Smart Home Network Management with Dynamic Traffic Distribution

> Chenguang Zhu Xiang Ren

> > Tianran Xu

Motivation

Motivation - Per Application QoS

In small home / office networks,

applications compete for limited bandwidth

- high bandwidth consumption applications can be disruptive
 - Eg. bitTorrent
- ► To ensure fairness,

different application flows should be given different priorities

- **Eg.** High priority for important Skype meeting
- Eg. Low priority for bitTorrent download

Need traffic adjustment based on flow types

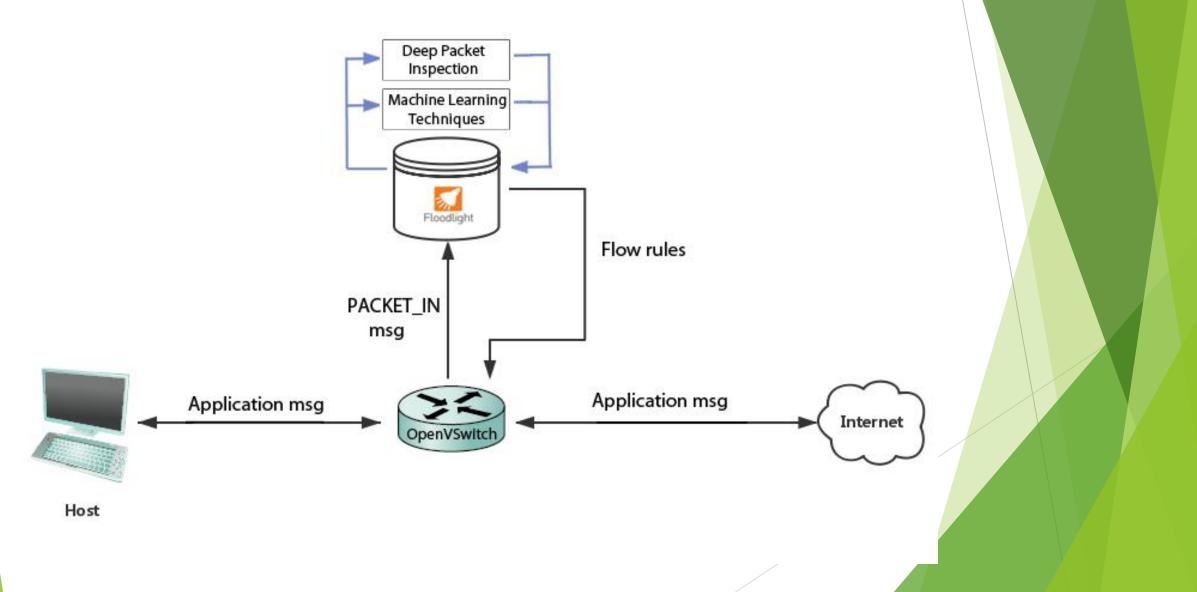
Motivation - Per Application QoS

Flow identification is difficult in traditional networks

- SDN allows novel flow identification techniques
 - Deep packet inspection
 - Machine learning based techniques
- Use flow rules to easily adjust traffic

System Design

Design - System Overview



Flow Identification - Commonly Used Technique

Shallow packet inspection

- Inspect packet header, eg. port-number, protocol
- Low accuracy, application circumvention

Deep packet inspection

- Inspect data part of a packet, high accuracy
- Sometimes maintain a big database of packet features
- Frequently update rules for new applications

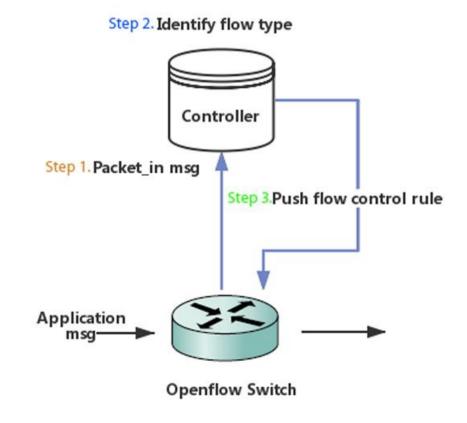
Flow Identification - Machine Learning

Machine learning based-techniques <<< We focus on this one</p>

- Novel techniques
- Cross-disciplinary
- Interesting experiments
 - eg. Clustering vs classification algorithms

Design - Traffic Adjustment

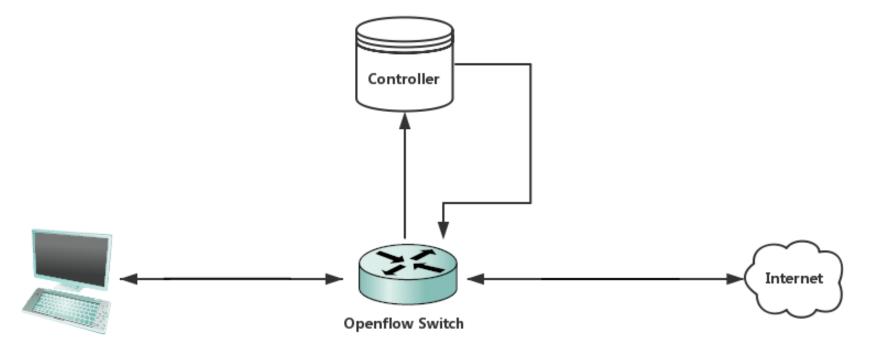
Assign different priority based on flow type



