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First we provide a unified framework for developing theories of Bounded Arithmetic

that are associated with uniform classes inside polytime (P) in the same way that Buss’s

theory S1
2 is associated with P. We obtain finitely axiomatized theories many of which

turn out to be equivalent to a number of existing systems. By formalizing the proof of

Barrington’s Theorem (that the functions computable by polynomial-size bounded-width

branching programs are precisely functions computable in ALogTime, or equivalently

NC1) we prove one such equivalence between the theories associated with ALogTime,

solving a problem that remains open in [Ara00, Pit00]. Our theories demonstrate an

advantage of the simplicity of Zambella’s two-sorted setting for small theories of Bounded

Arithmetic. Then we give the first definitions for the relativizations of small classes such

as NC1, L, NL that preserve their inclusion order. Separating these relativized classes

is shown to be as hard as separating the corresponding non-relativized classes. Our

framework also allows us to obtain relativized theories that characterize the newly defined

relativized classes. Finally we formalize and prove a number of mathematical theorems in

our theories. In particular, we prove the discrete versions of the Jordan Curve Theorem

in the theories V0 and V0(2), and establish some facts about the distribution of prime

numbers in the theory VTC0. Our V0- and V0(2)-proofs improve a number of existing

upper bounds for the propositional complexity of combinatorial principles related to grid

graphs. Overall, this thesis is a contribution to Bounded Reverse Mathematics, a theme
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whose purpose is to formalize and prove (discrete versions of) mathematical theorems in

the weakest possible theories of bounded arithmetic.
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Chapter 1

Introduction

Bounded Arithmetic is the meeting point of Computational Complexity Theory and clas-

sical first-order logic. Problems in Computational Complexity Theory can be investigated

using the first-order theories in Bounded Arithmetic. For example, Buss’s theories Si2 are

closely related to the polynomial time hierarchy PH: the functions computable by poly-

time Turing machines with Σp
i−1 oracles (where i ≥ 1) are precisely functions definable in

Buss’s theory Si2 using Σb
i formulas [Bus86b]. It has been shown [KPT91, Bus95, Zam96]

that the polynomial time hierarchy PH provably collapses if and only if the hierarchy

S2 =
⋃

Si2 collapses (i.e., S2 is finitely axiomatizable).

While Buss’s systems nicely characterize PH, there had not been satisfactory systems

for many complexity classes inside polytime (P). These classes pose many fundamental

questions in theoretical computer science. For instance, an easier question than P
?
= NP

is AC0(6)
?
= NP, or even AC0(6)

?
= PH. Moreover, subclasses of P are closely related to

propositional proof systems such as Frege systems or Gentzen’s system PK for predicate

logic that are described in standard logic textbooks. In many cases, reasoning in these

propositional proof systems involves precisely concepts that belong to the correspond-

ing classes. (The first-order logic theories that we discuss below provide more uniform

reasoning than the proof systems in the sense that the proofs in the theories can be

1



Chapter 1. Introduction 2

translated into proofs in the corresponding propositional systems. Proofs in first-order

theories are also easier to describe and understand, because they use the familiar axioms

such as induction or minimization.)

In this thesis we start by presenting theories whose provably total functions are pre-

cisely functions of the following classes:

AC0 ⊆ AC0(m) ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC ⊆ P (1.1)

Previous theories (for example, in [All91, CT92, CT95, Joh98, Ara00, JP00]) developed

for many of these classes often do not have nice set of axioms. Most of these theories are

single-sorted and contain the usual language of arithmetic. In particular, they predefine

the multiplication function x× y which is computationally hard for classes such as TC0,

AC0(2), AC0. Therefore the theories associated with classes that do not (or are not

known to) contain x× y must have complicated sets of axioms to make sure that x× y

is not a total function.

Although the function x× y is useful for formalizing machine computations, we only

need it for “small” values of x, y, for example when x, y are indices to the input string.

