Computer Graphics CSC 418/2504

Patricio Simari November 16, 2011

Some figures courtesy of Peter Shirley, "Fundamentals of Computer Graphics", 2nd Ed.

Topics

- Free form deformations
- Skeletal animation, forward and inverse kinematics
- Facial animation: blend shapes
- Motion capture
- Physical simulation
- Al-based behavior
- Particle systems

Free form deformation

Skeletal animation

Skeletal animation

Rigid skinning:

verts assigned to only one joint

Soft skinning: blend the influence of several joints

Forward vs inverse kinematics

Inverse kinematics

- Position of the end effector is set by the animator.
- Automatically solve for joint angles that will result in that effector position.
- Solution is not usually "closed form", iteratively solved by optimizer.

Inverse kinematics

Inverse kinematics

Typically underconstrained: Multiple configurations of internal joints can result in the same effector position

Facial animation

Blend shapes

- Artist deforms a "base" face model into key facial expressions involving parts of the face
- e.g., eyes: wide, squint, blink; mouth: smile, frown, snear, etc.
- For speech: mouth to phoneme mapping
- Key faces have one-to-one vertex correspondence with each other and base
- Sliders allow the "blending" (interpolation) between the different expressions

Facial animation

- Markers can be occluded. Use multiple cameras and interpolate where needed.
- Noise can cause limbs to loose contact with ground or other objects. Use redundant markers to reduce noise. Correct with Inverse Kinematics.
- Retargeting: applying recorded motion to different characters.

Physics-based animation

- Mathematically model real-world motion
- Animate via simulation
- Smoke, fire, clouds, fluids, cloth, rigid bodies, elastic objects.

Finite differences

Stability

Explicit: less expensive but can become unstable **Implicit:** more expensive but stable

Fluids

Cloth simulation

Cloth simulation

Al animation

- Flocks of birds
- Schools of fish
- Herds of animals
- Large crowds of people
- Armies of orcs...

Al animation

Flocking

Particle systems

Particle systems

- Completely independent of each other.
- Interact with environment only: external forces and collisions.
- At each step: create new particles with initial parameters, terminate old ones, compute necessary forces, update remaining particles. Randomness.
- Specialized rendering (transparency, blending, etc.)
- Applications: fireworks, explosions, spraying liquid, smoke and fire, etc.

Particle systems

