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Abstract

In this work we propose a method for recognizing symbols of electronic
components in hand-written circuit diagrams. We do not deal with the
problem of segmentation of component symbols from the circuit dia-
gram, but we focus on the problem of recognition of individual sym-
bols. Our approach consists in the use of four Hidden Markov Mod-
els (HMMs) per symbol class to perform classification. Each symbol is
segmented into a linear sequence of image features with the conditional
probability between consecutive features in the sequence being modeled
by a HMM. To test our approach, several HMMs with different number
of states were trained per symbol class and model selection was per-
formed using a validation set to decide for the best number of states for
the HMMs of each class. The classification performance of the selected
HMMs was measured on a set of images not used during training, ob-
taining a very low error rate, suggesting that this approach has promising
potential.

1 Introduction and Previous Work

The machine recognition of hand-written symbols in engineering diagrams has been a focus
of research for the last thirty years. The automatic acquisition of hand-sketched electronic
circuit diagrams is an instance of this type of problems whose solution has many useful
applications which include automatic input of circuit diagrams for circuit analysis purposes,
beautification of circuits for layout rendering, and human-computer interface for circuit
input.

Several approaches have been tried for the task of recognizing hand-sketched diagrams.
Edwards and Chandran [1] uses a statistical classifier on the distribution of 35 image prop-
erties extracted from the thinned image of the electronic component symbol. Valois et al.
[2] perform component symbol matching invariant to rotation, translation and changes in
scale. They decompose each stroke into line and arc primitives and model the topological
and structural relations between these basic features.

General sketch recognition has been approached by Sezgin and Davis [3] viewing sketching
as an incremental and interactive process when the order of strokes is available, such as



when a tablet PC or PDA is used to input the sketch. They use a HMM-based technique to
model the ordering of the strokes. However, this approach fails if the user is not consistent
in the ordering of the strokes when drawing objects of the same class. Müller et al. [4]
use a HMM based classifier to recognize hand-drawn pictograms using a rotation-invariant
feature extraction technique. The pictogram is inscribed in a circle which is divided into a
fixed number T of overlaping stripes along its radius with each stripe composed of a fixed
number N of blocks. A vector of dimension N is created per strip containing the percentage
of foreground pixels of the pictogram contained in each block. The model consists of the
sequence of vectors ordered by the position of the corresponding stripe in the circle. A
linear HMM is trained to recognize the sequence and this model is further extended with
modified initial states and exit distributions to support rotational invariance.

In this paper we present a method for electronic component symbol recognition that is
scale-, translation- and rotation-invariant, and independent of the order in which the sym-
bol strokes are drawn, hence it can be applied to circuit diagrams that are already on print
without the need of having to be acquired using any special device. We assume that the
image of the circuit diagram has already been segmented into individual component sym-
bols, and we only focus on the recognition part of each particular symbol obtained in the
segmentation stage. A possible way to perform the segmentation of the circuit into com-
ponents is suggested in [1]. The sketch of each symbol class is modeled as a stochastical
linear sequence of image features and we train four HMMs per class to learn the probability
distribution of the feature sequence given the class. (Each of the four HMMs corresponds
to a different pose of the symbol.) Classification of a new exemplar is done by segment-
ing the symbol into its sequence of basic features and computing, for each symbol class
HMM, the likelihood of observing this sequence given the HMM. The symbol is assumed
to belong to the class of the model for which the observation is most likely.

2 Approach

Each symbol is segmented into a sequence of basic image features. These features are
the noisy observations used to train the HMM. The segmentation of a symbol into basic
features is done by parsing the image of the symbol in a straight direction at a given orien-
tation. We refer to this as the parsing direction. To achieve rotational invariant recognition,
a canonical orientation has to be used for each class of symbols. In our experiments we
used the orientation along which the set of foreground pixels of the symbol extends the
most, i.e., the principal component. This direction is found using principal component
analysis of the coordinates of the set of foreground pixels.

For each class, four HMMs are trained to learn the distribution of the sequence of features
in that class. As shown in Figure 1, a symbol can appear in the circuit diagram in one of
four possible symmetrical poses, depending of the segmentation process and drawing style
of the user. A separate HMM is trained for each of these four poses. The set of symbols
instances of each class used for training should consistently have a unique pose. The other
three poses are generated by applying a 180 degree rotation and/or a symmetry operation
to this one.

The classification of a new symbol sketch is performed by computing the likelihood of
observing the feature sequence f1, . . . , fT of that symbol for the HMM of each class Hk.
The class of the HMM for which the observation is most likely is predicted as the class of
the symbol, i.e., arg maxk p(f1, . . . , fT |Hk).
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Figure 1: Four possible symmetrical poses of a symbol in a circuit diagram.

