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Abstract

In real world, road detection is becoming more and more important when
implementing autonomous driving system. The goal of this project is to create a
classifier that is able to create a pixel-wise segmentation whether the given image
is a road or not (i.e., binary classification). However, labeling each pixel needs
huge computation. To solve this problem, we use SLICO (Zero Parameter version
of Simple Linear Iterative Clustering), which first computes super-pixels for each
image to ease the computation.

For the purpose of investigating machine learning techniques to solve this task, we
apply pixel-wised approach to tackle this problem and use various machine learn-
ing methods to perform experiments, including K-NN, RBF-kernel SVM, Ad-
aBoost, RandomForest, Bagging and Naive Bayes. Furthermore, considering the
influence of neighbor super-pixels, Conditional Random Field is used to improve
the performance based on previous predictions. The evaluation is conducted on
both super-pixel and pixel level. In our experiments, RandomForest, RBF-kernel
SVM and Bagging can produce top results. CRF can always improve the accuracy
and smooth the results of basic models.

1 Introduction

Detecting the road area ahead of a vehicle is essential for modern driver assistance systems and
navigation. However, road detection is a difficult task due to various factors, including the absence
of road edge markings, variations in lighting conditions, different road surface materials, occlusions
with other vehicles and objects, etc.

Although pixel-wise descriptors are widely used in object recognition tasks for image description,
it has the problem of scaling. When there is a huge number of image inputs, the performance of
classifier is limited due to large computation burden. Furthermore, it has limitations on dealing with
road detection task because it can not take advantage of information of textures or edges of roads.

1.1 Related Work

In the past few years, some classification-based detection methods, which take the color, texture and
coordination as the features [1], have been proposed to detect a road based on combining bound-
aries and area information. Sha[2] proposed the feature combination method for the road detection.
His/her method firstly constructed an over-completed feature set on several linear and non-linear
combined functions. Foedisch [3] developed an adaptive road detection system based on color his-
tograms using neural network. Alon [4] combined the Adaboost-based region segmentation and
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the boundary detection constrained by geometric projection to find drivable road area. Chern [5]
proposed the image segmentation by the region growing technique. For each region, there are four
kinds of features: the coordinate, the color, the luminance and the size. This method can efficiently
detect roads but is only applied in well-structured road or highways.

1.2 Motivations and Objectives

The goal of this project is to investigate machine learning techniques that are more appropriate to
create a pixel wise segmentation of the image in terms of what is road and what is non-road. To ease
the computation, we use Zero Parameter version of Simple Linear Iterative Clustering (SLICO) [9]
to preprocess the input images to generate super-pixels.

The classification task is based on super-pixels, considering each super-pixel as a data example. We
use RGB values, locations and the size of the super-pixel as features.

We run experiments on the preprocessed data and compare different kinds of classification models,
such as K-Nearest Neighbors (K-NN), RBF-Support Vector Machine (RBF-SVM), Gaussian Naive
Bayes, ensemble methods, etc. In addition, with regard to correlation between super-pixels, we also
use structured prediction method – Conditional Random Field.

2 Machine Learning Techniques

2.1 K-Nearest Neighbors

K-Nearest Neighbors algorithm (K-NN) is a non-parametric classification method that considers
the k closest training examples in the feature space as input and class membership as output.

In our experiments, the classification decision is made based on the major class membership of the
k nearest samples. We eventually choose k=15 as the best parameter of K-NN classifier.

2.2 RBF-kernel SVM

Support vector machines (SVM) are supervised learning models with associated learning algorithms
that is extensively used for classification analysis. SVM can efficiently perform a non-linear clas-
sification using kernel function. We use RBF kernel in our experiments, which can be written as

K(x, x′) = exp(−‖x− x
′‖2

2σ2
) (1)

In eqution 1, ‖x− x′‖2may be recognized as the squared Euclidean distance between the two feature
vectors. σ is a free parameter. An equivalent but simpler, definition involves a parameter γ = 1

2σ2 .
This kernel function maps the non-linear separable inputs into high-dimensional feature spaces. It
contributes to improving the classification capability of SVM.

2.3 Ensemble Methods

Ensemble of classifiers is a set of classifiers whose individual decisions combined in some ways
to classify all examples together. In our experiments, we use AdaBoost, RandomForest and Bagging.

AdaBoost can be used in conjunction with many other types of learning algorithms to improve their
performance [6]. The output of weak classifiers is combined into a weighted sum that represents the
final output of the boosted classifier.

