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Abstract— Recent work in the object recognition commu-
nity has yielded a class of interest point-based features that
are stable under significant changes in scale, viewpoint, and
illumination, making them ideally suited to landmark-based
navigation. Although many such features may be visible
in a given view of the robot’s environment, only a few
such features are necessary to estimate the robot’s position
and orientation. In this paper, we address the problem of
automatically selecting, from the entire set of features visible
in the robot’s environment, the minimum (optimal) set by
which the robot can navigate its environment. Specifically,
we decompose the world into a small number of maximally
sized regions such that at each position in a given region,
the same small set of features is visible. We introduce a novel
graph theoretic formulation of the problem and prove that it is
NP-complete. Next, we introduce a number of approximation
algorithms and evaluate them on both synthetic and real data.

I. INTRODUCTION

In the domain of exemplar-based (as opposed to generic)

object recognition, the computer vision community has re-

cently adopted a class of interest point-based features, e.g.,

[1], [3], [5]. Such features typically encode a description

of image appearance in the neighbourhood of an interest

point, such as a detected corner or scale-space maximum.

The appeal of these features over their appearance-based

predecessors is their invariance to changes in illumination,

scale, image translation and rotation, and minor changes

in viewpoint (rotation in depth). These properties therefore

make them ideally suited to the problem of landmark-based

navigation. If we can define a set of invariant features that

uniquely define a particular location in the environment,

these features can, in turn, define a visual landmark.

To use these features, we could, for example, adopt a

localization approach proposed by Basri and Rivlin [6] and

Wilkes et al. [7], based on the LC (linear combination

of views) technique. During a training phase, the robot

is manually “shown” two views of each landmark in

the environment by which the robot is to later navigate.

These views, along with the positions at which they were

acquired, form a database of landmark views. At runtime,

the robot takes an image of the environment and attempts to

match the visible features to the various landmark views it

has stored in its database. Given a match to some landmark

view, the robot can compute its position and orientation in

the world.

There are two major challenges with this approach.

First, from any given viewpoint, there may be hundreds

or even thousands of such features. The union of all

pairs of landmark views may therefore yield an intractable

number of distinguishable features that must be indexed

in order to determine which landmark the robot may be

viewing. Fortunately, only a small number of features are

required (in each model view) to compute the robot’s pose.

Therefore, of the hundreds of features visible in a model

view, which small subset should we keep?

The second challenge is to automate this process and

let the robot automatically decide on an optimal set of

visual landmarks for navigation. What constitutes a good

landmark? A landmark should be both distinguishable from

other landmarks (a single floor tile, for example, would

constitute a bad landmark since it’s repeated elsewhere

on the floor) and widely visible (a landmark visible only

from a single location will rarely be encountered and,

if so, will not be persistent). Therefore, our goal can

be formulated as partitioning the world into a minimum

number of maximally sized contiguous regions, such that

the same set of features is visible at all points within a

given region.

There is an important connection between these two

challenges. Specifically, given a region, inside of which all

points see the same set of features (our second challenge),

what happens when we reduce the set of features that

must be visible at each point (first challenge)? Since this

represents a weaker constraint on the region, the size of

the region can only increase, yielding a smaller number

of larger regions covering the environment. As mentioned

earlier, there is a lower bound on the number of features

that can define a region, based on the pose estimation

algorithm and the degree to which we want to overconstrain

its solution.

Combining these two challenges, we arrive at the prob-

lem addressed by this paper: from a set of views acquired

at a set of sampled positions in a given environment,

partition the world into a minimum set of maximally sized

regions, such that at all positions within a given region,

the same set of k features is visible, where k is defined by

the pose estimation procedure (or some overconstrained

version of it). We begin by introducing a novel, graph

theoretic formulation of the problem, and proceed to prove

its intractability. In the absence of optimal, polynomial-

time algorithms, we introduce six different approximation

algorithms for solving the problem. We have constructed

a simulator that can generate thousands of worlds with

varying conditions, allowing us to perform exhaustive

empirical evaluation of the six algorithms. Following a

comparison of the algorithms on synthetic environments,

we adopt the most effective algorithm, and test it on real

world imagery of a real environment.
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II. RELATED WORK

In previous work on visual robot navigation using point-

based features, little or no attention has been given to the

size of the landmark database or the number of landmark

lookups required for localization. Lowe, Se and Little [2]

use scale- and rotation-invariant features as landmarks,

extracted using the scale-invariant feature transform (SIFT)

[1]. The robot automatically updates a 3D landmark map

with the reliable landmarks seen from the current position.

The position of the robot is estimated using the odometry of

the robot as an initial guess, and is improved using the map.

Trinocular vision is used to estimate the 3D locations of

landmarks and their regions of confidence, with all reliable

landmarks stored in a dense database.

