Computer Graphics CSC 4I8/2504

Patricio Simari
October 5, 201I

Slides courtesy of Patrick Coleman

Today

3D Transformations
Rendering Overview 3D Viewing

3D Affine Transformations

$$
\mathbf{f}(\mathbf{p})=A \mathbf{p}+\mathbf{t}
$$

3×3 Linear Transformation
3D Translation

3D Homogeneous Coordinates

$$
\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

$$
\bar{Z} \quad\left[\begin{array}{l}
x / w \\
y / w \\
z / w
\end{array}\right]
$$

Homogeneous
Cartesian

3D Homogeneous Coordinate Examples

Homogeneous Cartesian Homogeneous Cartesian

$$
\begin{array}{ll}
{\left[\begin{array}{l}
3 \\
4 \\
5 \\
1
\end{array}\right]} & \equiv\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
\end{array}\left[\begin{array}{l}
22 \\
33 \\
12 \\
11
\end{array}\right] \equiv\left[\begin{array}{c}
2 \\
3 \\
12 / 11
\end{array}\right]
$$

3D Affine Transformations

Cartesian Homogeneous $\mathbf{f}(\mathbf{p})=\mathbf{A p}+\mathbf{t} \longrightarrow \mathbf{f}(\mathbf{p})=\mathbf{M p}$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
& & \\
& \mathbf{A} & \\
& & {\left[\begin{array}{l}
\mathrm{t}
\end{array}\right]} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

Translation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
{\left[\begin{array}{lll}
& \mathbf{I} & \\
& &
\end{array}\right]\left[\begin{array}{l}
\mathrm{t} \\
0
\end{array} 0\right.} & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

Scaling

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0
\end{array} 0000\right]\left[\begin{array}{c}
x \\
0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

3D Rotation

Any change in 3D orientation can be expressed as a rotation about some axis d by an angle α

3D Rotation

What is the affine transformation?

Recall 2D Rotation

$\begin{aligned} & x^{\prime}=x \cos (\theta)-y \sin (\theta) \\ & y^{\prime}=x \sin (\theta)+y \cos (\theta)\end{aligned} \quad\left[\begin{array}{c}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Add an Axis

Rotation about z

$$
\begin{aligned}
x^{\prime} & =x \cos (\theta)-y \sin (\theta) \\
y^{\prime} & =x \sin (\theta)+y \cos (\theta) \\
z^{\prime} & =z
\end{aligned}
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] 0} & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

$$
R_{z}(\theta)
$$

Rotation about X

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y \cos (\theta)-z \sin (\theta) \\
& z^{\prime}=y \sin (\theta)+z \cos (\theta)
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0
\end{array} c 0\right.} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]\left[\begin{array}{l}
z \\
w
\end{array}\right]
$$

$$
R_{x}(\theta)
$$

Rotation about y

$$
\begin{aligned}
& x^{\prime}=x \cos (\theta)+z \sin (\theta) \\
& y^{\prime}=y \\
& z^{\prime}=-x \sin (\theta)+z \cos (\theta)
\end{aligned}
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

$$
R_{y}(\theta)
$$

Back to Rotation About an Axis

Assume the axis passes through the origin.

We know how to rotate about the x, y, and z axes individually.
I) Align d to x, y, or z
2) Rotate around it by α
3) Undo the Alignment

Back to Rotation About an Axis

Assume the axis d passes through the origin.

We know how to rotate about the x, y, and z axes individually.
I) Align d to x, y, or z
2) Rotate around it by α
3) Undo the Alignment

Back to Rotation About an Axis

Assume the axis passes through the origin.

We know how to rotate about the x, y, and z axes individually.
I) Align d to x, y, or z
2) Rotate around it by α
3) Undo the Alignment

How do we alignd to an axis?