Implementation

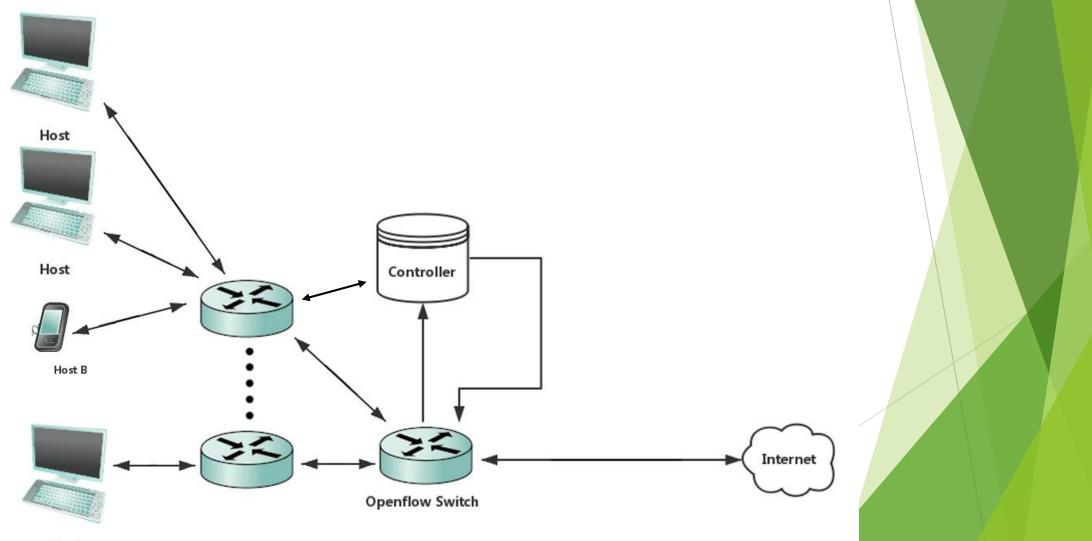
Floodlight + Mininet + OpenVSwitch

Implementation -Simple Test Topology

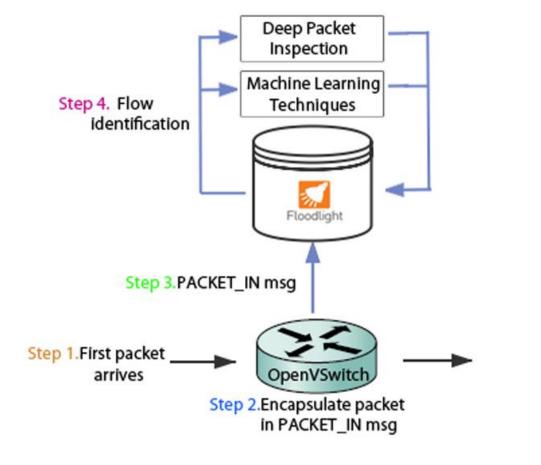


Host

Implementation -Realistic Topology



Implementation -Packet Arrival and Identification



Implementation - Deep Packet Inspection

- Inspects data part of a packet
- Use simple rules to identify packet type

Protocol	Data part features
HTTP	contains 'GET' 'DELETE' 'POST' 'PUT'
SSH	start with 'SSH-'
OpenVPN	first two bytes stores packet length - 2
•••	•••

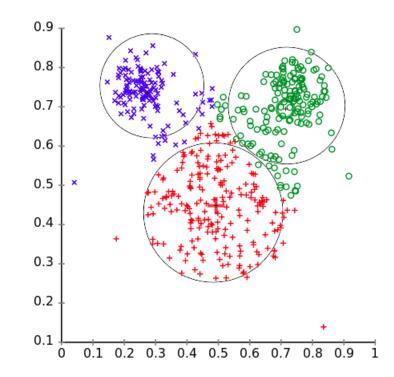
Implementation -Machine Learning Techniques

- Clustering vs Classification
- Clustering:
 - Use K-Means algorithm
- Classification:
 - Use SVM algorithm

Clustering - K-Means

groups data points into k clusters,

each point belongs to the cluster with the nearest mean

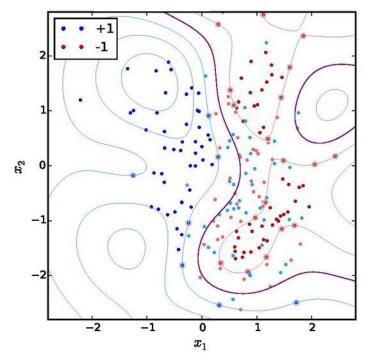


Source: https://en.wikipedia.org/wiki/K-means_clustering

Classification - SVM

assigns data points into categories,

based on data vectors nearest to the category boundaries



Source: https://en.wikipedia.org/wiki/Support_vector_machine

Dataset Selection

Publically available research traces

- eg. waikato traces (<u>http://wand.net.nz/wits/catalogue.php</u>)
- Pros: representative traffic workloads
- Cons: too complex, hard to label packet type
- Self collected traces
 - Self generated packets, captured on WireShark
 - Easy to label

Feature

Commonly used features from research literature

Features

Total number of packets per flow

Flow duration

Packet lengths statistic (min, max, mean, std dev.) per flow

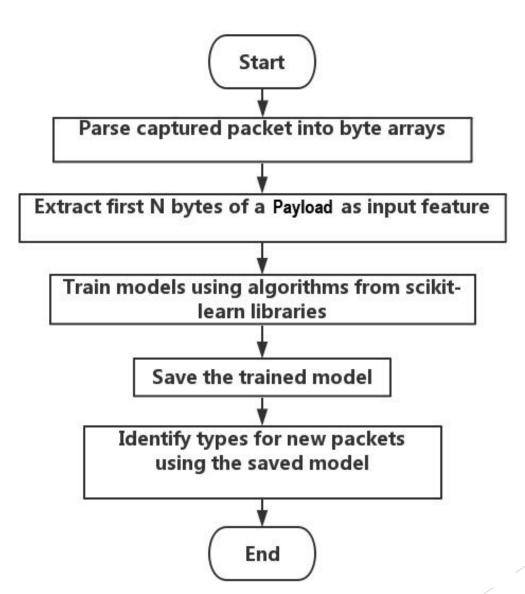
Payload lengths

...