The view-based approach of Sim and Dudek [4] consists

of an off-line collection of monocular images sampled

over a space of poses. The landmarks consist of PCA

encodings of the neighbourhoods of salient points in the

images, obtained using an attention operator. Landmarks

are tracked between contiguous poses and added to a

database if stable through a region of reasonable size. The

localization is performed through a linear combination of

views technique after finding matches between the visible

landmarks and those in the database.

The linear combination of views technique was first

introduced by Ullman and Basri, and later applied to

vision-based navigation by Basri and Rivlin [6] and Wilkes

et al. [7]. In these original applications of the LC method,

the features comprising the model views were typically

linear features extracted from the image. While all of

these approaches demonstrate how robot localization can

be performed from a set of landmark observations, none

consider the issue of eliminating redundancy from the

landmark-based map, which at times can grow to contain

tens of thousands of landmark models.

Some authors have considered the problem of landmark

selection for the purpose of minimizing uncertainty in the

computed pose estimate. Sutherland and Thompson [9]

demonstrate that the precision of a pose estimate derived

from point features in 2D is dependent on the configuration

of the observed features, and provide an algorithm for se-

lecting an appropriate set of observed features from which

to compute a pose estimate. While maximizing precision is

clearly an important issue, our work is concerned primarily

with selecting landmarks that are widely visible.1

III. PROBLEM DEFINITION

In an off-line training phase, images are first collected

at known discrete points in pose space, e.g., the accessible

vertices (points) of a virtual grid overlaid on the floor of

the environment. During collection, the known pose of the

robot is recorded for each image, and a set of interest point-

based features are extracted and stored in a database. For

each of the grid points, we therefore know exactly which

features in the database are visible. Conversely, for each

1The algorithms presented in this work can be easily extended to select
sets of features that fulfill any given additional constraints.
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Fig. 1. (a) A simple world with a square perimeter (in green), a square
(blue) obstacle in its center and eight features (red circles on its perimeter).
(b)-(g) Visibility areas of some features. (h) A covering of the world using
4 features. (i) A covering of the world using 2 features.

feature in the database, we know from which grid points

it is visible. Consider the example shown in Figure 1.

Figure 1 (a) shows a simple 2-D world having a square

perimeter, a square obstacle in its center, and eight features

evenly distributed along its perimeter. In figures 1 (b) -

1 (g), the area of visibility of some of the features is shown

as a coloured region. The feature visibility areas, computed

from a set of images acquired at a set of grid points in the

world, constitute the input to our problem.

In a view-based localization approach, the current pose

of the robot is estimated using, as input, the locations of a

small number of features in the current image matched

against their locations in the training images. This set

of simultaneously visible features constitutes a landmark.

The minimum number of features necessary for this task

depends on the method employed for pose estimation. For

example, three features are enough for localization in Basri

and Rivlin’s linear combination of views technique [6],

which uses a weak perspective projection imaging model.

The essential matrix method [12], that properly models

perspective projection in the imaging process, requires at

least eight features to estimate pose.

To reduce the effect of noise, a larger number of features

can be used to overconstrain the solution. This presents

a trade-off between the accuracy of the estimation and

the size (in features) of the landmark. Requiring a larger

number of features for localization, i.e., larger landmarks,

will yield better pose estimation. However, the larger and

more constrained a landmark is, the smaller its region of

visibility becomes. We will define the parameter k as the

number of features that will be employed to achieve pose

estimation with the desired accuracy, i.e., the number of

features constituting a landmark.

Robot localization from a given position is possible if,

from the features extracted from an image taken at that

position, there exists a subset of k features that exist in the

database and that are simultaneously visible from at least



two known locations. For a large environment, the database

may be large, and such a search may be costly. For each

image feature, we would have to search the entire database

for a matching feature until not only k such matches were

found, but that those k features were simultaneously visible

from at least two separate positions (grid points).

Recalling that k is typically far less than the number

of features in a given image, one approach to reducing

search complexity would be to prune features from the

database subject to the existence of a minimum of k

features visible at each point, with those same k features

being visible at one or more other positions. Unfortunately,

this is a complex optimization problem whose solution still

maintains all the features in a single database, leading to a

potentially costly search. A more promising approach is to

partition the pose space into a number of regions, i.e., sets

of contiguous grid points, such that for each region, there

are at least k features simultaneously visible from all the

points in the region. Such a partitioning of the world, in

turn, partitions the database of features into a set of smaller

databases, each corresponding to what the robot sees in a

spatially coherent region.

Let’s return to the simple world depicted in Figure 1.

Assuming that a single (k = 1) feature is sufficient

for reliable navigation, one possible decomposition of the

world into a set of regions (such that each pose of the

world sees at least one feature) is achieved using features

2, 4, 6, and 8, as shown in Figure 1 (h). It is clear that

all four features in this set are needed to cover the world,

since removing any one of them will yield some portion

of the world from which the remaining three features are

not visible, meaning that the robot is blind in this area.

