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Abstract
Dense 3D polygon meshes are now a pervasive product

of various modelling and scanning processes that need
to be subsequently processed and structured appropri-
ately for various applications. In this paper we address
the restructuring of dense polygon meshes using their
segmentation based on a number of ellipsoidal regions.
We present a simple segmentation algorithm where con-
nected components of a mesh are fit to ellipsoidal surface
regions. The segmentation of a mesh into a small number
of ellipsoidal elements makes for a compact geometric
representation and facilitates efficient geometric queries
and transformations. We also contrast and compare two
polygon remeshing techniques based on the ellipsoidal
surfaces and the segmentation boundaries.

Key words: Geometry representations, geometry pro-
cessing, compression, ellipsoid, surface segmentation,k-
means clustering, polygon remeshing.

1 Introduction

Polygon meshes are currently the most widely used rep-
resentation for 3D objects in Computer Graphics. Their
popularity stems from their simplicity and flexibility to
approximate any geometric shape as well as the ability of
current graphics hardware to process and render a large
number of polygons efficiently. Approximating a realistic
3D model can require up to several million faces, which
state of the art hardware can render in real-time. Such
dense polygon meshes are typically the result of scan-
ning 3D physical data [9] or tessellations of geometric
data with a different mathematical representation. These
meshes often have elements of noise, holes, and other ir-
regularities. Furthermore, the choice of vertex samples
and their topological connectivity are largely an artifact
of the construction process and the shape may benefit
from geometric restructuring. The geometric processing
and storage of dense meshes is also expensive and ap-
proaches to mesh decimation, compression and progres-
sive restructuring [4, 8] is also a much studied subject.
One important observation we make here is that while
some of these problems can be isolated and solved, all

Figure 1: Ellipsoidal surface regions are ideal for mod-
elling curved surfaces often found in organic objects.
Left: The original triangulated mesh representing a hand
using 5k faces. Centre: A decimated version using
180 faces. Right: An ellipsoidal approximation using 18
primitives and their boundaries.

data processing potentially modifies the shape suggested
by the original mesh data. It is thus preferable for mesh
processing algorithms to acknowledge the irregularities
of dense meshes and handle data in its original form.

The main goal of this paper is to explore the poten-
tial of approximating the surface of a dense mesh using
a relatively small number of ellipsoidal regions. Such an
approximation allows us to address a number of issues
related to mesh processing including geometric queries,
transformations, efficient rendering and compact repre-
sentation.



1.1 Motivation and background

This paper is motivated by the fact that most organic ob-
jects and many manufactured objects have large curved
areas. Industrial designers working in physical media of-
ten use characteristically shaped tools like French curves
[12], sweeps and steels that have traditionally been con-
structed using conic curve and quadric surface sections.

In this paper we consider the ellipsoid as a representa-
tive quadric with which to approximate 3D objects. Ellip-
soids have certain advantages over planes as an approx-
imation primitive. The processing of various common
geometric queries such as normal, curvature, proximity
and intersection with a ray for an ellipsoid is analytic and
equally efficient for ellipsoids as for planes. For curved
regions not only are far fewer ellipsoids required for ap-
proximation but they have the potential of capturing local
shape curvature precisely. In areas where the surface of
interest is flat, a region from an ellipsoid with sufficiently
large radii can be used. Figure 1 compares the visual re-
sults of modelling a hand decimated1 using planar faces
and an approximation of superior visual quality using an
order of magnitude fewer ellipsoids.

Ellipsoids, unlike planes, being closed surfaces, are
also capable of providing information about the volume
of closed objects. Our algorithm also allows for el-
lipsoidal fitting that spans from being surface oriented,
where a number of ellipsoidal surface regions approx-
imate the surface as best possible, to volume oriented,
where the same number of ellipsoids are used to capture
the overall volume enclosed by an object. In this case, we
use the entire ellipsoid and not just regions of its surface.

The argument for not using primitives constructed with
cubic or higher degree polynomials is one of marginal
gains in terms of their ability to approximate curved ge-
ometry better than quadrics and that evaluation of various
geometric queries on higher order primitives is not as ef-
ficient. One disadvantage of ellipsoids that we recognize
is that they do not capture saddles or regions where the
principal curvatures are convex and concave. We note,
however, that human perception typically segments shape
along such concave boundaries. The inability of the el-
lipsoid to capture the local curvature of such a shape
fragment automatically favours segmentation along such
boundaries.