A clean separation of “small” from “big” objects is provided by Zambella’s two-sorted

setting [Zam96]. In this setting there are two sorts of objects: sets which can be viewed as

binary strings (for inputs, outputs or computations) and numbers which are used mainly

for indexing the strings. The multiplication function in the vocabulary is now predefined

only for the number sort (i.e., “small” objects). In fact, the only predefined function on

strings is the length function |X|. (The addition function for strings, though not creating

a problem as does the multiplication function, will not be predefined.) Having |X| as

the only one predefined function on strings (|X| is necessary anyway because we need to

know the length of the inputs) gives us the flexibility to choose appropriate axioms that

characterize the computations in the classes of interest.

Thus our theories will have Zambella’s two-sorted setting. The simplicity of this

setting also makes the Paris–Wilkie translation of proofs in the theories into propositional
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proofs mentioned above easier to describe, but we will not discuss this issue here.

1.1 Theories for Small Complexity Classes

A number of logical theories have been developed to characterize the complexity classes

in (1.1). Many are developed in [CT95]; some others are listed below (see also the table

on pages viii–ix):

• For P: PV [Coo75], S1
2 [Bus86b], V1-HORN [CK03], TV0 [Coo05].

• For NC: BL, D1
2 [All91], TNC [CT92], R1

2 [Tak93].

• For NL: SNLog [CT92], V1-KROM [CK04].

• For L: SLog [CT92], ΣB
0 -Rec [Zam97].

• For NC1: ALV [Clo90], ALV′ [Clo93], AID [Ara00], T1 [Pit00], VNC1 [CM05].

• For TC0: (IΣ1,b
0 )count [Kra95b], R

0
, TV [Joh96, Joh98], ∆b

1-CR [JP00], VTC0

[Ngu04, NC04].

• For AC0(2): A2V [Joh98].

Each theory mentioned above is developed in a unique way, and their associations with

the corresponding classes are shown using various characterizations of the latter. This

thesis provides a unified framework for developing theories for the classes in (1.1). In

general, we show how to obtain a theory whose provably total functions are precisely the

functions in a uniform subclass of P (more precisely, the AC0-closure of some polytime

functions).

1.1.1 Our Theories

Showing that the provably total functions of a theory T are precisely the functions in

a class C consists of two tasks: (i) showing that T can define every function F (X) in

C, and (ii) showing that all functions definable in T belong to C. Part (i) has often
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been done directly by using the definition of C based on some computing model. For (ii)

essentially we need to show that for each theorem of T of the form

∀X∃Y ϕ(X, Y ) (1.2)

(where ϕ is a ΣB
0 formula, see Chapter 2) there is a function F (X) in C that “witnesses”

the existence of Y in ϕ, i.e.,

∀Xϕ(X,F (X)).

This can be done by examining a (free-cut free) T -proofs of (1.2).

In this thesis we follow the approach used in [Coo05], which goes back to earlier work,

e.g., [Par71]. In this approach, both (i) and (ii) are reduced to the task of developing a

universal conservative extension T of T , where T contains symbols for all functions in

C. (Intuitively, (i) follows from the fact that T is conservative over T , and (ii) follows

from the fact that T extends T .) Here the language LFC of T is obtained systematically

using the notion of AC0-reduction [BIS90].

This approach is used in [Coo05] where Cook introduced the universal conservative

extension V
0

of the theory V0 [Zam96, Coo02] which is associated with AC0. Showing

that V
0

is a conservative extension of V0 is relatively straightforward; for example, the

fact that V
0
is conservative over V0 follows from the fact that ΣB

0 (LFAC
0)-formulas can be

translated into equivalent ΣB
0 -formulas in the language of V0. Our proof of conservativity

in the general framework will be more complicated, because such translation might not

be possible for other languages LFC (e.g., LFTC
0).

We will prove generally that a theory VC that is axiomatized by V0 and an appropri-

ate defining axiom for a polytime function F characterizes the AC0-closure of F in the

same way that V0 characterizes AC0. (Our proof also applies to a collection of functions

{Fi}.) Thus, by taking appropriate function F and its defining axiom, we obtain for each

class C in (1.1) a theory VC whose vocabulary is the “base” vocabulary L2
A of V0. The

universal conservative extension VC of VC extends V
0

and has symbols for all functions
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which are AC0-reducible to F , i.e., all functions in C. The defining axioms for these

functions are obtained simply by looking at their AC0 reduction to F . (The theories for

AC0(m) are called V0(m) and V
0
(m)).