However, this decomposition is not optimal, since other

decompositions with less regions are possible. Our goal is

to find the minimum decomposition of the world which, in

this case, has only two regions, corresponding to the areas

of visibility of features 1 and 5, (or its symmetric solution

using features 3 and 7), as shown in Figure 1 (i). This

minimum set of maximally sized regions is our desired

output, and allows us to discard from the database all but

features 1 and 5. Since at least one of these two features

is seen from every point in pose space, reliable navigation

through the entire world is possible.

A partitioning of the world into regions offers additional

advantages. While navigating inside a region, the corre-

sponding k features are easily tracked between the images

that the robot sees. If the expected k features are not all

visible in the current image, this may indicate that the

robot has left the region in which it was navigating and

is entering a new region. In that case, the visible features

can vote for the regions they belong to, if any, according

to a membership relationship computed offline. The new

region(s) into which the robot is likely moving will be

those with at least k votes. Input features would therefore

be matched to the k model features defining each of the

candidate regions. This approach also provides a solution to

the kidnapped robot problem, i.e., if the robot is blindfolded

and released at an arbitrary position, it can estimate its

current pose.

IV. A GRAPH THEORETIC FORMULATION

Before we formally define the minimization problem

under consideration, we will introduce some terms.

Definition 4.1: The set of positions at which the robot

can be at any time is called the pose space. The discrete

subset of the pose space from which images were acquired

is modeled by an undirected planar graph G = (V,E),
where each node v ∈ V corresponds to a sampled pose,

and two nodes are adjacent if the corresponding poses are

contiguous in 2D space.

Definition 4.2: Let F be the set of computed features

from all collected images. The visibility-set of v is the set

Fv ⊂ F of all features that are visible from pose v ∈ V .

Definition 4.3: A world instance consists of a tuple

〈G = (V,E), F, {Fv}v∈V 〉, where the graph G models a

discrete set of sampled poses, F is a set of features, and

{Fv}v∈V is a collection of visibility-sets.

Definition 4.4: A set of poses R ⊂ V is said

to be a region iff for all poses u, v ∈ R, there

is a path between u and v completely contained in

R, i.e., ∀u, v ∈ R : ∃{u = v0, . . . , vh = v} ⊆ R, such that

(vi, vi+1) ∈ E for all 0 ≤ i < h.

Definition 4.5: A set of regions

D = {R1, . . . , Rd} ⊂ 2V is said to be a decomposition of

V iff
⋃

1≤i≤d Ri = V .

Definitions 4.1 to 4.5 define the set of inputs

and outputs of interest to our problem. In view of

our optimization problem, for a given world instance

〈G = (V,E), F, {Fv}v∈V 〉, one would like to create a

minimum cardinality D. In addition, it will be desirable

for a given solution to the optimization problem to satisfy

a variety of properties. One property of interest is that of

ensuring a minimum amount of overlap between regions

in the decomposition. The purpose of overlap is to ensure

smooth transitions between regions, as different sets of

features become visible to the robot. When one region’s

features start to fade at its border, the robot can be ensured

to be within the boundary of some other region, where the

new region’s landmark is clearly visible. The following

definitions formalize this property:

Definition 4.6: The ρ-neighborhood of a pose v ∈ V

is the set Nρ(v) = {u ∈ V : δ(u, v) ≤ ρ}, where δ(u, v)
is the length of the shortest path between nodes u and v

in G.

Definition 4.7: A decomposition D = {R1, . . . , Rd}
of V is said to be ρ-overlapping iff (∀v ∈ V )
(∃i) : Nρ(v) ⊂ Ri.

With these definitions in hand, the problem can now be

stated as follows:

Definition 4.8: Let k be the number of features re-

quired for reliable localization at each position, according

to the localization method employed. The ρ-Minimum

Overlapping Region Decomposition Problem (ρ-MORDP)

for a world instance 〈G = (V,E), F, {Fv}v∈V 〉 con-

sists of finding a minimum-size ρ-overlapping decompo-

sition D = {R1, . . . , Rd} of V into regions, such that

∀i : |
⋂

v∈Ri
Fv| ≥ k.



Note that given a solution of size d to this problem, the

total number of features needed for reliable navigation is

bounded by d · k.

Before we consider the complexity of ρ-MORDP, we

will present two theorems indicating that ρ-MORDP can

be reduced to 0-MORDP (ρ = 0), and that a solution

to the reduced 0-MORDP can be transformed back to

a solution of the more general ρ-MORDP. The first of

the following two theorems states that if there is a ρ-

overlapping decomposition such that k features are visible

in each region for a certain world instance, then there

is a 0-overlapping decomposition for the related problem

also with k features visible in each region. This theorem

guarantees that if a solution exists for the ρ-MORDP, then

there is also a solution for the related 0-MORDP.

