Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Comparing the Effectiveness of Reasoning Formalisms for Partial Models

Pooya Saadatpanah, <u>Michalis Famelis</u>, Jan Gorzny, Nathan Robinson, Marsha Chechik, Rick Salay

University of Toronto

September 30th, 2012

MoDeVVa'12

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Uncertainty in software modeling

• Uncertainty: pervasive in MDE

- Models with uncertainty:
 - Represent choice among many possibilities
 - Can be refined to many different classical models

• Our goal:

Handle models with uncertainty in MDE without having to remove it [MoDeVVa'11].

Existing Work

Comparing the Effectiveness of Reasoning Formalisms for Partial Models

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertaint

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

In This Paper

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Introduction

What is uncertainty?

How to represent uncertainty with partial models (MAVO).

Process for checking properties

Alternative verification technologies

Experiments

Results

Conclusion

Outline

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Introduction to Uncertainty

What the designer knows.

LandVehicle

numDoors

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Introduction to Uncertainty

What the designer **does not know**.

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Introduction to Uncertainty

What the designer **does not know**.

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Introduction to Uncertainty

What the designer **does not know**.

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

If we remove all uncertainty, we have a concrete refinement.

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiment

Results

Conclusion

Modeling Uncertainty with Partial Models

Explicating uncertainty in a partial model.

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies Experiments

Results

Conclusion

Modeling Uncertainty with Partial Models

Explicating uncertainty in a partial model.

In a refinement, a May element is optional.

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Results

Conclusion

Modeling Uncertainty with Partial Models

Explicating uncertainty in a partial model.

In a refinement, a May element is optional.

In a refinement, a Set element can be multiplied to many copies.

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiment

Results

Conclusion

Modeling Uncertainty with Partial Models

Explicating uncertainty in a partial model.

In a refinement, a May element is optional. In a refinement, a Set element can be multiplied to many copies. In a refinement, a Variable element can be unified with some other.

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Modeling Uncertainty with Partial Models

Explicating uncertainty in a partial model.

In a refinement, a May element is optional.

In a refinement, a Set element can be multiplied to many copies.

In a refinement, a Variable element can be unified with some other. In a refinement, an Open world model can be expanded with some other elements.

Partial models: Syntactic annotations of the points of uncertainty.

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies Experiments Results

Conclusion

Introduction

What is uncertainty?

How to represent uncertainty with partial models (MAVO).

Process for checking properties

Alternative verification technologies

Experiments

Results

Conclusion

Outline

Results

Conclusion

Property Checking in Partial Models

Result

10 / 32

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Verification Technologies I

Alloy

- Lightweight formal methods
- Model finder based on SAT
- First order logic specifications expressed in relational logic
- Grounded to CNF representation
- Finds counter examples
- Constraint Satisfaction Problem (Minizinc/Flatzinc)
 - · Assign value to variables to satisfy all constraints
 - Constraint modeling language
 - Easily translatable to the form required by other CSP solvers

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Verification Technologies II

• Satisfiability Modulo Theory (Z3)

- Constraint satisfaction search with richer theories
- Theorem prover
- Check the satisfiability logical formulas

- Answer Set Programming (Clingo=Gringo+Clasp)
 - Answer set solvers
 - Conflict-driven nogood learning
 - Normal logic programs

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Introduction

What is uncertainty?

How to represent uncertainty with partial models (MAVO).

Process for checking properties

Alternative verification technologies

Experiments

Results

Conclusion

Outline

Results

Conclusion

Conclusio

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Random Input Generation

- Meta-model : directed graphs
 - Minimal meta-model
 - A few constraints
 - Most difficult one for solvers
- Randomly decorated with MAVO annotations.
- Parameters are based on real case studies.
 - Graph density
 - Percentage of MAVO annotated elements
 - Percentages of M-, S- and V-annotated elements
- 3 Model Size : Small, Medium, Large, X-Large

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Relational Encoding I

- Relational Algebra used in DBMSs
- Directly translatable into the different formalisms
- Intermediate representation
 - FOL semantics of MAVO
 - Reasoning formalisms
- Meaningful comparison
 - Most efficient encoding in each formalism : impossible!
 - Solution : common encoding

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Relational Encoding II

(Very) high level overview.

- The metamodel encoded as a schema.
- Partial model FOL semantics encoded as constraints over the schema.
- Creating a concrete refinement populates the database.