Once a shape has been segmented into an ellipsoidal
approximation, it is only necessary to store the ellipsoids
and the segmentation boundaries at which they meet in
order to represent the object. We will present and contrast
two schemes for remeshing from such a representation.

1We apply GSI’s decimation which uses a variant of the MAPS al-
gorithm [8].

Related work
Although there have been many greedy techniques for
dense mesh simplification, Hoppeet al. [5] present an
optimization-oriented approach. They introduce an en-
ergy function that models the desire for small meshes as
well as fidelity of representation. By adjusting the weight
of these two opposing goals, it is possible to choose how
much simplification versus fidelity to the original mesh is
desired.

In [7], Katzet al. propose a mesh segmentation scheme
based on fuzzy clustering of mesh faces. Their goal was
to obtain a segmentation of connected mesh regions that
represented meaningful components. In their approach
however, once the segmentation is obtained, there is no
simplification of the representation of segments.

Recently, Cohen-Steineret al. [3] have introduced the
application ofk-means style clustering of mesh faces into
connected planar regions. Using this segmentation, they
propose a remeshing scheme in which each region is sim-
plified into a plane. This results in a compact represen-
tation that places the planar elements optimally with re-
spect to the original mesh. Curved regions, however, still
require many such planes in order to be well approxi-
mated.

In [1], Bischoff et al. propose a representation for 3D
models based on ellipsoids. However, a relatively large
number of primitives is used and they retain the entire
ellipsoidal surface. Their motivation for their variant of
the ellipsoid decomposition is the robust transmission of
geometric objects. It represents a coarse approximation
which is then increasingly refined by the transmission of
the mesh’s original vertices.

Pentland, in [11], used superquadrics as geometric
primitives for representing 3D objects. The fitting of su-
perquadrics to range data has been well studied [13, 6]. In
these cases however, the motivation was not simply that
of a compact representation, but the visual recognition of
different objects based on this segmentation.

2 Error metric for ellipsoidal surface regions

Let us assume we have a triangular mesh surface region
R which is a set of mesh faces, that we are approximat-
ing with an ellipsoidal primitiveP . We wish to know
how well P approximates said region. In other words,
we would like to define an error functionE(R,P ).

We begin by considering the distance between a given
vertexvi and an ellipsoidP . There are several distance
metrics that one may consider when defining the error
function. One such function is Euclidean distance. In
the case of ellipsoids, it is simpler to compute the radial
distance from a point to its surface.

Euclidean distance: We defined Euclidean distance



from a vertexvi to ellipsoidP , as the Euclidean distance
from vertexvi to its radial projection on ellipsoidP , de-
notedΠP (vi).

Eeuc(vi, P ) = ‖vi −ΠP (vi)‖2

The vertexvi will often have associated a vectorni in-
dicating the surface normal at said vertex. It may be de-
sirable for our ellipsoidal primitive to approximate these
surface normals as well. Thus, we introduce an angular
distance.

Angular distance: The angular distance between ver-
tex vi and ellipsoidP is a measure of the angle between
the vertex normal atvi, denotedni, and the ellipsoidal
surface normal at the radial projection ofvi on ellipsoid
P , denotednP (vi). We define said angular distance as

Eang(vi, P ) = ‖ni − nP (vi)‖2

Finally, given a surface mesh, it is possible to approx-
imate curvature values given for the data. In our case we
use a mean curvature estimate for meshes presented in
[10]. As in the case of the vertex normals, it may be de-
sirable for the ellipsoidal surfaces to approximate these
values as well. For this purpose, we introduce the curva-
ture distance metric.

Curvature distance: The curvature distance between
vertexvi and ellipsoidP measures how well theP fol-
lows mesh curvature at said vertex. We define the curva-
ture distance betweenvi and ellipsoidP as the magnitude
of the difference between the estimated mean curvature at
vi, denotedHi, and the mean curvature on the ellipsoid
at the radial projection ofvi, denotedHP (vi).

Ecur(vi, P ) = (Hi −HP (vi))2

An argument against using Gaussian curvature is that it
would always be positive, even when considering the in-
ner surface (see negative ellipsoids below.) At a sad-
dle point in the data, the Gaussian curvature is negative,
while the mean curvature is zero. Our metric models the
fact that a “flat” ellipsoid (with mean curvature close to
zero at the point of interest by virtue of very large radii)
could approximate this small region.