The second theorem states that whenever the related

0-MORDP has a solution D̃, then the ρ-MORDP has a

solution too, and it presents the method to construct it

from D̃. The proofs of these theorems are presented in [8].

It should be noted that while the transformation from ρ-

MORDP to 0-MORDP and back to ρ-MORDP may create

a different ρ-overlapping decomposition, the cardinality of

the decomposition under this two-step transformation will

remain the same, hence the optimality will not be affected.

Theorem 4.1: If D = {R1, . . . , Rd} is a ρ-

overlapping decomposition of V for a world instance

〈G = (V,E), F, {Fv}v∈V 〉, such that |
⋂

v∈Ri
Fv| ≥ k

for all i = 1, . . . , d, then D̃ = {R̃1, . . . , R̃d}, where

R̃i = {v ∈ Ri : Nρ(v) ⊆ Ri}, is a 0-overlapping decom-

position for a world instance 〈G = (V,E), F, {F̃v}v∈V 〉,
where F̃v =

⋂
w∈Nρ(v) Fw, such that |

⋂
v∈R̃i

F̃v| ≥ k for

all i = 1, . . . , d.

Theorem 4.2: If D̃ = {R̃1, . . . , R̃d} is a solution to 0-

MORDP for a world instance 〈G = (V,E), F, {F̃v}v∈V 〉,
then D′ = {R′

1, . . . , R
′
d}, where R′

i =
⋃

v∈R̃i
Nρ(v)

is a solution to ρ-MORDP for the world instance

〈G = (V,E), F, {Fv}v∈V 〉.
The transformation applied in Theorem 4.1 from a ρ-

overlapping to a 0-overlapping solution effectively shrinks

the regions of D by ρ, and reduces the visibility-set of each

vertex v to correspond to only those features that are visible

over the entire neighborhood Nρ(v) of v.2 Theorem 4.2

assumes that the collection of visibility-sets F̃ input to 0-

MORDP is defined by a reduction of the ρ-overlapping

instance of the problem to a 0-overlapping instance using

the transformation described in Theorem 4.1.

V. COMPLEXITY OF 0-MORDP

Now we will show that 0-MORDP is NP-complete.

The proof is by reduction from the Minimum Set Cover

Problem.

Definition 5.1: Given a set U , and a set of subsets

S = {S1, . . . , Sm} of U , the Minimum Set Cover Problem

(MSCP) consists of finding a minimum set C ⊂ S such

that each element of U is covered at least once, i.e.,⋃
Si∈C Si = U .

2Strictly speaking, the region reduction is impervious to boundary
effects at the boundary of G, due to the definition of Nρ(v).

U = {A, B, C, D}

S = {{A, B}, {C},

{A, D}, {C, D}}

Fig. 2. An instance of the Minimum Set Cover Problem

Figure 2 presents an instance of MSCP. The optimal

solution for this instance is C = {{A,B}, {C,D}} and,

in fact, this solution is unique. An instance 〈U, S, r〉 of the

Set Cover decision problem, where r is an integer, consists

of determining if there is a set cover of U , by elements of

S, of size at most r. The decision version of SCP was

proven to be NP-complete by Karp [10].

Theorem 5.1: The decision problem 〈0-ORDP, d〉 is

NP-complete.

Proof: It is clear that 0-MORDP is in NP, i.e.,

given a world instance 〈G = (V,E), F, {Fv}v∈V 〉 and

D = {R1, . . . , Rd}, it can be verified in time polynomial

in |V | if D is a ρ-overlapping decomposition of V such

that ∀i : |
⋂

v∈Ri
Fv| ≥ k.

We now show that any instance of SCP can be reduced

to an instance of 0-ORDP in time polynomial in |V |. Given

an instance 〈U, S = {S1, . . . , Sm}〉 of the Minimum Set

Cover Problem, we construct a 0-ORDP for the world

instance 〈G = (V,E), F, {Fv}v∈V 〉 in the following way:

• Let v∗ be an element not in U; then V = U ∪ {v∗}
• E = {(u, v∗) : u ∈ U} (Note that the graph G thus

generated is planar.)

• F = {f1, . . . , fm} where fi = Si ∪ {v∗}
• Fv = {f ∈ F : v ∈ f}
• k = 1

The introduction of the dummy vertex v∗ will be used

in the proof to ensure that elements of U that belong to

the same subset Si can be part of the same region in the

decomposition, by virtue of their mutual connection to v∗.

Each visibility-set Fv in the transformed problem instance

corresponds to a list of the sets Si in the SCP instance that

element v is a member of.

