
Smart Home Network

Management with

Dynamic Traffic

Distribution
Chenguang Zhu

Xiang Ren

Tianran Xu

Motivation

Motivation – Per Application QoS

 In small home / office networks,

applications compete for limited bandwidth

 high bandwidth consumption applications can be disruptive

 Eg. bitTorrent

 To ensure fairness,

different application flows should be given different priorities

 Eg. High priority for important Skype meeting

 Eg. Low priority for bitTorrent download

 Need traffic adjustment based on flow types

Motivation – Per Application QoS

 Flow identification is difficult in traditional networks

 SDN allows novel flow identification techniques

 Deep packet inspection

 Machine learning based techniques

 Use flow rules to easily adjust traffic

System Design

Design – System Overview

Flow Identification – Commonly Used Techniques

 Shallow packet inspection

 Inspect packet header, eg. port-number, protocol

 Low accuracy, application circumvention

 Deep packet inspection

 Inspect data part of a packet, high accuracy

 Sometimes maintain a big database of packet features

 Frequently update rules for new applications

Flow Identification – Machine Learning

 Machine learning based-techniques <<< We focus on this one

 Novel techniques

 Cross-disciplinary

 Interesting experiments

 eg. Clustering vs classification algorithms

Design - Traffic Adjustment

 Assign different priority based on flow type

Implementation

Floodlight + Mininet + OpenVSwitch

Implementation –Simple Test Topology

Implementation –Realistic Topology

Implementation –

Packet Arrival and Identification

Implementation – Deep Packet Inspection

 Inspects data part of a packet

 Use simple rules to identify packet type

Protocol Data part features

HTTP contains ‘GET’ ‘DELETE’ ‘POST’ ‘PUT’ …

SSH start with ‘SSH-’

OpenVPN first two bytes stores packet length – 2

… …

Implementation –

Machine Learning Techniques

 Clustering vs Classification

 Clustering:

 Use K-Means algorithm

 Classification:

 Use SVM algorithm

Clustering – K-Means

 groups data points into k clusters,

each point belongs to the cluster with the nearest mean

 Source: https://en.wikipedia.org/wiki/K-means_clustering

Classification - SVM

 assigns data points into categories,

based on data vectors nearest to the category boundaries

 Source: https://en.wikipedia.org/wiki/Support_vector_machine

Dataset Selection

 Publically available research traces

 eg. waikato traces (http://wand.net.nz/wits/catalogue.php)

 Pros: representative traffic workloads

 Cons: too complex, hard to label packet type

 Self collected traces

 Self generated packets, captured on WireShark

 Easy to label

http://wand.net.nz/wits/catalogue.php

Feature

 Commonly used features from research literature

 Source: T. Nguyen and G. Armitage. “A Survey of Techniques for Internet Traffic
Classification using Machine Learning” IEEE Communications Surveys and
Tutorials 01/2008; 10:56-76.

Features

Total number of packets per flow

Flow duration

Packet lengths statistic (min, max, mean, std dev.) per flow

Payload lengths

Payload content (We use first N number of bytes of payload as feature)

…

Machine Learning Based Identification

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 2 bytes

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 3 bytes

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 4 bytes

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 8 bytes

Performance of Identification – K-Means

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means 10 bytes

Performance of Identification –

Varying Feature Length

0.4

0.5

0.6

0.7

0.8

0.9

1

2 bytes 3 bytes 4 bytes 8 bytes 10 bytes

C
o
rr

e
c
t

R
a
te

Length of Feature Vector: First N Bytes of TCP/UDP Payload

K-Means vs SVM

K-means SVM

0.4

0.5

0.6

0.7

0.8

0.9

1

2 bytes 3 bytes 4 bytes 8 bytes 10 bytes

C
o
rr

e
c
t

R
a
te

Length of Feature Vector: First N Bytes of TCP/UDP Payload

SVM: Data-Only vs. Port#-and-Data

Port# & Data Data-Only

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 2 bytes data

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 3 bytes data

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 4 bytes data

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 8 bytes data

Cluster 3

HTTP SSH Skype BitTorrent

Cluster 4

HTTP SSH Skype BitTorrent

Cluster 5

HTTP SSH Skype BitTorrent

Cluster 6

HTTP SSH Skype BitTorrent

Cluster 1

HTTP SSH Skype BitTorrent

Cluster 2

HTTP SSH Skype BitTorrent

Cluster 7

HTTP SSH Skype BitTorrent

Cluster 8

HTTP SSH Skype BitTorrent

K-means port# + 10 bytes data

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

2 bytes 3 bytes 4 bytes 8 bytes 10 bytes

C
o
rr

e
c
t

R
a
te

Length of Feature Vector: First N Bytes of TCP/UDP Payload

Mixture of Gaussian: Data-Only vs. Port#-and-Data

Port# & Data Data-Only

0.4

0.5

0.6

0.7

0.8

0.9

1

2 bytes 3 bytes 4 bytes 8 bytes 10 bytes

C
o
rr

e
c
t

R
a
te

Length of Feature Vector: First N Bytes of TCP/UDP Payload

K-Means vs. SVM vs. Mixture of Gaussian

K-means SVM MoG

Performance of Identification –

Varying Sample Size

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

2000 4000 8000 12000

C
o
rr

e
c
t

R
a
te

Number of Sample Packets

K-means vs SVM K-means SVM

Implementation – Traffic Adjustment

 Next step, direct flows through paths with different bandwidth for QoS

Implementation – Flow Rules

Challenges - Floodlight

 Numerous obstacles encountered!

 Unstable releases – last stable release was in 2013!

 Outdated, incomplete documentation

 Obscure APIs, silent failures, very hard to know what we did wrong

 Had to spend 20+ hours reading its source code for debugging

 Actively communicating with Floodlight developers did help us

Challenges – Machine Learning

 Hard to choose representative input dataset

 Research traces are too complicated

 Hard to choose good feature

 Bug in Wireshark prevents exporting packets with certain protocols

 eg. doesn’t work for dropbox protocol “db-lsc”

Limitations

 Trace not representative & realistic:

 Only 4 kinds of flows used for training

- in real life 100s of different flows

 Limited training size: 12000 packets

 Packets sampled from contiguous time durations

 To be improved in future work

Summary

 We use deep packet inspection and novel machine learning techniques

 Can accurately identify flows of different applications types

 Best result 87.5% using SVM, 79% using K-Means on test sets

 Can differentiate traffic from Skype and BitTorrent for the traffic we

sampled, which Wireshark cannot tell apart.

 Can push rules with different priorities to show our control for

different application traffics

Future Work

 Test on more application types

 eg. OpenVPN, Media applications

 Try additional machine learning algorithms,

 eg. Neural networks, Mixture of Gaussians

 Build more realistic topologies to test our framework

 More hosts, more switches…

Thanks! Any Questions?