Composite distance:Now, we can compose these er-
ror metrics into a single value forvi andP by taking a
weighted sum

E(vi, P ) = αEeuc(vi, P )+βEang(vi, P )+γEcur(vi, P )

The values ofα, β, andγ indicate the relative importance
that we place on each of the individual error metrics.

Given a triangular mesh facefj = (v1, v2, v3), we de-
fine its distance to the ellipsoidP as follows

E(fj , P ) =
∑
i

E(vi, P )

Figure 2: Without negative ellipsoids positive curvature is
captured by one ellipsoid, but the negative curvature re-
gion is approximated by the seven remaining. With neg-
ative ellipsoids one ellipsoid is sufficient for each region.

Now, given a mesh surface regionR = {f1, . . . , fn}, we
define the fitting error ofP with respect to regionR as
the sum of errors for each facefi to P .

E(R,P ) =
∑
i

E(fi, P )

If the mesh is partitioned inton regionsR1, . . . , Rn, each
approximated by an ellipsoidP1, . . . , Pn, the error of the
approximation is defined as the sum of errors at each re-
gion.

E({R1, . . . , Rn}, {P1, . . . , Pn}) =
∑
i

E(Ri, Pi)

We should note that there can be additions and variations
to these definitions. For example, when calculating the
error for a region, each face’s error can be weighted by
the face’s area, thus indicating that larger faces are more
important.

A typical value forα in our case isα = 1/a2 wherea
is the mesh’s average edge length. This helps normalize
the weight of the Euclidean metric for mesh’s sampled at
different resolutions. In the case ofβ andγ, they are not
dependent on mesh scale2. We tried different weights
and found settings of1.2 and5 × 10−4, respectively, to
work well.

Negative ellipsoids
When modelling surfaces using ellipsoidal surface sec-
tions we are not able to capture bowl-shaped concavities,
i.e. regions of negative curvature, if we consider only the
ellipsoid’s outer surface. In order to be able to capture
these types of regions while still using the same type of
primitive we introduce the notion of anegative ellipsoid.

In essence, a negative ellipsoid has the same shape as
a regular ellipsoid, except that we consider its inner sur-
face when measuring angular distance between normals

2The curvature estimate we use [10] normalizes for varying face ar-
eas



and curvature. Thus, we extend the relevant previous def-
initions as follows:

Eang(vi, P ) =
{
‖ni − nP (vi)‖2 if P is pos.
‖ni + nP (vi)‖2 if P is neg.

Ecur(vi, P ) =
{

(Hi −HP (vi))2, if P is pos.
(Hi +HP (vi))2, if P is neg.

In essence, we are simply considering the negative ellip-
soid to have its surface normals pointing inward and its
mean curvature to be the compliment of the mean curva-
ture defined on the outer surface. Figure 2 illustrates the
effect of negative ellipsoids to surface segmentation.

3 Error metric for ellipsoid volume

We mentioned earlier that ellipsoids could also be used
to represent a region by approximating not only its shape,
but also its volume. Here we introduce an error metric to
be used when this is intended.

Evol(R,P ) = αEeuc(R,P ) + δ(V̂(R)− 4
3
πabc)2

wherea,b, andc are the radii of ofP , V̂(R) is the ap-
proximate volume englobed by mesh region R, andδ is
a weight determining the relative importance of approxi-
mating volume versus fitting the data points to the ellip-
soid’s surface.

A typical weight for δ in our case isδ = 105/V̂2,
whereV̂ is the approximate volume of the entire mesh.
The denominator ensures that the volume penalty term
is normalized for meshes of different volumes, while the
numerator’s large magnitude shows a preference for ap-
proximating each region’s volume over fitting the points
individually.

Figure 3 illustrates the relevance of the volume penalty
weightδ. The mesh is that of a semi-cylindrical section.
Initially, the fitting of the ellipsoid using the volume met-
ric with a highδ value approximates the volume enclosed
by the convex hull of the section. As we decrease the
relative magnitude ofδ in the error metric, the ellipsoid
fitting transitions from approximating volume, to approx-
imating surface.