Now we show that from a solution to 0-ORDP of size

d, we can build a SC of size d. Let D = {R1, . . . , Rd} be

a solution to the transformed 0-ORDP instance, i.e.,

1) Ri ⊆ V is a region, for i = 1, . . . , d,

2)
⋃

1≤i≤d Ri = V , and

3) |
⋂

v∈Ri
Fv| ≥ k = 1, for i = 1, . . . , d.

Claim: C = {C1, . . . , Cd}, with

Ci = firstlex(
⋂

v∈Ri
Fv) − {v∗} is a Set Cover for

the original problem, where firstlex(A) returns the first

element in lexicographical order from the non-empty set A.

(For each Ci, the choice of an element f from
⋂

v∈Ri
Fv

is arbitrary in that any such f yields a valid solution.)

Note that Ci is well-defined, since |
⋂

v∈Ri
Fv| ≥ 1.

Proof: We must show that:

1) ∀i = 1, . . . , d : Ci ∈ S:

From the definition of Ci we can affirm that

(∃j) : [1 ≤ j ≤ m and Ci = fj − {v∗}]. Hence

Ci = Sj ∈ S.



2)
⋃

1≤i≤d Ci = U :

From the definition of Fv:
⋂

v∈Ri

Fv =
⋂

v∈Ri

{f ∈ F : v ∈ f}

= {f ∈ F : Ri ⊆ f}

Therefore, from the definition of Ci:

Ci = firstlex{f ∈ F : Ri ⊆ f} − {v∗}

=⇒ Ri ⊆ Ci ∪ {v∗}

=⇒ V =
⋃

1≤i≤d

Ri ⊆
⋃

1≤i≤d

Ci ∪ {v∗} ⊆ V

=⇒
⋃

1≤i≤d

Ci ∪ {v∗} = V

=⇒
⋃

1≤i≤d

Ci = V − {v∗} = U,

Finally, we have to show that if there is a set cover

of size d, then there is a decomposition of size d for the

0-ORDP. Let C ′ = {C ′
1, . . . , C

′
d} be a set cover for the

original SCP instance.

Claim: D′ = {R′
1, . . . , R

′
d}, where R′

i = C ′
i ∪ {v∗},

is a 0-overlapping region decomposition such that

|
⋂

v∈R′
i
Fv| ≥ k.

Proof: We must show that:

1) Each R′
i ⊆ V is a region3:

∀i : 1 ≤ i ≤ d, since C ′
i ⊆ U , then

R′
i = C ′

i ∪ {v∗} ⊆ V .

R′
i is a region because v∗ ∈ R′

i and, by the definition

of the graph G, v∗ is connected to all other nodes in

Ri.

2)
⋃

1≤i≤d R′
i = V :

⋃

1≤i≤d

R′
i =

⋃

1≤i≤d

C ′
i ∪ {v∗} = U ∪ {v∗} = V

3) |
⋂

v∈R′
i
Fv| ≥ k = 1:

C ′
i is a set cover

=⇒ C ′
i ∈ S

=⇒ ∃j = 1, . . . ,m : C ′
i = Sj

=⇒ R′
i = Sj ∪ {v∗} = fj ∈ F

=⇒ 1 ≤ |{f ∈ F : R′
i ⊆ f}|

= |
⋂

v∈R′
i

{f ∈ F : v ∈ f}| = |
⋂

v∈R′
i

Fv|

�.

VI. HEURISTIC METHODS FOR 0-ORDP

The previous section established the intractability of our

problem. Fortunately, the full power of an optimal de-

composition is not necessary in practice. A decomposition

with a small number of regions is sufficient for practical

3Recall that a region corresponds to a subset R of vertices in V for
which a path exists between any two vertices in R that lies entirely within
R.

purposes. We therefore developed and tested six different

greedy approximation algorithms, divided into two classes,

to realize the decomposition.

The A.x class of algorithms decomposes pose space by

greedily growing new regions from poses that are selected

according to three different criteria. Once a new region

has been started, each growth step consists of adding the

pose in the vicinity of the region that has the largest set of

visible features in common with the region. This growth

is continued until adding a new pose would cause that

region’s visibility set to have a cardinality less than k.

The pseudocode of this class of algorithms is shown in

Figure 3. Algorithms A.1, A.2 and A.3 implement each of

three different criteria for selecting the pose from which a

new region is grown. These three algorithms differ only in

the implementation of line 3 (Figure 3):

• A.1 selects the pose v ∈ U at which the least number

of features is visible, i.e., v = arg minu∈U |Fu|.
• A.2 selects the pose v ∈ U at which the greatest num-

ber of features is visible, i.e., v = arg maxu∈U |Fu|.
• A.3 randomly selects a pose v ∈ U .

In cases of ties in lines 3 and 12 of the algorithm, they are

broken randomly.