Aside: Spherical Coordinates Review

Use this to align the axis to \mathbf{z}

Use this to align the axis to z

I) Bring d into the $x z$ plane.

$$
\mathrm{d}^{\prime}=R_{z}\left(-\theta_{\mathbf{d}}\right) \mathrm{d}
$$

Use this to align the axis to z

I) Bring d into the $x z$ plane.

$$
\mathbf{d}^{\prime}=R_{z}\left(-\theta_{\mathbf{d}}\right) \mathbf{d}
$$

2) Align d^{\prime} to the z axis

$$
\begin{aligned}
\mathrm{z} & =R_{y}\left(-\phi_{\mathrm{d}}\right) \mathrm{d}^{\prime} \\
& =R_{y}\left(-\phi_{\mathrm{d}}\right) R_{z}\left(-\theta_{\mathrm{d}}\right) \mathrm{d}
\end{aligned}
$$

The same transformation aligns all geometry:

$$
\mathbf{p}^{\prime}=R_{y}\left(-\phi_{\mathbf{d}}\right) R_{z}\left(-\theta_{\mathbf{d}}\right) \mathbf{p}
$$

Back to Rotation About an Axis

2) Rotate around it by $\alpha \longrightarrow R_{z}(\alpha)$ 3) Undo the Alignment

$$
\begin{aligned}
& {\left[R_{y}\left(-\phi_{\mathbf{d}}\right) R_{z}\left(-\theta_{\mathbf{d}}\right)\right]^{-1} } \\
= & R_{z}\left(-\theta_{\mathbf{d}}\right)^{-1} R_{y}\left(-\phi_{\mathbf{d}}\right)^{-1} \\
= & R_{z}\left(\theta_{\mathbf{d}}\right) R_{y}\left(\phi_{\mathbf{d}}\right)
\end{aligned}
$$

All Together:
$R_{\mathrm{d}}(\alpha)$

$$
\mathbf{p}^{\prime}=R_{z}\left(\theta_{\mathrm{d}}\right) R_{y}\left(\phi_{\mathrm{d}}\right) R_{z}(\alpha) R_{y}\left(-\phi_{\mathrm{d}}\right) R_{z}\left(-\theta_{\mathrm{d}}\right) \mathbf{p}
$$

Thought Question:
Rotation about an axis that doesn't pass through the origin...

Transforming Normal Vectors

Translation:

Transforming Normal Vectors

Translation:

(No effect)

Transforming Normal Vectors

Rotation:

Transforming Normal Vectors

Rotation:

Transforming Normal Vectors

Scale:

Transforming Normal Vectors

Scale:

Transforming Normal Vectors

Scale, again:

Transforming Normal Vectors

Scale, again:

Transforming Normal Vectors

The line (2D) defines the normal vector.

We are really transforming the line (2D) or plane (3D)

Derivation

Derivation

Plane

Transformed Plane

$$
\begin{aligned}
& \mathbf{n} \cdot \mathbf{a}=0 \\
& \mathbf{n}^{T} \mathbf{a}=0 \\
& \mathbf{n}^{T} \mathfrak{a}=\mathbf{n}^{\prime T} \mathbf{M} \mathfrak{a} \\
& \mathbf{n}^{T} \mathbf{M}^{-1}=\mathbf{n}^{\prime T} \\
& \mathbf{n}^{\prime}=\left[\mathbf{n}^{T} \mathbf{M}^{-1}\right]^{T}=\mathbf{M}^{-1^{T}} \mathbf{n}
\end{aligned}
$$

Rendering Overview

Camera:
eye e gaze g up Z

Lens?
Visibility?
Appearance?

Illumination?

Two Algorithmic Approaches

for each shape:
for each pixel:
if shape is visible: compute color store color in pixel
for each pixel:
for each shape:
if shape is visible:
compute color
store color in pixel

Two Algorithmic Approaches

for each shape: for each pixel:
if shape is visible:
compute color
store color in pixel

for each pixel:
for each shape:
if shape is visible:
compute color
store color in pixel

Rasterization
Ray Casting

The 3D Viewing Transformation

Goal: create a camera-centric coordinate system
\mathbf{U} and \mathbf{v} axes define
the image plane
\mathbf{w} opposes \mathbf{g}

Orthonormal

The 3D Viewing Transformation

Constructing ($\mathbf{u}, \mathbf{v}, \mathbf{w}$)
w opposes g:

$$
\mathrm{w}=-\frac{\mathrm{g}}{\|\mathbf{g}\|}
$$

\mathbf{u} is "right" when z is up:
u is perpendicular to w :

$$
\mathbf{u}=\frac{\mathbf{z} \times \mathbf{w}}{\|\mathbf{z} \times \mathbf{w}\|}
$$

v is "up:"
v is perpendicular to u and w :

$$
\mathbf{v}=\mathbf{w} \times \mathbf{u}
$$

Why is w backwards?