YM (x) = sign(

M∑
m=1

αmym(x))) (2)
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where αm is determined by the error rate of classifier m.

RandomForest constructs a multitude of decision trees at training time, and output the class that is
the mode of the classes of the individual trees in classification tasks [7]. Random decision forests
correct for decision trees habit of overfitting to their training set.

2.4 Gaussian Naive Bayes

Naive Bayes classifiers are generative classifiers based on applying Bayes’ theorem with conditional
independence assumptions between the features.

The decision function of Naive Bayes classifier is to find the class k that maximizes the joint proba-
bility of x and Ck.

y = argmax p(t = k))
k

d∏
i=1

p(xi|t = k) (3)

In our experiment, we choose Gaussian Naive Bayes, in which the class likelihood follows Gaussian
distribution, as one of our classifiers.

2.5 Conditional Random Field

Conditional random fields (CRFs) are a class of statistical modelling method often applied in pattern
recognition and machine learning,where they are used for structured prediction [8]. Whereas an
ordinary classifier predicts a label for a single sample without regard to ”neighboring” samples, a
CRF can take context into account.

In Graph G = (V,E), Y = (Yv), v ∈ V –Y is indexed by the vertices of G. Then (X,Y ) is a condi-
tional random field when the random variables Yv , conditioned on X , obeying the Markov property
with respect to the graph G:

p(Yv|X,Yv, w 6= v) = p(Yv|X,Yv, w ∼ v) (4)

where w ∼ v means w and v are neighbors in G. What this means is that a CRF is an undirected
graphical model whose nodes can be divided into exactly two disjoint sets X and Y , the observed
and output variables, respectively; the conditional distribution p(Y |X) is then modeled.

CRF can be added into our models based on previous classifiers outputs to improve performance, by
considering the correlations between neighbors (pairwise). In this way, it can reduce the sensitivity
to noises through extra new information.

3 Experiment and Evaluation

3.1 Experiment

3.1.1 Dataset and Data preprocessing

We use the KITTI [11] dataset for experiments. The full dataset includes labeled training data and
unlabeled test data, we only use training data to run our tests.There are 289 images in training data.
We separate them into three datasets: train (60%), validation (10%), test (30%).

We need to ease the computation because the number of pixels per image could be huge (Since
the resolution of images are about 375 X 1240. So there are more than 465,000 pixels per image),
which lead to lengthy computation time if we apply complex methods to the data. Therefore, we
firstly compute super-pixels using SLICO for each image.

3



After SLICO preprocessing, the average labels of super-pixels become float numbers in the range
of [0, 1]. We define a threshold of 0.5 to decide the labels of super-pixels because this is a binary
classification problem. If the prediction output is larger than 0.5, then it is determined as 1, which
means it is road. Otherwise it is determined as 0, which means it is not road.

3.1.2 Implementation

We use scikit-learn [11], a machine learning library in python for implementing our classification
models and performing experiments.
Scikit-learn provides a large number of machine learning models including all the models we choose
in our experiments. They are:

• K-NN
• RBF-Kernel SVM
• AdaBoost
• RandomForest
• Bagging
• Gaussian Naive Bayes

Each function has a list of parameters to construct the models so as to fit the input data. We use
another library Pystruct [12] to perform our Conditional Random Field learning algorithms.

3.2 Evaluation

3.2.1 Evaluation Metrics

We evaluate the results both on super-pixel level and on pixel level for most of experiments. To
compare the performance of different approaches, we use Score (Accuracy) as the major metrics.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Where TP stands for True Positive, TN stands for True Negative, FP stands for False Positive and
FN stands for False Negative.

We also use some other commonly-used metrics for evaluating performance, including Precision,
Recall and F1 Score.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1Score = 2
Precision ∗Recall
Precision+Recall

(8)

3.2.2 Segment Selection

Since the road should always be continuous and has no isolated super pixels, using super-pixels for
preprocessing to ease the computation will not affect the classification result too much. However,
losses must be taken into consideration because of imperfect super-pixel segmentation.

In SLICO preprocessing step, the major parameter for deciding the final outcome of segmentation is
the number of super-pixels in each picture. After experimenting with a couple of different number
of segments, we obtain Table 1, which compares the classification performance and computation
time of models (we use K-NN, K=15 as the example) based on different number of segments.