Algorithms B.x and C take an incremental approach to

defining the k features, starting with a large region that

“sees” one feature, and iteratively shrinking the region as

additional features (up to k) are added. The resulting region

is added to the decomposition, a new region is started, and

the process continued until the world is covered. These

algorithms select as a new region the set of poses from

which the most widely visible feature, taken from a set

F , is seen among the poses that are not yet assigned to a

region. Algorithms B.x and C differ in the criteria by which

F is defined, as shown in Figures 4 and 5, respectively. In

the case of algorithm B.x, F is just the set of all features,

while algorithm C systematically selects as F the set of

features commonly visible in a circular area centered at

each pose v ∈ V . If the number of uncovered poses in the

circular area is less than a certain fraction α of the size of

the circular area, or the size of F is less than k, then no

set F is selected for the current v.

The class B.x comprises two algorithms, B.1 and B.2,

that differ only in their treatment of the decomposition

D after adding to it a new region R (line 12). While

Algorithm B.1 leaves D as it is, Algorithm B.2 greedily

eliminates regions from D as long as the total number of

poses that become uncovered is less than a monotonically

decreasing value q. (This q is initialized as ∞ at the begin-

ning of the algorithm. As a new region R is added to D, q

is updated to be the minimum between its previous value

and the number of uncovered cells in R.)4 This algorithm

is adapted from the algorithm “Altgreedy” appearing in

[13], where it is empirically shown to achieve very good

approximation results for the set cover problem.

4Notice that this discarding rule ensures that the number of covered
poses strictly increases with each iteration, so that the algorithm always
terminates.



Algorithms B.x and C are based on the assumption

that the set of poses from which each feature is visible

form a connected region, and that the intersection of such

feature visibility areas is also a connected region. This

assumption is true if all feature visibility areas are simple

and convex. In our experiments with real data, we have

observed that although the visibility areas of features are

generally convex, they sometimes have some small holes.

Since the number of extracted features is quite large, we

can afford to exclude from the decomposition process those

features with significant holes in their visibility regions.

Algorithm C may terminate leaving some poses unassigned

to a region. A process is therefore applied to cover those

areas. This process is equivalent to Algorithm B.1, but with

step 1 making U equal to the set of unassigned poses.

All algorithms, except B.2, can terminate with a solution

that is not minimal. Redundancy is therefore eliminated

from their solutions by discarding regions one by one

until a minimal solution is obtained. This process greedily

selects for elimination the region R from the solution

D with the largest minimum-overlapping-count ω value,

where ω = min{|{R′ ∈ D : v ∈ R′}| : v ∈ R}, i.e., it is

the minimum number of regions that overlap at a pose

contained in the region. The worst-case running time

complexity of algorithm A.x is bounded by O(|V |2|F |),
while algorithms B.x and C are bounded by O(k|V |2|F |).

There are sampled poses of the world at which the count

of visible features is less than the required number k. This

is generally the case for poses that lie close to walls and

object boundaries, as well as for areas that are located

far from any visible object and are therefore beyond the

visibility range of most features. For this reason, the set

of poses that should be decomposed into regions has to

include only the k-coverable poses, i.e., those sampled

poses whose visibility-set sizes are at least k.

A decomposition that tries to cover all k-coverable poses

may include a large number of regions in total, since many

regions will serve only to cover small “holes” that could

not be otherwise covered by larger regions. These holes

generally lie in areas for which the size of the visibility-

set is very close to k, leaving very few features to choose

from. In order to avoid the inclusion of regions that are

only covering small holes, our implementations of the

algorithms add a region to the decomposition only if its

number of otherwise uncovered poses is greater than a

certain value σ.5

VII. RESULTS

We performed experiments on both synthetic and real

data. Synthetic data was produced using a simulator that

randomly generates worlds given a set of distributions

for each world parameter. A world consists of a 2-D

top view of the pose space defined by a polygon, with

internal polygonal obstacles, and a collection of features

5The presence of a few small holes does not prevent reliable navigation.
In general, whenever the robot is at a point for which the number of visible
features is less than k, advancing a short distance in most directions will
get it to a point that is assigned to some region.

Input: world 〈G = (V, E), F, {Fv}v∈V 〉
Output: decomposition D

1: U = {v ∈ V : |Fv| ≥ k}, D = ∅
2: while U 6= ∅ do

3: Select v ∈ U (See text)

4: R = {v}
5: repeat

6: V icinity(R) = {v ∈ V − R : ∃u ∈ R s.t. (u, v) ∈ E}
7: W = {u ∈ V icinity(R) : |Fu ∩ [