Our first example is the pair of theories VTC0 and VTC
0
. (The theory VTC0 is first

developed in [Ngu04, NC04], but our proof given here is different from [Ngu04, NC04].)

VTC0 is axiomatized by V0 together with the axiom NUMONES which can be seen as

a defining axiom for numones, the function that counts the number of 1-bits in a binary

string and that is AC0-complete for TC0. The language LFTC
0 of VTC

0
has function

symbols for the AC0-closure of numones.

Our choice of F for other classes such as NC1, NL is simply a polytime computation

that solves a complete problem for the corresponding class. For example, the complete

problem for NC1 is the Balanced Boolean Sentence Value problem, and the complete

problem for NL is the Reachability (or Connectivity) problem in directed graphs. As in

the case of NUMONES , the defining axiom for F is often easy to describe.

Since V0 is finitely axiomatizable [CK03], so are our theories (except for VACC =

⋃

m≥2 V0(m) and VNC =
⋃

k≥1 VNCk). Also, VC and VC are “minimal” theories

that characterize C, in the sense that VC is axiomatized by “straightforward” defining

axioms for functions in C, i.e., the axioms describing the AC0 reductions of the functions

to the chosen complete problem of C. Furthermore, most of our theories are shown to be

equivalent to a number of existing systems, demonstrating the robustness of our general

framework.

1.1.2 Equivalence to Existing Systems

It is shown in [Ngu04, NC04] that VTC0 is equivalent to Johannsen–Pollett’s theory

∆b
1-CR, a single-sorted theory defined in [JP00] using the Comprehension Rule for ∆b

1

formula. It follows that ∆b
1-CR is finitely axiomatizable and hence collapses to some

segment ∆b
1-CRi where applications of the Comprehension Rule have nesting depth at
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most i, for some constant i ∈ N. (In fact, it can be shown that ∆b
1-CR collapses

to ∆b
1-CR0, i.e., no nesting application of the Comprehension Rule is needed.) This

answers an open question from [JP00].

The two-sorted theory V1-KROM [Kol04, CK04] is defined using the fact from Finite

Model Theory that Krom formulas express precisely NL relations [Grä92]. It has been

shown [Kol04] that VNL is equivalent to V1-KROM.

Another two-sorted theory that is inspired by results from Finite Model Theory is

V1-HORN [CK03] which is developed based on the fact that Horn formulas express

precisely polytime relations. It has been shown that V1-HORN is equivalent to PV

[Coo75] and also V1-HORN = TV0 [Coo05]. (TV0 is the two-sorted theory corre-

sponding to the missing 0-th level of Buss’s hierarchy Ti
2.) In Section 3.7 we will show

that our theory VP is equivalent to TV0 [Coo05]. It will follows that VP is equivalent

to the existing theories TV0, V1-HORN, and PV.

VNC1 [CM05] is the two-sorted version of the single-sorted theory AID [Ara00]

which in turn is defined using the fact that the Balanced Boolean Sentence problem is

complete for NC1 [Bus87b]. Here we obtain an alternative formulation for VNC1. In

addition, in Chapter 5 we will show that VNC1 is equivalent to QALV [Coo98], the

quantified version of Clote’s equational theory ALV′ [Clo93]. This implies that ALV′ is

equivalent to ALV (another theory of Clote [Clo90]), and QALV is equivalent to AID,

answering an open question from [Ara00, Pit00].