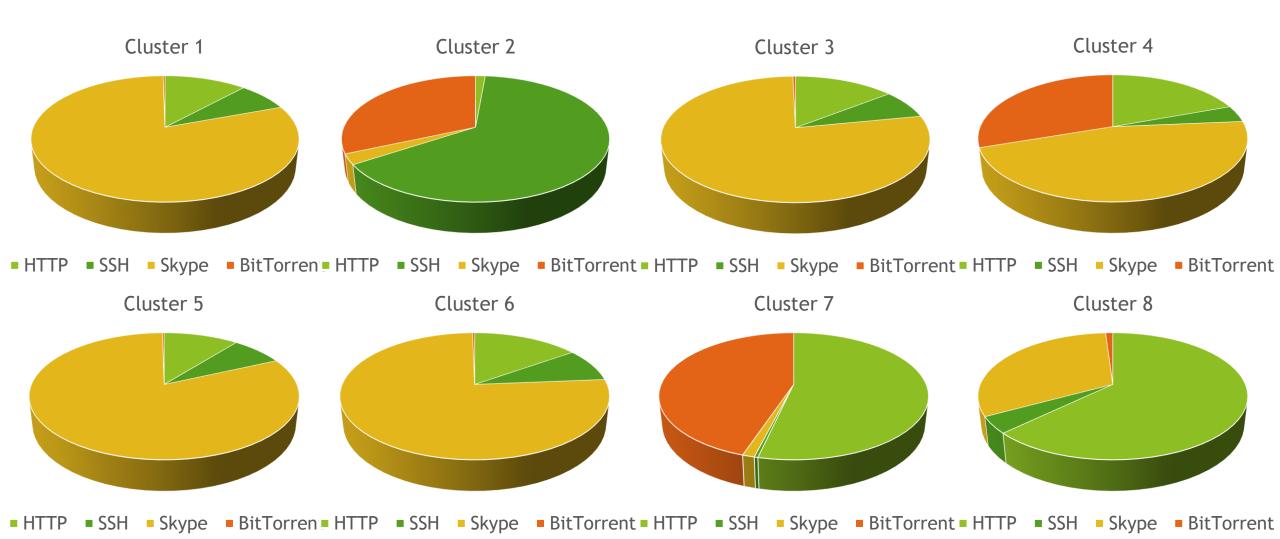
Payload content (We use first N number of bytes of payload as feature)

Source: T. Nguyen and G. Armitage. "A Survey of Techniques for Internet Traffic Classification using Machine Learning" IEEE Communications Surveys and Tutorials 01/2008; 10:56-76.