T

v∈R Fv ]| ≥ k}
8: if W 6= ∅ then

9: if W ∩ U 6= ∅ then

10: W := W ∩ U
11: end if

12: u = arg maxw∈W |Fw ∩ [
T

v∈R Fv ]|
13: R = R ∪ {u}
14: end if

15: until W = ∅
16: U = U − R
17: D = D ∪ {R}
18: end while

Fig. 3. Algorithm A.x

Input: world 〈G = (V, E), F, {Fv}v∈V 〉
Output: decomposition D

1: U = {v ∈ V : |Fv| ≥ k}, D = ∅
2: while U 6= ∅ do

3: R = U, L = ∅
4: for i = 1 to k do

5: f = arg maxφ∈(F−L) |{v ∈ R : φ ∈ Fv}|
6: R = {v ∈ R : f ∈ Fv}
7: L = L ∪ {f}
8: end for

9: R = {v ∈ V : L ⊆ Fv}
10: U = U − R
11: D = D ∪ {R}
12: Purge D (See text)

13: end while

Fig. 4. Algorithm B.x

Input: world 〈G = (V, E), F, {Fv}v∈V 〉
Output: decomposition D

1: U = {v ∈ V : |Fv| ≥ k}, D = ∅

2: r = max{ρ ∈ N : |{u ∈ U : |
T

w∈Nρ(u)∩U Fw| ≥ k}| ≥ |U|
2 }

3: for all v ∈ V do

4: R = Nr(v) ∩ U
5: F =

T

u∈R Fu

6: if
|R|

|Nr(v)|
≥ α and |F| ≥ k then

7: R = U, L = ∅
8: for i = 1 to k do

9: f = arg maxφ∈(F−L) |{v ∈ R : φ ∈ Fv}|
10: R = {v ∈ R : f ∈ Fv}
11: L = L ∪ {f}
12: end for

13: R = {v ∈ V : L ⊆ Fv}
14: U = U − R
15: D = D ∪ {R}
16: end if

17: end for

Fig. 5. Algorithm C

on the polygons (both external and internal). Each feature

is defined by two parameters, an angle and a range of

visibility, determining the span of the area on the floor from

which the feature is visible. An example of a randomly

generated world and the visibility area of some of its

features is illustrated in Figure 6.

Independent tests of the algorithms on synthetic data

were performed for four different world settings. The set-

tings combined different feature visibility properties with

different shape complexities for the world and obstacle

boundaries. Two types of features were used, having visi-

bility ranges: N (0.65, 0.2) to N (12.5, 1)m with an angular



Fig. 6. A randomly generated world. The green polygon defines the
perimeter of the world. The blue polygons in the interior define the
boundaries of obstacles. The small red circles on the polygons are the
features. As an illustration, the visibility areas of selected features are
shown as coloured regions.
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Experiment Settings

Fig. 7. Results for Experiments on Synthetic Data. The x-axes of
the charts represent the four world settings used in the experiments.
(Rectangular worlds were used in settings 1 and 2, while irregularly
shaped worlds in settings 3 and 4. Type 1 features were used in settings
1 and 3, and Type 2 features in settings 2 and 4.) The y-axes correspond
to the average value of 300 experiments for the total number of regions,
average number of poses per region, and total number of used features in
each decomposition. From left to right, the bars at each setting correspond
to Algorithms A.1, A.2, A.3, B.1, B.2, and C.

range N (25, 3) degrees for Type 1, and N (0.65, 0.2) to

N (17.5, 2)m with an angular range N (45, 4) degrees for

Type 2 (where N (µ, σ) is normally distributed with mean µ

and variance σ2). Two classes of shapes were tested for the

world and obstacles: irregular and rectangular. For the case

of irregular worlds, the number of sides of its perimeter was

generated from the mixture distribution {U(4, 4) with p =
0.1; N (5, 0.5) with p = 0.45; N (7, 2) with p = 0.45]},

and the number of obstacles from the distribution {U(5, 9)
with p = 0.5; N (8, 2) with p = 0.5}. The number of

obstacles in each rectangular world was generated from the

mixture distribution {U(6, 9) with p = 0.5; N (10, 2) with

p = 0.5}. The generated worlds had an average diameter

of 40m, and feature visibility was sampled in pose space

at points spaced at 50cm intervals.

The parameters used in the experiments were overlap-

ping ρ = 1, and features commonly visible per region k =
4. (Basri and Rivlin [6] showed that reliable localization

can be accomplished using their linear combination of

model views method with as few as three point correspon-

dences between the current image and two stored model

views.) The allowed maximum area of a hole was set to

σ = 9 poses, i.e., on average, a hole has a diameter of

at most 1.5m. The parameter α of algorithm C was set to

0.85.

Figure 7 shows the results of the experiments on syn-

thetic data. The performance of each algorithm in the

four settings described above is compared in terms of the

number of regions in the decomposition, the average area

of a region in a decomposition, and the size of the set

formed by the union of the k features commonly visible

from each region in a decomposition. Each value in the

figure is the average computed over a set of 300 randomly

generated worlds. The decomposition of each world took

only a few seconds for each algorithm.