4 Ellipsoidal segmentation

Our segmentation approach is an extension of Lloyd’s al-
gorithm. Starting with an initial classification, the algo-
rithm alternates between a fitting step, and a classifica-
tion step. In the fitting step, we update eachPi with the
ellipsoid that minimizesE(Ri, Pi). In the classification
step, the regionsRi are re-computed, assigning each face
fj of the mesh to the region that minimizesE(fj , Pi)
while also under the constraint that the regions must re-
main connected. To this purpose we implement the prior-
ity queue region flooding scheme found in [3], inserting

Figure 3: As we decrease the relative magnitude of δ in
the volume fitting error metric, the ellipsoid fitting transi-
tions from approximating volume, to approximating sur-
face. a. δ = 1010/V̂2, b. δ = 105/V̂2, c. δ = 102/V̂2, d.
δ = 0.

faces to the queue based on their error to their associ-
ated ellipsoid. We also implement the region teleporta-
tion scheme to avoid local minima. The reader is referred
to the publication for greater details.

Ellipsoid fitting We parameterize ellipsoid primitives
as tuple of nine scalars, three to represent the ellipsoids
centre, three to indicate the length of each radius, and
three to indicate its alignment. When considering neg-
ative ellipsoids in the case of surface segmentation, we
also store if the ellipsoid is positive or negative.

For each mesh regionRi of the current segmentation,
we find thePi that minimizesE(Ri, Pi). Given that the
sign value is discrete, we first minimize fixing the sign
to be positive, then fixing it to be negative, and keep the
result with lowest error.

The minimization requires an initial estimate of the pa-
rameters. We estimate the ellipsoid’s centre as the geo-
metric centroid of the vertices of the current region. In
order to estimate the alignment and radii, we perform a
singular value decomposition of the regions vertices, cen-
tring their mean at the origin. The resulting eigenvectors
estimate the regions orientation and the eigenvalues allow
us to estimate the radii.

Termination: The algorithm terminates when the de-
sired number of iterations have been performed, reporting
the segmentation with least error found. Should the algo-
rithm converge to a local minimum, it may continue its
search for a better segmentation simply by teleporting a



Figure 4: Examples of volume segmentation. Top:
Bunny (3K faces), 8 ellipsoids, 50 iterations. Centre:
Dinopet (6K faces), 22 ellipsoids, 100 iterations. Bot-
tom: Horse (3K faces), 20 ellipsoids, 120 iterations.

region as mentioned above.
Figure 4 shows examples of volume segmentation. In

these cases, we set a high volume error weightδ. This en-
sures that volume is approximated as closely as possible
and only then is the placement of the ellipsoid modified to
fit the surface. For our volume approximationV̂ of each
mesh segment we use the volume of the convex hull.

The top of figure 8 shows the results of surface seg-
mentation. Here the actual ellipsoid’s volume is not con-
sidered and only the fit to the surface is taken into ac-
count. Figures 1 and 5 show extracted ellipsoidal repre-
sentations.

4.1 Smoothing segmentation boundaries
Once we have obtained an ellipsoidal segmentation, the
segmentation boundaries are given by edges whose two
adjacent faces have been assigned to different regions.

Figure 5: Venus (5K faces). Top left: original mesh, front
and back views. Right: obtained ellipsoidal representa-
tion with smoothed boundaries, 12 ellipsoids, 394 unique
boundary vertices, 100 iterations. Bottom left: error over
iterations. Our reclassification flooding scheme and re-
gion teleportation can sometimes increase the error. Af-
ter several iterations however, the algorithm stabilizes on
a minimum.

Smoothing of these segmentation boundaries may be de-
sired. To achieve this, we perform a constrained relax-
ation of the boundary vertices. For each boundary point
p, we consider its boundary neighbours as well as its
radial projection to all associated ellipsoids. Then we
take the centroid of these associated pointsq and update
p ← (1 − ε)p + εq, for some smallε. After a number
of iterations, the result is points which lie along the ap-
propriate ellipsoidal intersections and tend to be evenly
spaced along the boundary.

Figures 1 and 5 show smoothed segmentation bound-
aries in the rendered ellipsoidal representations.

4.2 Impact of different metrics

Each of the components of the surface fitting metric in-
crementally allows for a better fit of the ellipsoidal sur-
face to the mesh region. This is illustrated in figure 6.

Initially, we start out by using only the Euclidean dis-
tance, settingβ andγ to 0. Then we run the segmen-
tation for ten iterations and arrive at the segmentation at
the top of figure 6. To the right, we see the original mesh
coloured according to segments, and to the left we show
the resulting ellipsoids. Notice that since we are fitting
surfaces, we are only interested in the ellipsoidal surface
region near the mesh data. The ellipsoid is free to grow
as large as needed to fit the mesh segment since only a



Figure 6: Mesh surface segmentations resulting from dif-
ferent settings of weight values for the composite dis-
tance metric Top: only Euclidian distance is used, setting
other weights to zero. Centre: Euclidean and angular dis-
tances are used in error metric. Bottom: mean curvature
is incorporated to the error metric along with Euclidean
and angular distance.

region of its surface will be kept for the final representa-
tion.

