
Computer Graphics
CSC 418/2504

Patricio Simari
October 5, 2011

Slides courtesy of Patrick Coleman

Today

3D Transformations
Rendering Overview

3D Viewing

3D Affine Transformations

f(p) = Ap + t

3 x 3 Linear Transformation 3D Translation

3D Homogeneous Coordinates

x
y
z
w

Homogeneous

x/w
y/w
z/w

Cartesian

≡

3D Homogeneous Coordinate Examples

Homogeneous Cartesian

3
4
5
1

3
4
5

3
4
5
4

3/4
1

5/4

Homogeneous Cartesian

22
33
12
11

2
3

12/11

3/4
4/3
1/6
1/12

9
16
2

≡

≡ ≡

≡

3D Affine Transformations

f(p) = Ap + t f(p) = Mp
HomogeneousCartesian

x′

y′

z′

w′

 =

 A

t

0 0 0 1

x
y
z
w

Translation

x′

y′

z′

w′

 =

 I

t

0 0 0 1

x
y
z
w

Scaling

x′

y′

z′

w′

 =

sx 0 0
0 sy 0
0 0 sz

0
0
0

0 0 0 1

x
y
z
w

3D Rotation

Any change in 3D orientation can be expressed
as a rotation about some axis by an angle d

d

α

α

3D Rotation

What is the affine transformation?

d

α

Recall 2D Rotation

x′ = x cos(θ)− y sin(θ)
y′ = x sin(θ) + y cos(θ)

[
x′

y′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]

x

y

p′

p

Add an Axis

x′ = x cos(θ)− y sin(θ)
y′ = x sin(θ) + y cos(θ)

x

y

z

p
p′

z′ = z

x′

y′

z′

 =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

x
y
z

Rotation about z

x′

y′

z′

w′

 =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

0
0
0

0 0 0 1

x
y
z
w

Rz(θ)

θ

x

y

z

x′ = x cos(θ)− y sin(θ)
y′ = x sin(θ) + y cos(θ)
z′ = z

Rotation about x

θ

x

y

z

x′

y′

z′

w′

 =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

0
0
0

0 0 0 1

x
y
z
w

Rx(θ)

y′ = y cos(θ)− z sin(θ)
z′ = y sin(θ) + z cos(θ)

x′ = x

x′

y′

z′

w′

 =

cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

0
0
0

0 0 0 1

x
y
z
w

Rotation about y

θ

x

y

z

y′ = y
x′ = x cos(θ) + z sin(θ)

z′ = −x sin(θ) + z cos(θ)

Ry(θ)

x

y

z

Back to Rotation About an Axis

d

α

We know how to
rotate about the x, y,

and z axes individually.

1) Align to x, y, or z
2) Rotate around it by
3) Undo the Alignment

d
α

Assume the axis
passes through

the origin.

x

y

z

Back to Rotation About an Axis

d

α

We know how to
rotate about the x, y,

and z axes individually.

1) Align to x, y, or z
2) Rotate around it by
3) Undo the Alignment

d
α

Assume the axis
passes through

the origin.

x

y

z

Back to Rotation About an Axis

d

α

We know how to
rotate about the x, y,

and z axes individually.

1) Align to x, y, or z
2) Rotate around it by
3) Undo the Alignment

d
α

How do we align to an axis?d

Assume the axis
passes through

the origin.

Aside: Spherical Coordinates Review

θ = tan−1
(y

x

)

r =
√

x2 + y2 + z2

φ = tan−1

(√
x2 + y2

z

)
x = cos(θ) sin(φ)
y = sin(θ) sin(φ)

z = cos(φ)

r

θ

φ

x

y

z

Use this to align the axis to z

d

rd

θd

φd

x

y

z

Use this to align the axis to z

d

rd

θd

φd

x

y

z1) Bring into the xz plane.d
d′ = Rz(−θd)d d′

φd

Use this to align the axis to z

d

rd

θd

φd

x

y

z1) Bring into the xz plane.d
d′ = Rz(−θd)d d′

φd

2) Align to the z axisd′

z = Ry(−φd)d′

= Ry(−φd)Rz(−θd)d

The same transformation aligns all geometry:

p′ = Ry(−φd)Rz(−θd)p

x

y

z

Back to Rotation About an Axis

d

α

1) Align to z
2) Rotate around it by
3) Undo the Alignment

d
α

Ry(−φd)Rz(−θd)