Unsurprisingly, the average size of a region is strongly

dependent on the stability of its defining features in pose

space. Also as expected, the total number of regions in each

decomposition increases as the average size of the regions

decreases. Tables I and II show the number of regions

and the average number of poses in a region, respectively,

achieved by each algorithm and setting, averaged over

all the randomly generated worlds. In the case of worlds

with widely visible features (settings 2 and 4), the best

results, in terms of minimum number of regions in the

decomposition, are achieved by Algorithm B.2, closely

followed by algorithms B.1 and C. For the worlds with

less visible features (settings 1 and 3), Algorithm B.2

outperformed the rest.

TABLE I

AVERAGE NUMBER OF REGIONS IN A DECOMPOSITION

Setting A.1 A.2 A.3 B.1 B.2 C

1 173.81 156.96 154.97 127.76 112.63 140.10

2 59.30 56.45 54.72 44.74 42.10 44.17

3 112.40 100.46 98.97 82.11 73.08 82.29

4 44.71 40.00 39.11 31.99 30.02 31.11

TABLE II

AVERAGE NUMBER OF POSES PER REGION

Setting A.1 A.2 A.3 B.1 B.2 C

1 70.76 76.49 75.74 80.60 80.99 71.85

2 253.88 276.37 272.83 281.63 279.81 251.86

3 69.04 74.60 73.95 78.63 79.29 71.61

4 215.15 237.68 234.67 244.44 241.26 218.56

When applied to rectangular worlds, the algorithms

produced decompositions with significantly more regions

(between 40% and 55% for the top algorithms) than

when applied to the irregularly shaped worlds. One of the

reasons for this is the fact that considerably more features



(a) (b) (c) (d)

Fig. 8. (a)-(d) The 4 regions of the decomposition of real visibility data
collected in a 2m by 2m space, sampled at 20 cm intervals.

are visible, on average, at each pose in irregular worlds

(settings 3 and 4) than in rectangular worlds (settings 1

and 2), as can be seen in Table III. This is likely due to

the fact that the range of visibility of each feature spans

a symmetric field of view from a direction more or less

perpendicular to the side (of the world or obstacle) where

the feature is located. With this in mind, for several features

to be visible in a pose, they have to be located on sides that

are perpendicularly facing the pose (i.e., sides such that the

pose location point perpendicularly projects inside the line

segment defining them). In the case of rectangular worlds,

this restricts the features visible in the pose to more likely

come from at most four sides. In irregular worlds, there

are likely more than just four sides facing each pose, and

hence a larger number of features is visible from it.

TABLE III

AVERAGE NUMBER OF FEATURES VISIBLE FROM A POSE

Setting Average Number of Features

1 30

2 95

3 41

4 117

We took Algorithm B.2, the algorithm that achieved the

best results on synthetic data, and as a further evaluation

we applied it to real feature visibility data collected in

a 2m by 2m space sampled at 20 cm intervals, with a

total of 46 visible features.6 All images were taken with

the camera in a fixed orientation (looking forward), and

features were extracted using the Kanada-Lucas-Tomasi

(KLT) operator [11]. The parameters used in the decom-

position were k = 4, ρ = 0, σ = 3 The four regions

of the decompositions can be seen in figure 8. The larger

gray area present in each one of the images of the regions,

corresponds to the set of k-coverable poses. As can be seen

from the figure, the union of the four regions covers almost

completely the k-coverable area of the world.

In our simulations, we obtained fairly big regions, as

seen in Table II. Each pose corresponds to a sampled area

of 0.25m2 (50cm by 50cm), so the averages achieved by

the best algorithm correspond to region areas of 20m2 for

features of Type 1, and 65m2 for features of Type 2. These

results were achieved with only a few features visible per

6We used a small world and features with reduced visibility so that such
a world can be interestingly divided into several regions to exemplify our
method. For general applications in large environments an alternate class
of features with visibility larger than this should be chosen.

pose, as shown in Table III, where the average number of

features visible per pose was on the order of a hundred.

In real image data, however, the number of stable features

visible per pose is on the order of several hundred, and each

feature has a visibility range close to that of our simulated

features of Type 1 (see [1], for example). These findings

lead us to predict that this technique will successfully

find decompositions useful for robot navigation in real

environments.

VIII. CONCLUSIONS

We have presented a novel graph theoretic formulation

of the problem of automatically extracting an optimal set

of landmarks from an environment for visual navigation.

Its intractable complexity (which we prove) motivates the

need for approximation algorithms, and we present six such

algorithms. To systematically evaluate them, we first test

them on a simulator, where we can vary the shape of the

world, the number and shape of obstacles, the distribution

of the features, and the visibility of the features. The most

promising algorithm was then tested on real-world data

with encouraging results.
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