The theory ALV′ [Clo93] is defined based on Barrington’s Theorem [Bar89] that

the bounded width branching programs compute exactly NC1 functions. We introduce a

universal theory VALV whose vocabulary consists of all functions computable by width 5

branching programs. It is straightforward to show that VALV and QALV are equivalent

(i.e., RSUV isomorphic), so the main task is to show that VALV is a conservative

extension of VNC1. Essentially, we need to formalize Barrington’s reduction and prove

its correctness in VALV.
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The defining axioms for the functions of VALV come from the so-called function

algebra for NC1 functions based on Barrington’s Theorem (see [CK02]). In Chapter 4

we prove a number of other function algebras characterizing several subclasses of L. For

AC0(2) and AC0(6) these can be regarded as the two-sorted version of the function

algebras discussed in [CT95] that go back to [PW85]. The function algebra for L can

be viewed as the two-sorted version of Lind’s characterization of L (or Clote’s operation

B2PR in [CT92]) and has been discussed in [Per05]. These function algebras can be used

to develop universal theories that are equivalent to VC (e.g., VALV is equivalent to

VNC
1
, see Chapter 5), but we will not go into further detail here.

It might be possible to show that our theories VNCk and VACk are equivalent (for

certain classes of formulas) respectively to the systems TNCk and TACk defined in

[CT95]. However we do not attempt to prove such equivalences here. TNCk and TACk

are defined using a complicated syntactic notion called essentially sharply bounded (esb)

formulas, and proofs in TNCk or TACk are restricted to having some constant upper

bound on the nesting depth of the rules such as esb-LIND. Because of this restriction, it

has been noticed that TNCk and TACk are not really “theories” in the sense that they

are not closed under logical consequence. Of course one may consider the theories that

are axiomatized by their Σb
1 consequences, but we will not go into further detail here.

1.1.3 Relativized Theories

Existing definitions of the relativizations of some important subclasses of P are not

satisfactory in the sense that they do not preserve the following nonrelativized inclusions

simultaneously:

NC1 ⊆ L ⊆ NL ⊆ AC1 (1.3)

For example [LL76], if the Turing machines are allowed to be nondeterministic when

writing oracle queries, then there is an oracle α so that NL(α) 6⊆ P(α). Later definitions

of NL(α) adopt the requirement specified in [RST84] that the nondeterministic oracle
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machines be deterministic whenever the oracle tape (or oracle stack) is nonempty. Then

the inclusion NL(α) ⊆ P(α) relativizes, but not all inclusions in (1.3).

Because the nesting depth of oracle gates in an oracle NC1 circuit can be bigger than

one, the model of relativization that preserves the inclusion NC1 ⊆ L must allow an

oracle logspace Turing machine to have access to more than one oracle query tape [Orp84,

Bus86a, Wil88]. For the model defined by Wilson [Wil88], the partially constructed oracle

queries are stored in a stack. The machine can write queries only on the oracle tape at

the top of the stack. It can start a new query on an empty oracle tape (thus pushing

down the current oracle tape, if there is any), or query the content of the top tape which

then becomes empty and the stack is popped.

Following Cook [Coo85], the circuits accepting languages in relativized NC1 are those

with logarithmic depth where the Boolean gates have bounded fanin and an oracle gate of

m inputs contributes log(m) to the depths of its parents. Then in order to relativize the

inclusion NC1 ⊆ L, the oracle logspace machines defined by Wilson [Wil88] are required

to satisfy the condition that at any time,

k
∑

i=1

max{log(|qi|), 1} = O(log(n))

where q1, q2, . . . , qk are the contents of the stack and |qi| are their lengths. For the

simulation of an oracle NC1 circuit by such an oracle logspace machine the upper bound

O(log(n)) cannot be improved.

Although the above definition of L(α) (and NL(α)) ensures that NC1(α) ⊆ L(α),

unfortunately we know only that NL(α) ⊆ AC2(α) [Wil88]; the inclusion NL(α) ⊆

AC1(α) is left open.

We observe that if the height of the oracle stack is bounded by a constant (while the

lengths of the queries are still bounded by a polynomial in the length of the inputs), then

an oracle NL machine can be simulated by an oracle AC1 circuit, i.e., NL(α) ⊆ AC1(α).

In fact, NL(α) can then be shown to be the AC0(α) closure of the Reachability problem
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for directed graphs. Similarly, L(α) is the AC0(α) closure of the Reachability problem

for directed graphs whose out-degree is at most one.