Using only Euclidean distance does not suffice for a
good surface fit. This is particularly noticeable in the re-
gion of the bill.

Next, we incorporate angular distance into the metric.
Now, once again, we run the segmentation for ten itera-
tions and arrive at the segmentation at the centre of figure
6. The resulting segmentation follows the surface much
more closely. However, we can still see that the fitting
is not as good as it could be. The tail is much flatter,
and the ellipsoid at the bill is not following closely as it
approaches the head.

Finally, we incorporate mean curvature and use all
three metrics. This provides more information to disam-
biguate the ellipsoid fitting and can be appreciated at the
bottom of figure 6, in which the ellipsoidal surfaces fol-
low the mesh almost perfectly.

5 Remeshing of ellipsoidal representations

Given our ellipsoidal representation of a surface, it may
be desired to reconstruct a mesh for use in applications
that will not handle this representation directly. To his
effect we introduce two remeshing schemes. First, we
explain how to use the boundary regions of an ellipsoidal
surface.

5.1 Using ellipsoidal region boundaries
Different applications will require that it be determined if
a given point on an ellipsoid lies within its region bound-

aries. For example, if we are casting a ray at an object
represented as a union of ellipsoidal regions, it is easy
to determine if said ray intersects an ellipsoid. However,
it intersects the object only if the intersection point lies
with the region’s boundaries on the ellipsoid. This prob-
lem will also arise when we address remeshing below.

If we have a planar polygon, it is easy to determine if
a given point lies inside or outside said polygon. In our
case, however, the polygon lies on the surface of an el-
lipsoid. We reduce the problem of determining if a point
on an ellipsoid is within the boundaries to that of a planar
polygon through the use of stereographic projection.

In our representation, for each ellipsoid we have a set
of boundary regions described as a series of cycles of
boundary vertices. For every ellipsoid, there is a trans-
formation which maps it to the unit sphere. If we have
a point on the ellipsoid’s surface, we simply transform
the point with said transformation along with all bound-
aries so the point and boundaries lie on the unit sphere.
Now, we take a stereographic projection of the point and
boundaries. The original point is within the region of in-
terest if and only if the projected point lies within the
polygon determined by the outer boundary’s projection
and outside that of all hole boundaries.

In our case we use the following stereographic pro-
jection, which maps point(x, y, z) on the unit sphere to
(xp, yp) on theXY plane:

xp = 2x/(1− z); yp = 2y/(1− z)

Note that the sphere’s north pole is mapped to infin-
ity. However, since clearly no region will use the entire
sphere, we can simply find a rotation that places the re-
gion of interest as close to the south pole of the sphere as
possible, while not including the north pole. This rota-
tion is then used after transforming to the unit sphere and
prior to projecting.

An illustration of the stereographic projection of a re-
gion is shown at the top of figure 7. For illustrative pur-
poses, the unit sphere is centred at(0, 0, 1) so that the
projection can be better viewed.

5.2 Remeshing with parametric tessellation of sur-
faces

One way in which we may obtain a mesh from our el-
lipsoid representation is by generating for each region
a parametric tessellation. In our implementation we go
about this as follows.

For each region, we generate points on the unit sphere.
This is easily done by generating points in regular in-
tervals of azimuth and elevation. Next, we consider
the stereographic projection of these points along with
the relevant boundaries, having mapped these to the unit



Figure 7: Tessellation of an ellipsoidal surface region.
Top: Generated points on the unit sphere are stereo-
graphically projected along with segmentation bound-
aries. Bottom: Points outside of boundaries are discarded
and the remaining points are triangulated.

sphere as described above. This is illustrated at the top of
figure 7.

We keep the points that respect the boundaries, and
then perform a constrained Delaunay triangulation on
projected points respective to the boundaries. Note that in
stereographic projections, circles on the sphere’s surface
are mapped to circles on the plane, so a Delaunay triangu-
lation on the projected points corresponds to a Delaunay
triangulation on the sphere’s surface. Then through the
transformation to ellipsoid space, the anisotropic nature
of the surface is captured in the triangulation.

