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Motivation



Motivation – Per Application QoS

 In small home / office networks, 

applications compete for limited bandwidth

 high bandwidth consumption applications can be disruptive

 Eg. bitTorrent

 To ensure fairness, 

different application flows should be given different priorities

 Eg. High priority for important Skype meeting

 Eg. Low priority for bitTorrent download

 Need traffic adjustment based on flow types



Motivation – Per Application QoS

 Flow identification is difficult in traditional networks

 SDN allows novel flow identification techniques

 Deep packet inspection

 Machine learning based techniques

 Use flow rules to easily adjust traffic 



System Design



Design – System Overview



Flow Identification – Commonly Used Techniques

 Shallow packet inspection

 Inspect packet header, eg. port-number, protocol

 Low accuracy, application circumvention 

 Deep packet inspection

 Inspect data part of a packet, high accuracy

 Sometimes maintain a big database of packet features

 Frequently update rules for new applications



Flow Identification – Machine Learning

 Machine learning based-techniques  <<< We focus on this one

 Novel techniques

 Cross-disciplinary

 Interesting experiments

 eg. Clustering vs classification algorithms



Design - Traffic Adjustment

 Assign different priority based on flow type



Implementation

Floodlight + Mininet + OpenVSwitch



Implementation –Simple Test Topology



Implementation –Realistic Topology



Implementation –

Packet Arrival and Identification



Implementation – Deep Packet Inspection

 Inspects data part of a packet

 Use simple rules to identify packet type

Protocol Data part features

HTTP contains ‘GET’ ‘DELETE’ ‘POST’ ‘PUT’ …

SSH start with ‘SSH-’

OpenVPN first two bytes stores packet length – 2

… …



Implementation –

Machine Learning Techniques

 Clustering vs Classification

 Clustering: 

 Use K-Means algorithm

 Classification:

 Use SVM algorithm



Clustering – K-Means

 groups data points into k clusters,

each point belongs to the cluster with the nearest mean

 Source: https://en.wikipedia.org/wiki/K-means_clustering



Classification - SVM

 assigns data points into categories, 

based on data vectors nearest to the category boundaries

 Source: https://en.wikipedia.org/wiki/Support_vector_machine



Dataset Selection

 Publically available research traces 

 eg. waikato traces (http://wand.net.nz/wits/catalogue.php)

 Pros: representative traffic workloads

 Cons: too complex, hard to label packet type

 Self collected traces

 Self generated packets, captured on WireShark

 Easy to label

http://wand.net.nz/wits/catalogue.php


Feature

 Commonly used features from research literature

 Source: T. Nguyen and G. Armitage. “A Survey of Techniques for Internet Traffic 
Classification using Machine Learning” IEEE Communications Surveys and 
Tutorials 01/2008; 10:56-76.

Features

Total number of packets per flow

Flow duration

Packet lengths statistic (min, max, mean, std dev.) per flow

Payload lengths

Payload content (We use first N number of bytes of payload as feature)

…



Machine Learning Based Identification 



Performance of Identification – K-Means
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Performance of Identification –

Varying Feature Length
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Performance of Identification –

Varying Sample Size
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Implementation – Traffic Adjustment

 Next step, direct flows through paths with different bandwidth for QoS



Implementation – Flow Rules



Challenges - Floodlight

 Numerous obstacles encountered!

 Unstable releases – last stable release was in 2013!

 Outdated, incomplete documentation

 Obscure APIs, silent failures, very hard to know what we did wrong

 Had to spend 20+ hours reading its source code for debugging

 Actively communicating with Floodlight developers did help us



Challenges – Machine Learning

 Hard to choose representative input dataset

 Research traces are too complicated 

 Hard to choose good feature 

 Bug in Wireshark prevents exporting packets with certain protocols

 eg. doesn’t work for dropbox protocol “db-lsc” 



Limitations

 Trace not representative & realistic:

 Only 4 kinds of flows used for training

- in real life 100s of different flows

 Limited training size: 12000 packets

 Packets sampled from contiguous time durations

 To be improved in future work



Summary

 We use deep packet inspection and novel machine learning techniques

 Can accurately identify flows of different applications types

 Best result 87.5% using SVM, 79% using K-Means on test sets

 Can differentiate traffic from Skype and BitTorrent for the traffic we 

sampled, which Wireshark cannot tell apart.

 Can push rules with different priorities to show our control for 

different application traffics



Future Work

 Test on more application types

 eg. OpenVPN, Media applications

 Try additional machine learning algorithms,

 eg. Neural networks, Mixture of Gaussians

 Build more realistic topologies to test our framework

 More hosts, more switches…



Thanks! Any Questions?


