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3D Transformations
Rendering Overview

3D Viewing



3D Affine Transformations

f(p) = Ap + t

3 x 3 Linear Transformation 3D Translation



3D Homogeneous Coordinates
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3D Homogeneous Coordinate Examples

Homogeneous Cartesian
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Homogeneous Cartesian
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3D Affine Transformations

f(p) = Ap + t f(p) = Mp
HomogeneousCartesian
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Translation
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Scaling





x′

y′

z′

w′



 =








sx 0 0
0 sy 0
0 0 sz








0
0
0





0 0 0 1









x
y
z
w







3D Rotation

Any change in 3D orientation can be expressed 
as a rotation about some axis   by an angle   d

d

α

α



3D Rotation

What is the affine transformation?

d

α



Recall 2D Rotation

x′ = x cos(θ)− y sin(θ)
y′ = x sin(θ) + y cos(θ)

[
x′

y′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
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Add an Axis

x′ = x cos(θ)− y sin(θ)
y′ = x sin(θ) + y cos(θ)
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z′ = z
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Rotation about z
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Rz(θ)

θ

x

y

z

x′ = x cos(θ)− y sin(θ)
y′ = x sin(θ) + y cos(θ)
z′ = z



Rotation about x

θ
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Rx(θ)

y′ = y cos(θ)− z sin(θ)
z′ = y sin(θ) + z cos(θ)

x′ = x
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cos(θ) 0 sin(θ)
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Rotation about y

θ

x

y

z

y′ = y
x′ = x cos(θ) + z sin(θ)

z′ = −x sin(θ) + z cos(θ)

Ry(θ)
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Back to Rotation About an Axis

d

α

We know how to 
rotate about the x, y, 

and z axes individually.

1) Align    to x, y, or z
2) Rotate around it by
3) Undo the Alignment

d
α

Assume the axis 
passes through 

the origin.
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Back to Rotation About an Axis
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α

We know how to 
rotate about the x, y, 

and z axes individually.

1) Align    to x, y, or z
2) Rotate around it by
3) Undo the Alignment

d
α

Assume the axis 
passes through 

the origin.
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Back to Rotation About an Axis

d

α

We know how to 
rotate about the x, y, 

and z axes individually.

1) Align    to x, y, or z
2) Rotate around it by
3) Undo the Alignment

d
α

How do we align   to an axis?d

Assume the axis 
passes through 

the origin.



Aside: Spherical Coordinates Review

θ = tan−1
(y

x

)

r =
√

x2 + y2 + z2

φ = tan−1

(√
x2 + y2

z

)
x = cos(θ) sin(φ)
y = sin(θ) sin(φ)

z = cos(φ)

r

θ

φ
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Use this to align the axis to z
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Use this to align the axis to z

d

rd

θd

φd
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y

z1) Bring    into the xz plane.d
d′ = Rz(−θd)d d′

φd



Use this to align the axis to z

d

rd

θd

φd

x

y

z1) Bring    into the xz plane.d
d′ = Rz(−θd)d d′

φd

2) Align    to the z axisd′

z = Ry(−φd)d′

= Ry(−φd)Rz(−θd)d

The same transformation aligns all geometry:

p′ = Ry(−φd)Rz(−θd)p
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Back to Rotation About an Axis

d

α

1) Align    to z
2) Rotate around it by
3) Undo the Alignment

d
α

Ry(−φd)Rz(−θd)

Rz(α)

[Ry(−φd)Rz(−θd)]−1

= Rz(−θd)−1Ry(−φd)−1

= Rz(θd)Ry(φd)

All Together:

p′ = Rz(θd)Ry(φd)Rz(α)Ry(−φd)Rz(−θd)p

Rd(α)



Thought Question: 

Rotation about an axis 
that doesn’t pass 

through the origin...
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Transforming Normal Vectors

Translation:



Transforming Normal Vectors

Translation:

(No effect)



Transforming Normal Vectors

Rotation:



Transforming Normal Vectors

Rotation:



Transforming Normal Vectors

Scale:



Transforming Normal Vectors

Scale:



Transforming Normal Vectors

Scale, again:



Transforming Normal Vectors

Scale, again:



Transforming Normal Vectors

We are really transforming the line (2D) or plane (3D)

The line (2D) defines the normal vector.



Derivation

n

p
p0

n · (p− p0) = 0

Plane (2D Line) Equation:

n · a = 0
or



Derivation

n · a = 0
Plane

n′ · a′ = 0
Transformed Plane

n′T a′ = 0nT a = 0
?

n′T Ma = 0

a′ = Ma :

nT a = n′T Ma

nT M−1 = n′T

n′ = [nT M−1]T = M−1T n



Rendering Overview

e

Camera:
eye 
gaze
up

e

z
g

z

g

Lens?
Visibility?

Appearance?

Illumination?



Two Algorithmic Approaches

for each shape:

for each pixel:

if shape is visible:

compute color

store color in pixel

for each pixel:

for each shape:

if shape is visible:

compute color

store color in pixel



Two Algorithmic Approaches

for each shape:

for each pixel:

if shape is visible:

compute color

store color in pixel

for each pixel:

for each shape:

if shape is visible:

compute color

store color in pixel

Rasterization Ray Casting
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The 3D Viewing Transformation

z

g

Goal: create a camera-centric coordinate system

u and v axes define 
the image plane

w opposes g u

v

Orthonormal

e
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The 3D Viewing Transformation

z

g
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v

e

Constructing (u,v,w)

opposes   :w g

is “right” when    is up:
is perpendicular to    :u

u z
w

is “up:”
is perpendicular to    and    :v

v
u w

v = w × u Why is w backwards?

w = − g
||g||

u =
z×w

||z×w||



World Space and Camera Space
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xc
yc
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Camera space:

pc = (xc, yc, zc) pw = (xw, yw, zw)
World space:

xw

yw

zw y

z

x

p



Camera Space to World Space
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WorldCamera

(0, 0, 0) e
e + aw
e + v
e + v + aw
e + xcu + ycv + zcw

(0, 0, a)
(0, 1, 0)
(0, 1, a)

(xc, yc, zc)



Camera Space to World Space

e + xcu + ycv + zcw(xc, yc, zc)
pw = e + xcu + ycv + zcw

pw = e +
[
u v w

]
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 = e +
[
u v w

]
pc

World Coordinates

Camera Coordinates

Acw

pw = e + Acwpc
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pc

Camera Space to World Space

pw = e + Acwpc Acw =




ux vx wx

uy vy wy

uz vz wz





Homogeneous Transform:

Mcw



World Space to Camera Space

Acwpc = pw − e

pc = A−1
cw (pw − e)

pc = A−1
cwpw −A−1

cwe

pw = e + AcwpcInvert this:

pc = AT
cwpw −AT

cwe

Orthonormal



World Space to Camera Space

Homogeneous:

pc =







 AT
cw







−AT
cwe
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pw

pc = AT
cwpw −AT

cwe

Mwc

Mwc =





ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1









1 0 0 −ex

0 1 0 −ey

0 0 1 −ez

0 0 0 1





, the viewing transformation



Camera Space to World Space,  Again

pw = e + Acwpc

Translation

Orthonormal

3x3 Orthonormal matrices are 3D rotation matrices

You can specify a camera using translation and 
rotation of proxy geometry that looks like a 
camera, much as you would manipulate a real 
camera, and build the same viewing transform!