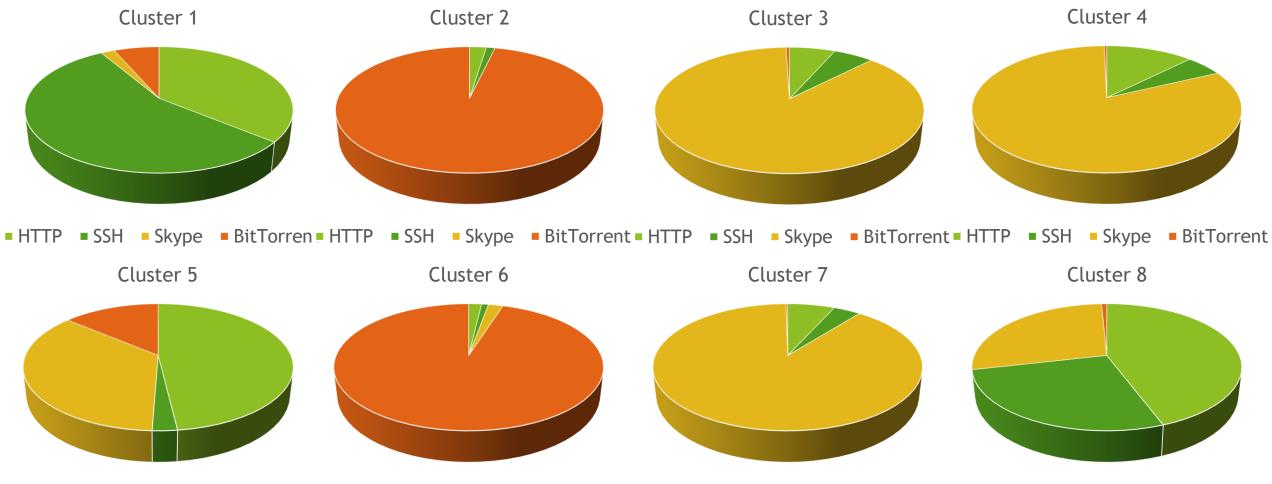
Machine Learning Based Identification



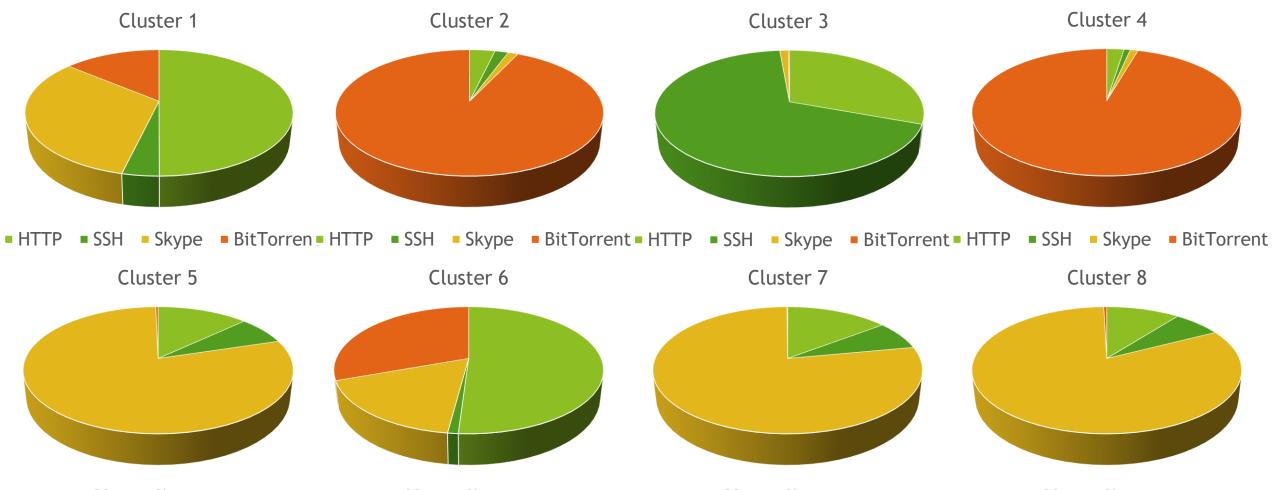
K-means 2 bytes



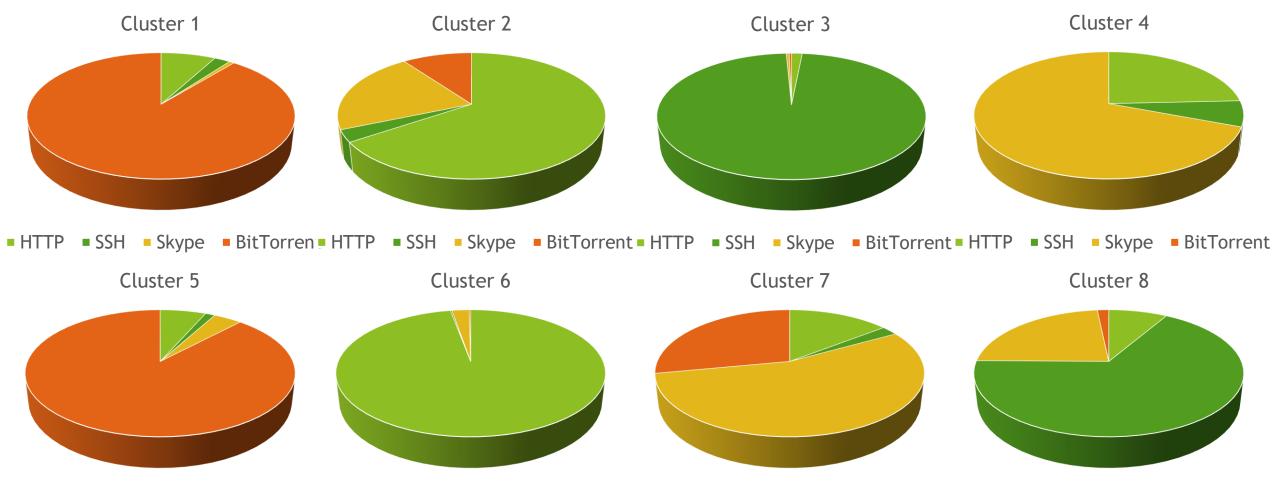
K-means 3 bytes



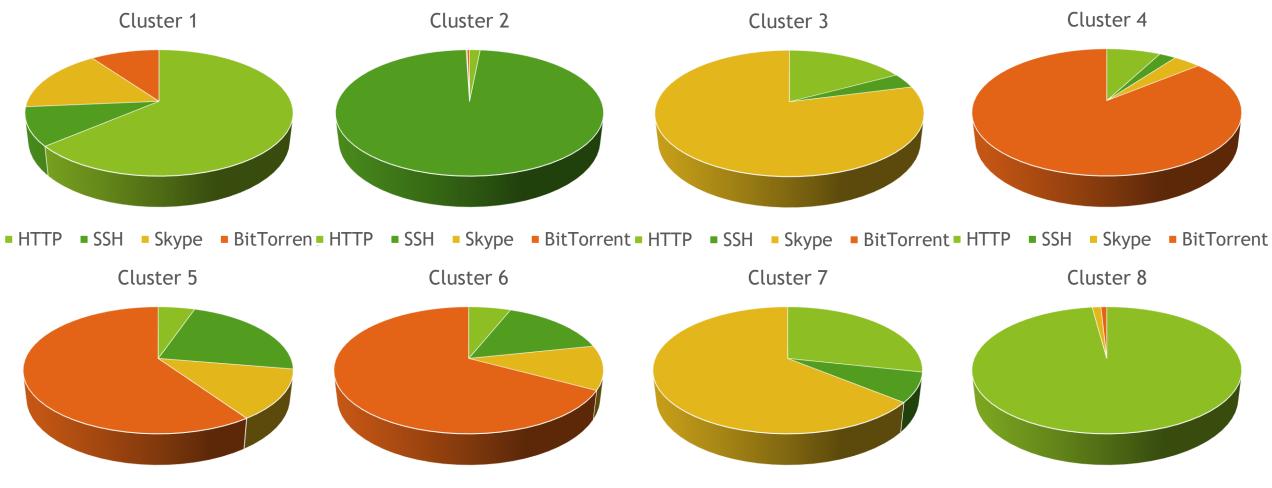
K-means 4 bytes



K-means 8 bytes

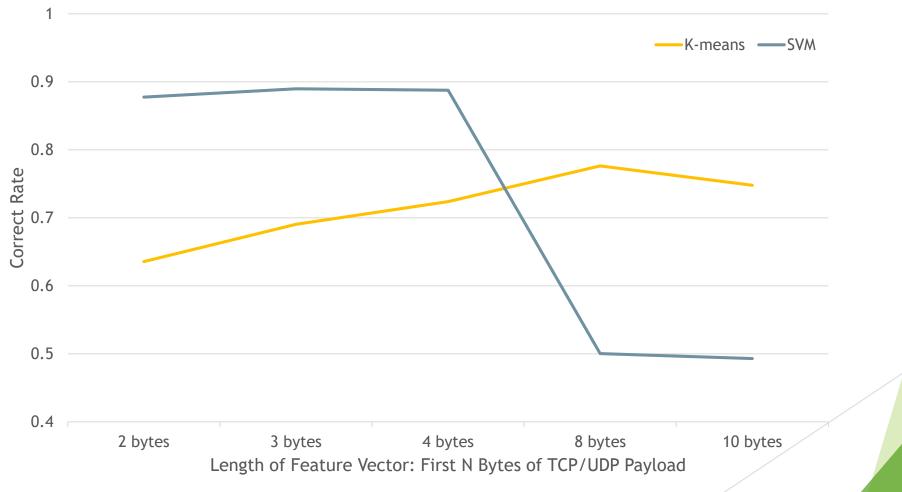


K-means 10 bytes

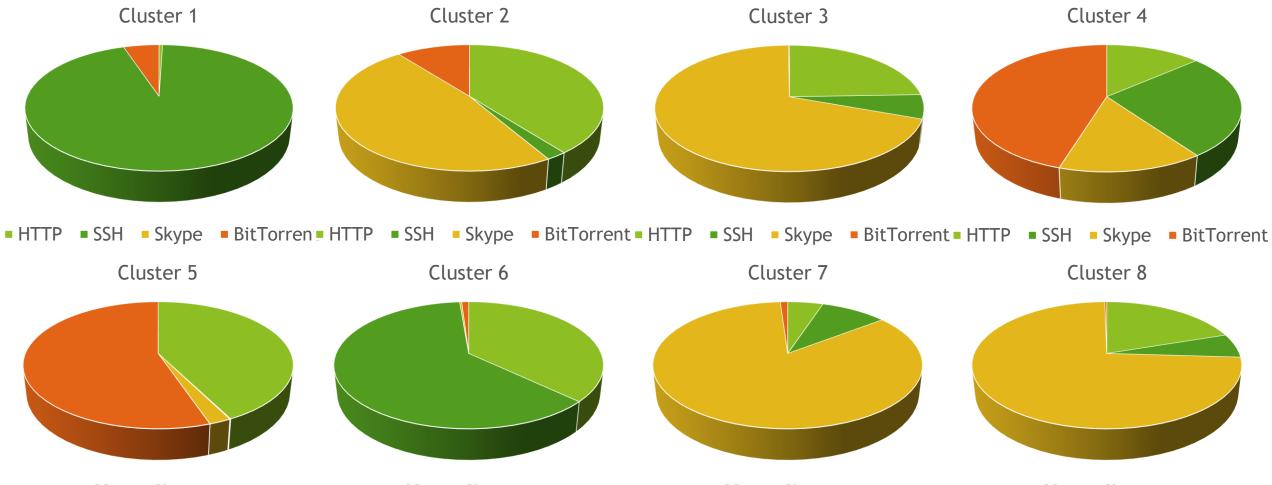


Performance of Identification -Varying Feature Length

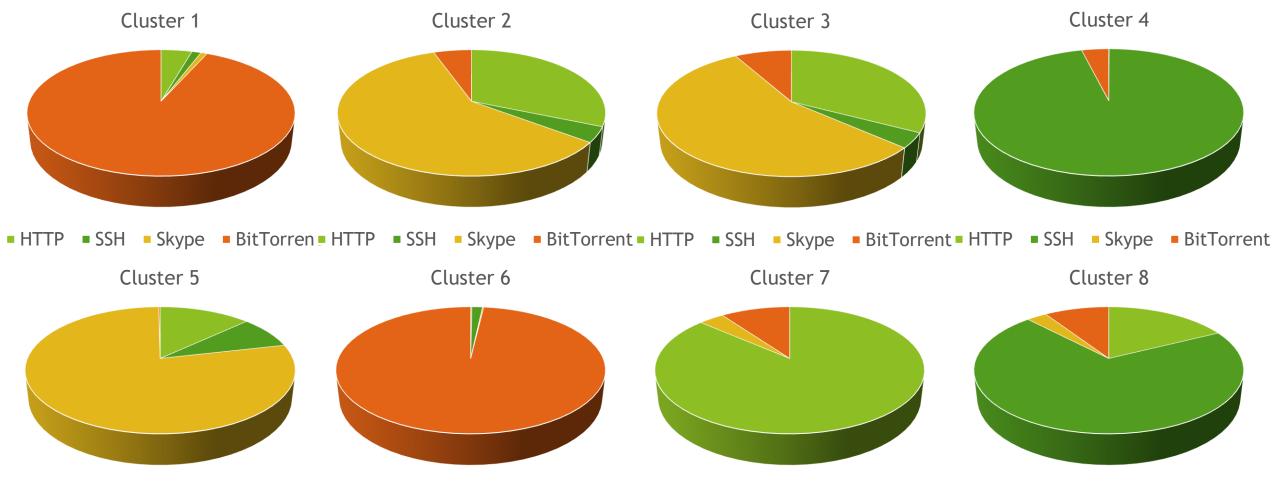
K-Means vs SVM



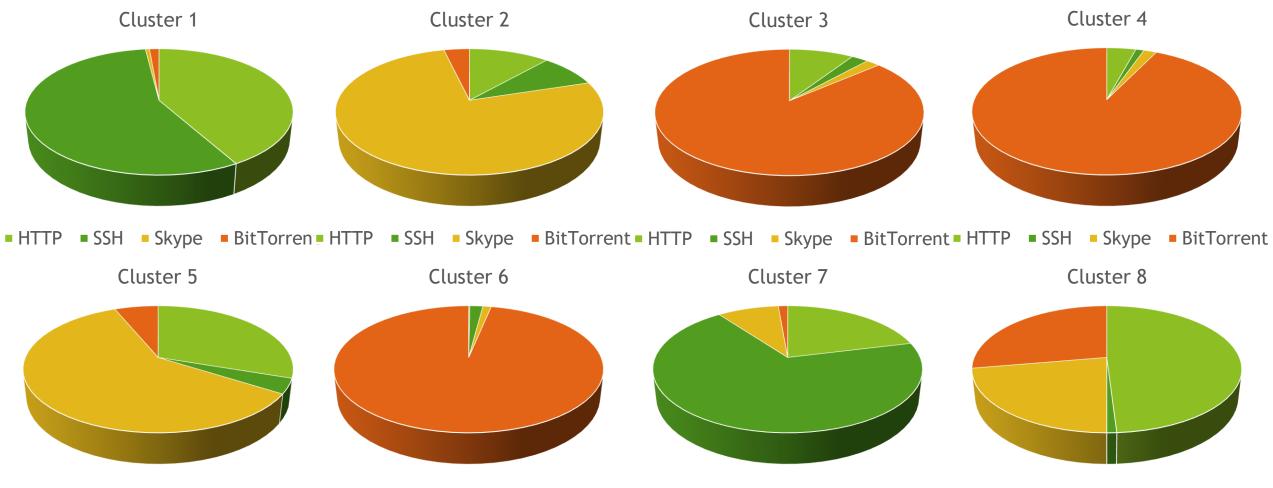
K-means port# + 2 bytes data



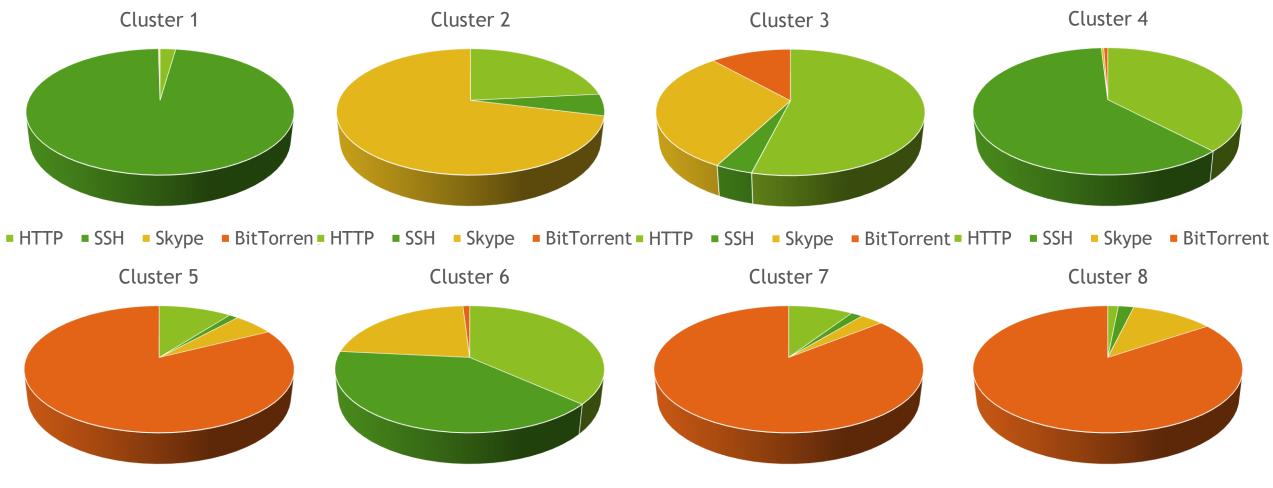