	MAVO element	Instance element
LASS:	Vehicle	Vehicle
	LandVehicle	LandVehicle/Car
	LandVehicle	LandVehicle/Truck
	LandVehicle	LandVehicle/Moto
	Х	Vehicle

Conclusio

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Translation To Formalisms

- Alloy
 - Relations : Alloy signatures
 - Instances : Atoms
 - MAVO constraints : quantified predicates over signatures
 - Bound is required
- CSP
 - Relations : Finite set of Integers
 - Instances : Integers
 - MAVO constraints : cardinality and intersection of sets
 - Bound is required
- SMT
 - Relations : Uninterpreted boolean functions
 - Instances : Abstract values
 - MAVO constraints : Quantified logic over truth table of functions
- ASP
 - Program rules for both instances and relations
 - Bound is required

Results

Conclusion

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Properties Checked

- Inspired by real metamodel constraints.
- No transitive closure, since it is expensive to check.

P1: There exists a node with a self-loop.

- P2: All nodes have outgoing edges.
- P3: All nodes have outgoing or incoming edges.
- P4: For all pairs of nodes $\langle n_1,n_2\rangle$ there exists at most one edge e such that $n_1\stackrel{e}{\to} n_2$
- P5: For every pair of nodes $\langle n_1, n_2 \rangle$, $n_1 \neq n_2$ there exist two edges $\langle e_1, e_2 \rangle$ such that $n_1 \stackrel{e_1}{\to} n_2$ and $n_2 \stackrel{e_2}{\to} n_1$.

Results

Conclusion

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Experimental Parameters

- Bound (2, 4, 6)
 - Solvers (except SMT) use bound for grounding expressions to atoms.
 - How many times can an 'S'-annotated element be replicated in a refinement.
- Repetitions
 - 5 times
- Cutoff time/memory
 - less than 10 minutes
 - less than 5 gigabyte
 - otherwise timeout
- What we measure
 - How long does it take for each solver to return an answer
 - A score out of 1200
 - if timeout : zero!

Gorzny,

Results

26 / 32

Findings

Comparing the Effectiveness of Reasoning Formalisms for Partial Models

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertaint

Property Checking Process

Verification Technologies

Experiments

 ${\sf Results}$

Conclusion

Findings

Model size

Partial Models Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Comparing the Effectiveness

of Reasoning Formalisms for

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

 ${\sf Results}$

Conclusion

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

SMT the champion?

- Unaffected by bounds!
- Works at higher level of abstraction (Theory of uninterpreted functions.)
- Unaffected by expensive grounding phase.

Caveat:

- SMT can theoretically return "I don't know".
- (However: we didn't observe that.')

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Threats to Validity

Randomly generated graphs.

- Tuned the generator with realistic graph properties.
- Values of graph properties from case studies.

Fairness of comparisons.

• Common encoding to level the field.

Choice of specific reasoning engines

- When available: winners of competitions.
- CSP: most convenient input language.

Summary

Comparing the Effectiveness of Reasoning Formalisms for Partial Models

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Research Question

What is the most efficient formalism for verifying models containing uncertainty?

Summary

Comparing the Effectiveness

of Reasoning Formalisms for Partial Models

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Other results:

- Framework for running experiments (now full tool support).
- Random generator for arbitrary type graphs.
- Relational encoding.
- Translations of the RA encoding to different formalisms.

Future Work

of Reasoning Formalisms for Partial Models Saadatpanah,

Comparing the Effectiveness

Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

• Implement symmetry breaking in the SMT encoding.

• Experiment with properties that require transitive closure.

• Experiment with partial models containing OW.

Questions?

Bibliography I

Comparing the Effectiveness of Reasoning Formalisms for Partial Models

Saadatpanah, Famelis, Gorzny, Robinson, Chechik, Salay

Introduction

Designer Uncertainty

Modeling Uncertainty

Property Checking Process

Verification Technologies

Experiments

Results

Conclusion

Famelis, M., Ben-David, S., Chechik, M., and Salay, R. (2011). "Partial Models: A Position Paper". In *Proceedings of MoDeVVa'11*, pages 1–6.

Famelis, M., Chechik, M., and Salay, R. (2012).

"Partial Models: Towards Modeling and Reasoning with Uncertainty". In Proceedings of ICSE'12.

Salay, R., Famelis, M., and Chechik, M. (2012).

"Language Independent Refinement using Partial Modeling". In Proceedings of FASE'12.