, 88-100.
Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. 2020. Daydream:
Accurately Estimating the Efficacy of Optimizations for {DNN} Training. In
2020 USENIX Annual Technical Conference (USENIX ATC 20). 337-352.

https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Abstract
	1 Introduction
	2 Background
	2.1 DNN Optimizations
	2.2 Framework-Level Memory Management
	2.3 Profiling Tools of DNNs

	3 Memory Usage Predictor
	3.1 Challenges
	3.2 Key Idea: Fake Memory Allocator
	3.3 Implementation

	4 Runtime Predictor
	4.1 Challenges
	4.2 Our Design
	4.3 Implementation

	5 Evaluation
	5.1 Evaluating Memory Predictor
	5.2 Evaluating Runtime Predictor
	5.3 Evaluating the Support of Checkpointing
	5.4 Prediction Time

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