K-means port# + 3 bytes data



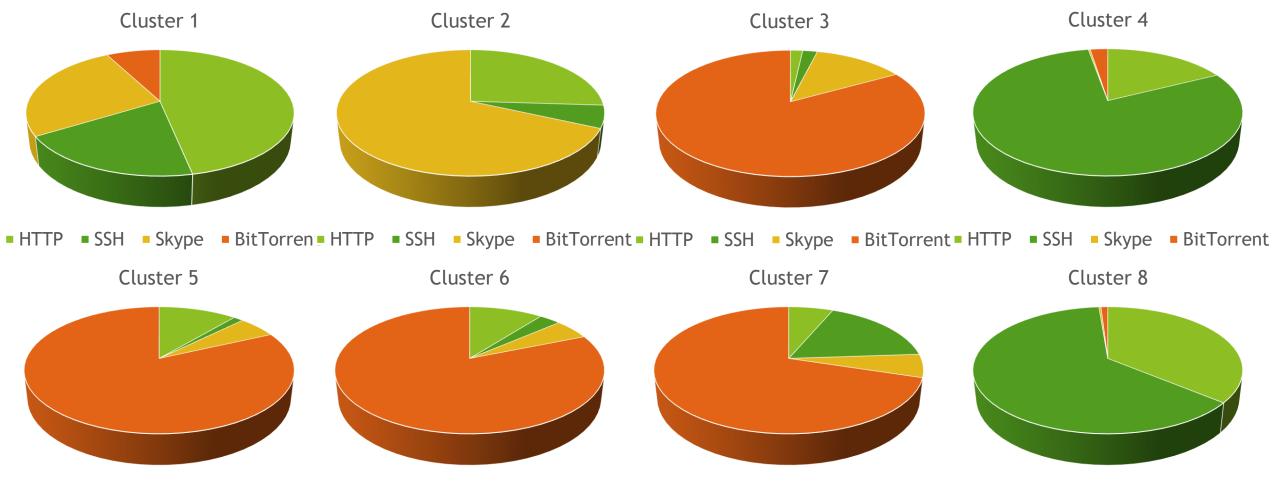
K-means port# + 4 bytes data

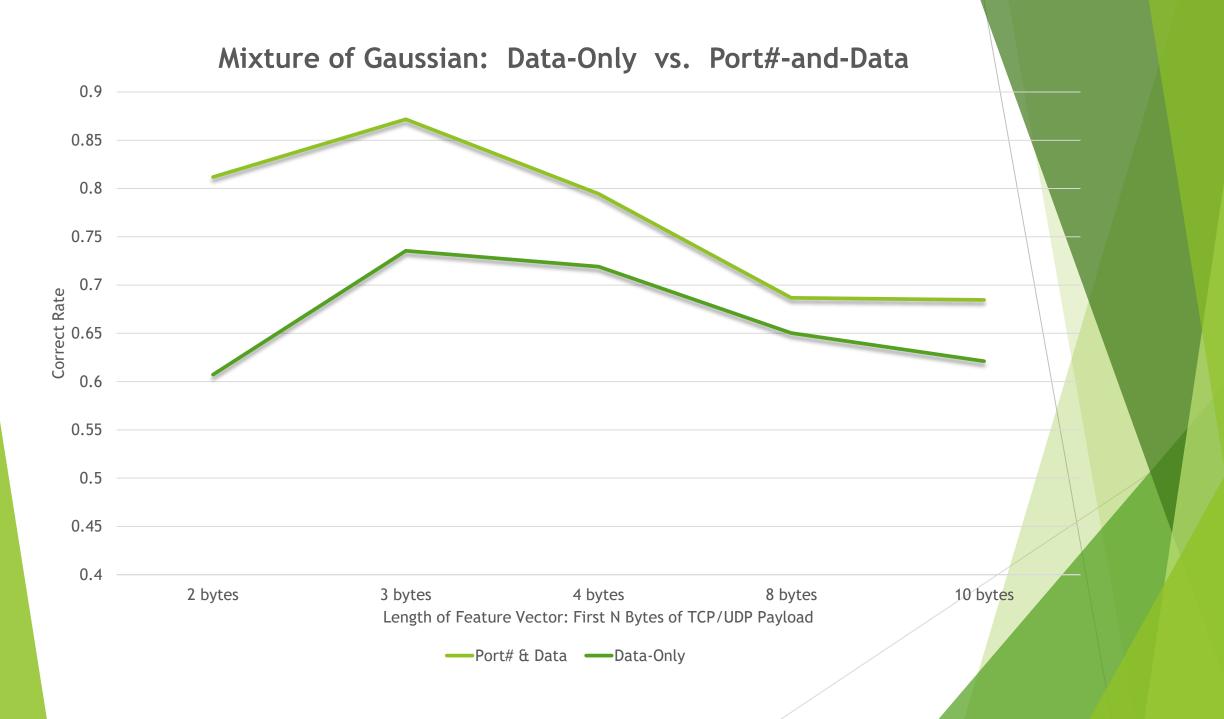


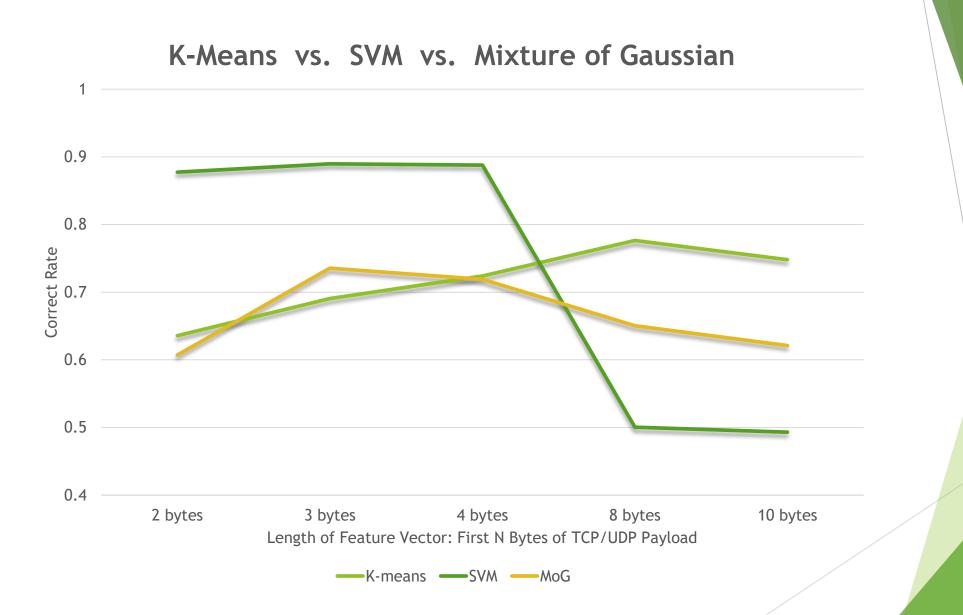
K-means port# + 8 bytes data



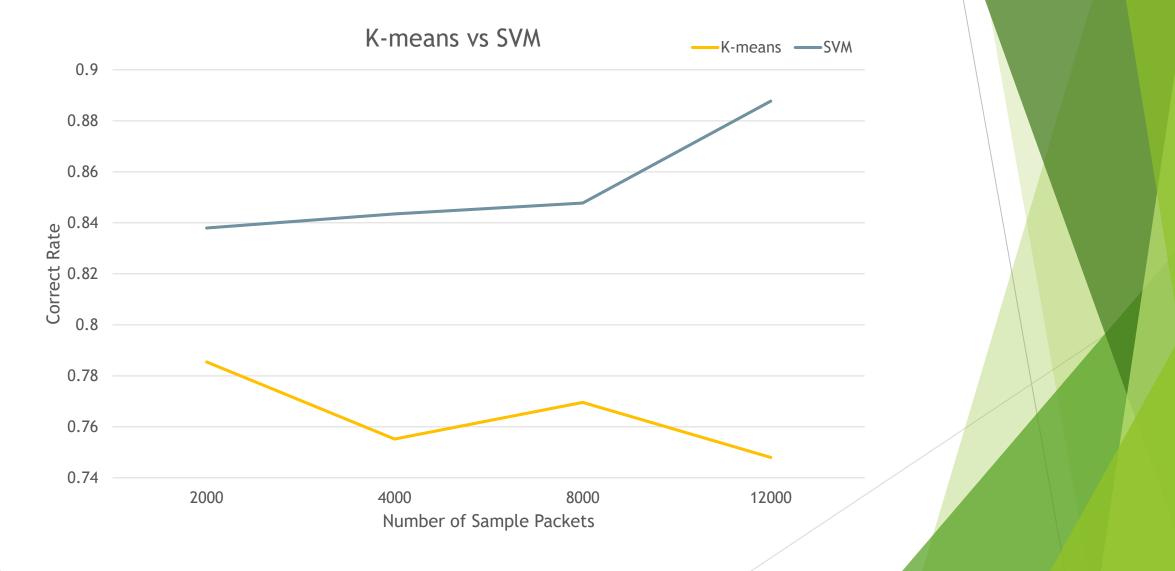
K-means port# + 10 bytes data



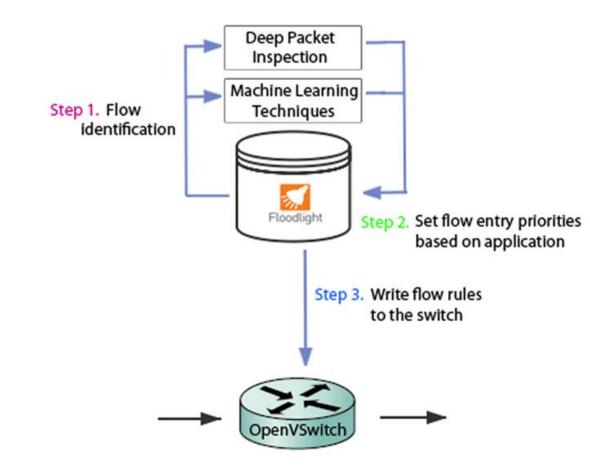




Performance of Identification -Varying Sample Size



Implementation - Traffic Adjustment



Next step, direct flows through paths with different bandwidth for QoS

Implementation - Flow Rules