To achieve the triangulation, we begin with a triangula-
tion of the boundaries, and then iteratively add each point
to the triangulation. For each one, we find the face in
which it lies, insert it, resulting in the face being split into
three triangles, and then perform edge flipping in order
to re-establish the Delaunay triangulation. Once this is
done, the faces obtained directly translate to faces on the
sphere’s surface, which can now be transformed into the
ellipsoid region. The bottom of figure 7 illustrates the
resulting triangulation of the surface region of interest.
The centre of figure 8 shows meshes resulting from this
approach.

This scheme has some drawbacks. The uniform para-
metric sampling of the sphere to obtain the points results
in the poles being much more densely sampled. This is
clearly visible at the centre of figure 8. Also, it is hard
to determine a priori how many points to use for each re-
gion. In our approach we used the same amount of points
for each ellipsoid. As a result, vertices are not placed
optimally.

Figure 8: Top: Ellipsoidal surface segmentation. Teddy
(5K faces), 8 ellipsoids, 50 iterations, 130 unique bound-
ary vertices. Hand (5K faces), 18 ellipsoids, 50 itera-
tions, 463 unique boundary vertices. Centre: remeshing
by parametric tessellation. Bottom: remeshing by itera-
tive vertex addition using same total number of vertices.

5.3 Remeshing by iterative vertex addition
In order to address the drawbacks of the previous ap-
proach we propose a different remeshing scheme which
attempts to place vertices where they are most needed.

Initially, we start out with a triangulation of only the
region boundaries as described for the previous scheme.
Now we iteratively add vertices as follows. Our candi-
dates are the face centres of the current mesh. For each
candidate we measure its radial distance to the relevant
ellipsoid and choose the one that is farthest but is also far
enough from the points already added according to some
threshold value. This single point is projected onto the
ellipsoid and then added using the same technique de-
scribed for the previous scheme. Note that edge flipping
will be constrained to the relevant ellipsoidal region, thus,
boundary edges, which we consider feature edges [2], are
not flipped.

The bottom of figure 8 shows the results for this al-
gorithm. We use the same total number of vertices as
resulted from our other approach. In the results, it can
be seen that regions of higher curvature are naturally as-



signed more vertices while regions of lower curvature im-
ply less vertices, and thus larger faces.

6 Conclusions and future work

We have presented the idea of modelling a 3D object us-
ing a relatively small number of ellipsoidal surface re-
gions, each represented by an ellipsoid and boundaries
indicating where adjacent regions meet. This results in a
compact representation which supports efficient geomet-
ric queries and transformations.

In order to obtain the segmentation, we introduced
metrics based on Euclidean radial distance, surface nor-
mals and surface curvature; all properties which are eas-
ily and efficiently computable for an ellipsoidal surface.
Based on these metrics we use a simple segmentation al-
gorithm based on a variant ofk means clustering.

Given that a triangulated mesh is sometimes desir-
able, we also presented two remeshing schemes which
we compared. We showed that in the second scheme,
vertices are placed intelligently, resulting in regions of
higher curvature being densely sampled, while flatter re-
gions are represented by larger faces in the resulting
mesh.

It should be noted that for highly dense meshes, the re-
sulting segmentation boundaries may include many ver-
tices. These boundaries are simply a sequence of points
and can easily be simplified for a more compact represen-
tation.

Also we could add another parameter to the ellipsoid
representation in order to introduce bending (allowing for
banana-shaped surfaces.) This could be useful both in
volume and surface segmentations, in the latter case al-
lowing the possibility of modelling saddle regions, with
the trade off of decreasing the efficiency of geometric
queries.
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Lawrence Cowsar, and David Dobkin. Maps: mul-
tiresolution adaptive parameterization of surfaces.
In SIGGRAPH ’98: Proceedings of the 25th annual
conference on Computer graphics and interactive
techniques, pages 95–104. ACM Press, 1998.

[9] Marc Levoy, Kari Pulli, Brian Curless, Szymon
Rusinkiewicz, David Koller, Lucas Pereira, Matt
Ginzton, Sean Anderson, James Davis, Jeremy
Ginsberg, Jonathan Shade, and Duane Fulk. The
digital michelangelo project: 3d scanning of large
statues. InProceedings of the 27th annual con-
ference on Computer graphics and interactive
techniques, pages 131–144. ACM Press/Addison-
Wesley Publishing Co., 2000.

[10] Mark Meyer, Mathieu Desbrun, Peter Schröder, and
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