2.1 The features

The basic features we used were selected to make the segmentation of the symbol inde-
pendent to scale and translation, as well as changes in drawing styles. They try to capture
general aspects of the geometrical properties of the image of the symbol. The symbol is
asumed to be tightly contained in a rectangular box R and is oriented such that its parsing
direction, as explained earlier, extends along the direction of the longest sides of R. The
rectangle defines a system of cartesian coordinates with the x-axis oriented along the di-
rection of its longest sides. An analysis of the geometry of the symbol image is performed
by computing measurements on the foreground pixels with same x value, as illustrated in
Figure 2.

50 100 150 200 250 300 350 400 450 500

20

40

60

80

100

Figure 2: Symbol parsing.

Let W be the length of the shortest sides of R. At each x, the following values of the image
are computed: the relative width w(x) = yH(x)−yL(x)+1

W
, in terms of the y-coordinates of

the highest (yH(x)) and lowest (yL(x)) vertical foreground pixels at position x; the relative
center c(x) = yH(x)+yL(x)

2W
, i.e., the relative location of the midpoint between yH(x) and

yL(x); and the number of intersects i(x) between the image and the line L(x) parallel to
the y-axis that goes through x, i.e., the number of connected components of foreground
pixels along L(x).

Based on these measurements, the stroke type ST (x) at each point x is defined as nostroke

iff w(x) = 0; thin iff 0 ≤ w(x) ≤ θ, and wide iff θ < w(x), given a threshold θ. (In
our experiments we used θ = 0.35.) The function ST is smoothed to reduce the effects of
noise by discarding values that are not consistently supported by a minimum number (2 in
our experiments) of closest neighbors, and in that case taking on the most frequent value
among its closest neighbors.

Let B be the length of the longest sides of R. The interval [0, B]
is initially divided into the minimum length sequence of subintervals
O = {[a1, b1), [a1, b2), . . . , [an1

, bn−1), [an, bn]}, (bi = ai+1), such that each subin-
terval [ai, bi] corresponds to contiguous values of x that have the same stroke type ST (x).
For the subintervals that correspond to strokes of type thin and wide, the slope S(x) of a
function f(x) is computed and smoothed. In the case of thin strokes f = c, and in case of



wide strokes f = w. The slope is computed for a subinterval [a, b) using only the value of
f(x) for x ∈ [a, b]: A function f̃(x) : [2a− b, 2b− a) → R is created by mirroring f(x)
on both extremes of the interval and scaling it up by W , i.e.:

f̃(x) =

{
f(2a− x)W , 2a− b ≤ x < a
f(x)W , a ≤ x < b
f(2b− x)W , b ≤ x < 2b− a

and the slope S(x) of scaled f(x) is computed as the derivative of f̃(x) in the interval
[2a− b, 2b− a] by convolving it with the negative of the derivative of a 0 mean Gaussian
(of σ = 2 in our experiments). Given a threshold δ the direction of the slope is computed
as

D(x) =

{
0 , |S(x)| < δ
sign(S(x)) , otherwise

and later smoothed in the same way it was done with ST . We used δ = 0.2 and a minimum
support of 3 for this step in our experiments.

The subintervals in O corresponding to strokes of type thin are further divided into smaller
subintervals such that all points in each subinterval have the same slope direction. And
the subintervals of wide strokes are divided into subintervals of points with same slope
direction and same number of intersects. For each interval [a, b) in the final sequence, a
feature is computed, consisting of four descriptive values to characterize the geometry of
the image contained in the interval:

• Curvature of f̃ : a measure of the curvature of f̃ in the interval is computed as the
area between the values of f̃ in [a, b] and the secant line through f̃(a) and f̃(b),
divided by b− a.

• Slope of f̃: an estimate of the average slope of f̃ in the interval is calculated as
f̃(b)−f̃(a)

b−a
.

• Width: average of the relative width function w(x) in the interval.

• Number of Intersects: the value of i(x) for all points in the interval. (In the case
of a thin stroke, this value is always assumed to be 1.)

The model of a symbol class and pose is the distribution of this sequence of features for the
symbols in the class having such pose. This distribution will be learned by an HMM per
class and pose.

3 Results

We tested our idea using images of electronic symbols hand-drawn by the same individual.
Figure 3 shows exemplars of the 12 different classes of symbols used in our experiments.
Each HMM was trained using the Baum-Welch EM algorithm (See [5], for example). The
values for the initial state distribution and the transition probabilities between states were
initialized randomly. The emission probabilities of the symbol features (of dimension four)
were assumed to be distributed normally and were initialized using k-means on the set of
feature values of the observed feature sequences. In an attempt to reduce the problems
caused by local minima, the training of each HMM was independently performed three
times, and the set of converged parameters that achieved the highest log likelihood were
selected for the HMM.