From Table 1, we can tell that when segment = 1000, we get the most appropriate result. When
the number of segment is small, for example, 200 and 400, the score is low. When the number of
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Table 1: Comparison on Different Number of Segments

Segment Score (Super Pixel) Score (Pixel) Time

200 93.14% 92.98% 3.251228
400 93.73% 92.86% 5.036737
1000 94.37% 93.58% 13.175207
2000 94.42% 93.67% 41.202781

segments is increased from 400 to 1000, we find that the score get 0.64% promoted. However, if
we keep increasing the number of segments, the computation time would grow considerably (from
13.17sec to 41.20sec), but the score only get improved slightly (0.05% from 1000 to 2000). Overall,
taking both accuracy and time into account, 1000 is the best number of segments that we ever get.So
we choose number of super-pixels = 1000 as the parameters of our SLICO segmentation process.

3.2.3 Feature Selection

The selection of features need to be done before using classifiers to deal with road detection task.
Actually, feature extraction can be considered as a step of data preprocessing. Since super-pixels are
formed by aggregating single pixels, the most straightforward way seems to be taking the average
RGB values of a super-pixel as its features. However, in fact, pixels have more information than
just RGB values. For example, the location of a pixel can be very important when determining
whether the pixel is road or not. Therefore, we add location information, which are average x, and
y coordinates, into features.

Furthermore, the size of each super-pixel could also provide useful information because each
super-pixel consists of a number of single pixels. Therefore, we add super-pixel size into features.

Table 2: Comparison on Different Number of Features

3 Features 5 Features 6 Features

SuperPixel Pixel SuperPixel Pixel SuperPixel Pixel

K-NN 90.27% 89.90% 93.97% 93.21% 94.37% 93.58%
GaussianNB 84.59% 84.80% 89.71% 89.44% 89.82% 89.54%
Bagging 89.90% 89.57% 94.67% 93.86% 94.67% 93.87%
AdaBoost 83.63% 83.82% 93.72% 93.05% 93.89% 93.16%
RandomForest 90.11% 89.77% 94.87% 94.00% 94.91% 94.05%
RBF-SVM 89.98% 89.60% 94.78% 93.98% 94.90% 94.08%

Now we have 6 features (R, G, B, x, y, and size), which form a feature set for each super-pixel.
From the result of our experiments in Table 2, we can easily draw a conclusion that 6 features yield
the best prediction under most classifiers.

On validation set, from Figure 1, we can find that among all the models we experimented, Bagging,
RandomForest and RBF-kernel SVM have top performance because they produce highest scores.
Gaussian Naive Bayes has the worst performance. All classifiers perform better with 6 features than
with 5 features or 3 features.

5



Figure 1: Different Features (Super-Pixel) Figure 2: Different Features (Pixel)

Adding the 7th feature–histogram of oriented gradient seems to have negligible positive in-
fluence. And it takes much longer time for computation than using 6 features. Considering the
time cost, 6 is the most appropriate number of features for road detection task because when using
more than 6 features, although some classifiers yield higher accuracy, the improvement is quite
slight. And for most of the classifiers, 7 features does not have positive influence on their scores.
Furthermore, increasing the number of features to 7 can increase the computation time obviously.
Therefore, 6 features turn out to be the best feature set when taking both scores and speed into
consideration. In the following evaluations, we all use 6 features as the feature set.

3.2.4 Parameter Selection

After deciding features, we test performance on different datasets by adjusting the parameters of
each classifier and observe the variation of accuracy.

We use K-NN, RBF-kernel SVM and RandomForest as example models to perform the following
experiments.

For each model, these are parameters we adjust: K for K-NN, error penalty term C for RBF-kernel
SVM, and number of individual classifiers n for RandomForest.

Figure 3: Performance of K-NN
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For K-NN, as K becomes larger, the accuracy on validation set firstly grows up then starts
descending after K is larger than 15. The accuracy on validation set reaches its peak when K=15.
Therefore, 15 is the most appropriate value of K.

Figure 4: Performance of RandomForest Figure 5: Performance of RBF-SVM

For RBF-kernel SVM, we adjust the penalty term C. In Figure 5, we observe that larger C tends to
give better results. It means that there are not many noises in the data. When C grows, it can prevent
the model from overfitting. Therefore, the performance of RBF-SVM fit is better when C=100.

We take RandomForest as the example of ensemble methods, on training set, RandomForest
achieves nearly 100% accuracy after the number of estimators is larger than 30. But on valida-
tion set the score decreases when the number of estimators reaches 50, which means overfitting
happens due to excessive complexity of model. From our experiments, we find that 30 is the best
number of estimators for RandomForest.