World Space and Camera Space

Camera space:

$$
\mathbf{p}_{c}=\left(x_{c}, y_{c}, z_{c}\right)
$$

World space:

$$
\mathbf{p}_{w}=\left(x_{w}, y_{w}, z_{w}\right)
$$

Camera Space to World Space

Camera Space to World Space

$$
\begin{aligned}
\left(x_{c}, y_{c}, z_{c}\right) & \rightarrow \mathbf{e}+x_{c} \mathbf{u}+y_{c} \mathbf{v}+z_{c} \mathbf{w} \\
\mathbf{p}_{w} & =\mathbf{e}+x_{c} \mathbf{u}+y_{c} \mathbf{v}+z_{c} \mathbf{w} \\
\mathbf{p}_{w} & =\mathbf{e}+\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{w}
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\mathbf{e}+\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{w}
\end{array}\right] \mathbf{p}_{c}
\end{aligned}
$$

Camera Coordinates

$$
\mathbf{p}_{w}=\mathbf{e}+\mathbf{A}_{c w} \mathbf{p}_{c}
$$

World Coordinates

Camera Space to World Space

$$
\mathbf{p}_{w}=\mathbf{e}+\mathbf{A}_{c w} \mathbf{p}_{c} \quad \mathbf{A}_{c w}=\left[\begin{array}{ccc}
u_{x} & v_{x} & w_{x} \\
u_{y} & v_{y} & w_{y} \\
u_{z} & v_{z} & w_{z}
\end{array}\right]
$$

Homogeneous Transform:

World Space to Camera Space

Invert this: $\quad \mathbf{p}_{w}=\mathbf{e}+\mathbf{A}_{c w} \mathbf{p}_{c}$

$$
\begin{aligned}
\mathbf{A}_{c w} \mathbf{p}_{c}= & \mathbf{p}_{w}-\mathbf{e} \\
\mathbf{p}_{c}= & \mathbf{A}_{c w}^{-1}\left(\mathbf{p}_{w}-\mathbf{e}\right) \\
\mathbf{p}_{c}= & \mathbf{A}_{c w}^{-1} \mathbf{p}_{w}-\mathbf{A}_{c w}^{-1} \mathbf{e} \\
& \text { Orthonormal }
\end{aligned}
$$

$$
\mathbf{p}_{c}=\mathbf{A}_{c w}^{T} \mathbf{p}_{w}-\mathbf{A}_{c w}^{T} \mathbf{e}
$$

World Space to Camera Space

$$
\mathbf{p}_{c}=\mathbf{A}_{c w}^{T} \mathbf{p}_{w}-\mathbf{A}_{c w}^{T} \mathbf{e}
$$

Homogeneous:

$$
\begin{gathered}
\left.\mathbf{p}_{c}=\left[\begin{array}{ccc}
{\left[\begin{array}{lll}
& & \\
& \mathbf{A}_{c w}^{T} & \\
0 & 0 & 0
\end{array}\right]\left[-\mathbf{A}_{c w}^{T} \mathbf{e}\right.} \\
1
\end{array}\right]\right] \mathbf{p}_{w} \\
\mathbf{M}_{w c}, \text { the viewing transformation } \\
\mathbf{M}_{w c}=\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
w_{x} & w_{y} & w_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Camera Space to World Space, Again

$$
\begin{aligned}
& \text { Translation } \\
& \mathbf{p}_{w}=\mathbf{e}+\mathbf{A}_{c w} \mathbf{p}_{c} \\
& \text { Orthonormal }
\end{aligned}
$$

3×3 Orthonormal matrices are 3D rotation matrices

You can specify a camera using translation and rotation of proxy geometry that looks like a camera, much as you would manipulate a real camera, and build the same viewing transform!