Rz(α)

[Ry(−φd)Rz(−θd)]−1

= Rz(−θd)−1Ry(−φd)−1

= Rz(θd)Ry(φd)

All Together:

p′ = Rz(θd)Ry(φd)Rz(α)Ry(−φd)Rz(−θd)p

Rd(α)

Thought Question:

Rotation about an axis
that doesn’t pass

through the origin...

x

y

z

Transforming Normal Vectors

Translation:

Transforming Normal Vectors

Translation:

(No effect)

Transforming Normal Vectors

Rotation:

Transforming Normal Vectors

Rotation:

Transforming Normal Vectors

Scale:

Transforming Normal Vectors

Scale:

Transforming Normal Vectors

Scale, again:

Transforming Normal Vectors

Scale, again:

Transforming Normal Vectors

We are really transforming the line (2D) or plane (3D)

The line (2D) defines the normal vector.

Derivation

n

p
p0

n · (p− p0) = 0

Plane (2D Line) Equation:

n · a = 0
or

Derivation

n · a = 0
Plane

n′ · a′ = 0
Transformed Plane

n′T a′ = 0nT a = 0
?

n′T Ma = 0

a′ = Ma :

nT a = n′T Ma

nT M−1 = n′T

n′ = [nT M−1]T = M−1T n

Rendering Overview

e

Camera:
eye
gaze
up

e

z
g

z

g

Lens?
Visibility?

Appearance?

Illumination?

Two Algorithmic Approaches

for each shape:

for each pixel:

if shape is visible:

compute color

store color in pixel

for each pixel:

for each shape:

if shape is visible:

compute color

store color in pixel

Two Algorithmic Approaches

for each shape:

for each pixel:

if shape is visible:

compute color

store color in pixel

for each pixel:

for each shape:

if shape is visible:

compute color

store color in pixel

Rasterization Ray Casting

w

The 3D Viewing Transformation

z

g

Goal: create a camera-centric coordinate system

u and v axes define
the image plane

w opposes g u

v

Orthonormal

e

w

The 3D Viewing Transformation

z

g
u

v

e

Constructing (u,v,w)

opposes :w g

is “right” when is up:
is perpendicular to :u

u z
w

is “up:”
is perpendicular to and :v

v
u w

v = w × u Why is w backwards?

w = − g
||g||

u =
z×w

||z×w||

World Space and Camera Space

w

u

v

xc
yc

zc

Camera space:

pc = (xc, yc, zc) pw = (xw, yw, zw)
World space:

xw

yw

zw y

z

x

p

Camera Space to World Space

w

u

v

y

z

x

WorldCamera

(0, 0, 0) e
e + aw
e + v
e + v + aw
e + xcu + ycv + zcw

(0, 0, a)
(0, 1, 0)
(0, 1, a)

(xc, yc, zc)

Camera Space to World Space

e + xcu + ycv + zcw(xc, yc, zc)
pw = e + xcu + ycv + zcw

pw = e +
[
u v w

]

xc

yc

zc

 = e +
[
u v w

]
pc

World Coordinates

Camera Coordinates

Acw

pw = e + Acwpc

pw =

 Acw

e

0 0 0 1

pc

Camera Space to World Space

pw = e + Acwpc Acw =

ux vx wx

uy vy wy

uz vz wz

Homogeneous Transform:

Mcw

World Space to Camera Space

Acwpc = pw − e

pc = A−1
cw (pw − e)

pc = A−1
cwpw −A−1

cwe

pw = e + AcwpcInvert this:

pc = AT
cwpw −AT

cwe

Orthonormal

World Space to Camera Space

Homogeneous:

pc =

 AT
cw

−AT
cwe

0 0 0 1

pw

pc = AT
cwpw −AT

cwe

Mwc

Mwc =

ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1

1 0 0 −ex

0 1 0 −ey

0 0 1 −ez

0 0 0 1

, the viewing transformation

Camera Space to World Space, Again

pw = e + Acwpc

Translation

Orthonormal

3x3 Orthonormal matrices are 3D rotation matrices

You can specify a camera using translation and
rotation of proxy geometry that looks like a
camera, much as you would manipulate a real
camera, and build the same viewing transform!