Table 3: Score of Three Classifiers on Super-pixel Level and Pixel Level

K-NN RandomForest RBF-SVM

Super-Pixel Level 94.37% 95.01% 95.08%
Pixel Level 93.58% 94.15% 94.25%

Using the best parameters selected in previous step for each model, we obtain the score of the 3
classifiers on both super-pixel level and pixel level, as showed in Table 3.

3.2.5 Conditional Random Field

Since roads should always be continuous, it is reasonable to take the influence of a pixel’s neighbors’
labels into consideration when determining its own label. If its neighbors are already classified as
road, then this pixel has a very high probability to be road as well.

In all of the models we have experimented so far, we cannot take this information into account
because they all treat each super-pixel independently. Thus, we use Pairwise CRF on a general
graph. Pairwise potentials the same for all edges, are symmetric by default, which leads to n classes
parameters for unary potentials. We implement GraphCRF on three different classifiers: Gaussian
Naive Bayes, RandomForest and K-NN.
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We choose these models based on their performance. From our experiments, RandomForest yields
best results while Gaussian Naive Bayes has the lowest accuracy. Another classifier we selected is
K-NN due to its highest computation speed. The evaluation on both super-pixel-level and pixel-level
for the three different models before and after CRF is showed in Table 4.

Table 4: Comparison on Different Number of Features

K-NN GaussianNB RandomForest

Before After Before After Before After

Valid Score(Super-Pixel) 93.97% 94.79% 89.82% 91.06% 94.80% 95.68%
Test Score(Super-Pixel) 94.37% 95.05% 89.93% 91.53% 94.42% 94.93%
Valid Score(Pixel) 93.21% N/A 89.54% N/A 93.94% N/A
Test Score(Pixel) 93.58% N/A 89.73% N/A 93.88% N/A
Precision 83.48% 86.01% 71.12% 71.19% 91.42% 90.8%
Recall 88.82% 88.79% 76.29% 79.51% 93.82% 93.47%
F1 Score 86.07% 87.38% 73.62% 75.12% 92.61% 92.12%

To use pairwise CRF on a general graph, we have to build pairwise potentials based on the outputs
of previous classifiers. If there is one super-pixel corresponds to another one, then we assume
there is an undirected edge between them. Besides, pairwise potentials the same for all edges, are
symmetric by default, which leads to n classes parameters for unary potentials. Since our experiment
is a binary classification problem, we only have n = 2, which means the unary potentials should
be a two-dimension feature x1, x2 where x1 + x2 = 1. Currently PyStruct implements only max-
margin methods and a perceptron, so we choose structural support vector machines to speed up the
convergence.

Figure 6: K-NN before CRF Figure 7: K-NN after CRF

Figure 8: Ground Truth Figure 9: Original Image

We select one sample from the dataset to illustrate the performance of our CRF method. Figure 6 is
the prediction of K-NN before using CRF while Figure 7 is the prediction result after applying CRF.
By comparing their accuracy and their difference from ground truth (Figure 8) and original image
(Figure 9), CRF can make more smooth boundaries and produce better prediction performance,
which can also be observed by comparing the statistics in Table 4.

In Figure 10 and Figure 11, we combine the prediction of our methods with SLICO-preprocessed
images to illustrate the performance of CRF. Green super-pixels are classified as road while others
are classified as non-road. It is obvious that after applying CRF we yield better prediction result
with smoother boundary and higher accuracy.
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Figure 10: Prediction before CRF Figure 11: Prediction after CRF

4 Conclusion

In our experiment, we initially preprocess data by aggregating pixels to generate super-pixels, then
determine which features to use, perform experiments using different classification models and use
Conditional Random Field to improve the results.

Among all of our experiments, we achieve a score of over 95% on super-pixel level, while on pixel
level the accuracy is 94%. To compare the performance of different machine learning models, we
experiment a number of classifiers including K-NN, RBF-kernel SVM, AdaBoost, RandomForest,
Bagging and Gaussian Naive Bayes. We compare their accuracy and computation time and summary
the result.

To improve the performance, we run Conditional Random Field on top of our pervious result. We
find that CRF makes the prediction smoother and produce better estimation of road.

There are some improvements can be done in future work, for example, how to reduce the compu-
tation time when the number of features increases. We consider that one way to solve this problem
is data compression. It can efficiently reduce space and time required, while not losing too much
accuracy. Apart from reducing the computation cost, there are some other possible aspects can be
explored, such as experimenting some other models (for example, neural networks) and trying more
structured prediction techniques.
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