ip_prot tcp_src tcp_ds ipv4_sr ipv4_sr ipv4_ds ipv4_ds ipv4_ds ipv4_ds ipv4_tr ip_prot	pe=0x0x800 to=0x6 rc=44971	actions:output=2	n/a	1						Bytes	(s)	(s)
ip_prot				n/a	n/a	n/a	n/a	n/a	5	382	68	600
ipv4_si	pe=0x0x800 to=0x11 rc=19233 src=192.168.3.2 dst=74.125.226.83	actions:output=2	n/a	n/a	n/a	n/a	n/a	n/a	0	0	115	600

Challenges - Floodlight

- Numerous obstacles encountered!
- Unstable releases last stable release was in 2013!
- Outdated, incomplete documentation
- Obscure APIs, silent failures, very hard to know what we did wrong
- Had to spend 20+ hours reading its source code for debugging
- Actively communicating with Floodlight developers did help us

Challenges - Machine Learning

- Hard to choose representative input dataset
 - Research traces are too complicated
- Hard to choose good feature
- Bug in Wireshark prevents exporting packets with certain protocols
 - eg. doesn't work for dropbox protocol "db-lsc"

Limitations

- Trace not representative & realistic:
- Only 4 kinds of flows used for training
 - in real life 100s of different flows
- Limited training size: 12000 packets
- Packets sampled from contiguous time durations
- ► To be improved in future work

Summary

- We use deep packet inspection and novel machine learning techniques
- Can accurately identify flows of different applications types
 - Best result 87.5% using SVM, 79% using K-Means on test sets
 - Can differentiate traffic from Skype and BitTorrent for the traffic we sampled, which Wireshark cannot tell apart.
- Can push rules with different priorities to show our control for different application traffics

Future Work

- Test on more application types
 - eg. OpenVPN, Media applications
- Try additional machine learning algorithms,
 - eg. Neural networks, Mixture of Gaussians
- Build more realistic topologies to test our framework
 - ▶ More hosts, more switches...

Thanks! Any Questions?