Figure 3: Exemplars of the hand-drawn symbols of each class used in the experiments.

A HMM classifier C = {Hcp}c=1,...,12,p=1,...,4 for our problem consists of a set of 48
HMMs, i.e., one HMM Hcp per symbol class c and pose p. Classification of a symbol is
done by selecting the class of the HMM that with highest probability would observe the
sequence of features corresponding to the symbol. A regularization parameter of a HMM
is its number of states. We decided on this attribute of each class and pose HMM by model
selection implemented through an iterative selection of classifiers using a validation set
composed of 15 images (not used during training) per symbol class and pose. For each
class c and pose p, a set of 15 HMMs were trained {H2k

cp }k=1,...,15, each with a different
even number of states, between 2 and 30. The training sets consisted of images of 45
different instances of the same symbol class.

Initially the best performing HMM H̃cp for each class c and pose p was assumed to be the
one with 6 states H6

cp. For each class c and pose p at a time, 15 classifiers {C2k
cp }k=1,...,15

were built, each having an HMM with a different number n of states for the current class
and pose, and having the corresponding best performing HMM so far for all other classes
and poses, i.e., Cn

cp = Hn
cp ∪{H̃c′p′}c′ 6=c∨ p′ 6=p. Each of the 15 classifiers are tested on the

validation set and the classifier C ñ
cp that achieves the minimum number of misclassifications

is selected. (Ties are broken by selecting the HMM with the least number of states.) The
best performing HMM for class c and pose p is updated to be the one used in C ñ

cp for that

class and pose, i.e., H̃cp = H ñ
cp. This process is repeated until the best performing HMM

for each class and pose does not change after a complete iteration through all symbol classes
and poses. In our experiments, it took 6 iterations for this process to converge.

Table 1: Number of States per Symbol Class and Pose

Symbol States per Pose
Class a b c d

6 4 4 8

14 8 22 4
16 20 8 14
2 6 6 2
2 6 6 2

16 12 12 8
2 6 4 6
2 2 2 2

14 18 6 6
12 2 12 6
10 2 6 16
16 2 10 10

Figure 4 shows the curves of the number of misclassified symbols as a function of
the number of states of the HMM for each of the classifiers tested in an iteration of
the previous algorithm. The curve in row p and column c corresponds to the function
f(n) = Rate of misclassifications of Cn

cp. These curves were computed for the classifiers



Figure 4: Curves of number of misclassified symbols in function of the number of
states of the HMM. The curve in row p and column c corresponds to the function
f(n) = Rate of misclassifications of Cn

cp. The portion of the x-axis of each curve bounding
box corresponds to the interval [0,30] and the portion of the y-axis to the interval [0,1].

after convergence of the best performing HMMs of all classes and poses at the end of the
execution of the algorithm. Table 1 shows the number of states per symbol class and pose
HMM that achieved the best results.

The confusion matrix in Figure 5, contains a row per real symbol class, and a column per
predicted class, showing the errors for each class made by the final converged classifier
on test data (not used during training) consisting of 15 symbol images per pose and class.
It can observed that the symbol classes of the battery (2nd symbol), the capacitor (3rd
symbol) and the variable capacitor (10th symbol) are mutually confused to a certain extent.
The three symbols are very similar in geometry: they are roughly modeled, in term of our
proposed features, by a sequence of length 5 consisting of a thin centered stroke, a centered
wide stroke with one intersect, a nostroke, a centerd wide stroke and a final centered thin

stroke. From this, it is obvious that the features that we proposed for the symbol sequence
model do a poor job to distinguish among these symbols. A larger training set would
probably improve the classification rate of these three classes to some extent, since the
classifier would have more examples to learn the few small (from the perspective of our
feature model) geometrical details that separate the three classes. The low total error rate
(0.0694) achieved in our experimental results on the classification of previously unseen
data suggests that this approach has a promising potential.
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Figure 5: (a) Confusion matrix of experiments: rows are real symbol classes and columns
are predicted classes, (b) Classification accuracy rate per symbol class.

4 Conclusions

We have presented a method for recognition of hand-sketched symbols of electronic com-
ponents using HMMs. We proposed a method to model a symbol as a sequence of basic
image features and learning the stochastic distribution of that sequence for each symbol
class using a separate HMM. Experimental results show that our approach achieves good
classification rates and has high potential to solve the problem of recognition of symbols
having a geometry that can be described sequentially.
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