The AC0(α) closure of the Boolean Sentence Value problem (which is AC0 complete

for NC1) turns out to be the languages computable by uniform oracle NC1 circuits

(defined as before) where the nesting depth of oracle gates is now bounded by a constant.

We redefine NC1(α) using this new restriction on the oracle gates; the new definition is

more suitable in the context of AC0(α) reducibility (the previous definition of NC1(α)

seems suitable when one considers NC1(α) reducibility). Consequently, we obtain the

first definition of NC1(α), L(α) and NL(α) that preserves the inclusions in (1.3).

The AC0-complete problems for AC0(m) and TC0 remain complete for the rela-

tivized classes under AC0(α)-reduction, and the same is true for L and NL under the new

definitions of their relativizations. Therefore the existence of any oracle that separates

two classes in the list AC0(m),TC0,NC1,L,NL,AC1 implies their nonrelativized sepa-

ration: If the nonrelativized classes are equal, their complete problems would be equiva-

lent under AC0-reductions, hence under AC0(α)-reductions, and therefore the relativized

classes would coincide. So separating the relativized classes is as hard as separating their

nonrelativized counterparts. This nicely generalizes known results [Wil88, Sim77, Wil89].

Having defined the relativizations of classes in (1.3), our general framework discussed

in previous section (and in detail in Chapter 3) is ready to produce their associated

theories. Here we use AC0(α)-reduction instead of AC0-reduction.

1.2 Bounded Reverse Mathematics

An application of the theories of Bounded Arithmetic is in formalizing arguments that

require concepts of certain complexity. An example is Razborov’s S1
2–proof of H̊astad’s

Switching Lemma [Raz95]. The quest for a (dis)proof of the unboundedness of the prime

numbers in I∆0 can also be listed here. This recently shaped research direction [Coo07] is
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called Bounded Reverse Mathematics because of its similarity to the Reverse Mathematics

program initiated by Friedman and Simpson (see [Sim99]). In Reverse Mathematics the

theories can define all primitive recursive functions, while here we are concerned with

much lower complexity.

In fact, a large part of this thesis that we have discussed so far can be seen as devoted

to Bounded Reverse Mathematics. For example, to show that VTC0 ⊆ VNC1 (Section

3.4.1) we need to formalize in VNC1 the construction of NC1 circuits that compute

numones. Here we follow [Bus87a].

As another example, proving that a theory VC is equivalent to some existing theory

T requires showing (i) that the finite set of axioms of VC (namely the axioms of V0,

and most importantly the defining axiom for the corresponding AC0-complete function

of the associated class C) are provable (or interpretable) in T, and (ii) that the axioms

of T are provable (or interpretable) in VC. For instance, as we discussed before, one

direction in the proof of the equivalence between VNC1 and QALV requires essentially

a formalization and proof of correctness for Barrington’s reduction [Bar89] in QALV (or

equivalently VALV).

In general we are interested in proving (the discrete versions of) mathematical theo-

rems in (the weakest possible) theories of Bounded Arithmetic. In the last part of this

thesis we will consider the Jordan Curve Theorem (that a simple closed curve divides the

two dimensional plane into exactly two connected components) and some facts about the

distribution of prime numbers (i.e., Chebyshev’s Theorem which states that the num-

ber of primes less than n is Θ(n/ ln(n)), and the fact that there are Θ(n/ ln(n)) prime

numbers between n and 2n).

1.2.1 Proving the Discrete Jordan Curve Theorem

The Jordan Curve Theorem (JCT) states that a simple closed curve divides the two

dimensional plane into exactly two connected components. We prove this theorem when
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the curve lies on an n × n grid. The results in this chapter are inspired by Thomas

Hales’ talk on his computer–verified proof of the original theorem [Hal05]. Hales’ proof

starts with the above discrete version of the theorem, and is based on Thomassen’s proof

[Tho92] which derives the JCT from the non-planarity of K3,3.

In [Bus06] Buss considered the st-connectivity for grid graphs which states that it is

not possible to have a red path and a blue path that connect opposite corners of the grid

unless the paths intersect. This principle can be expressed as tautologies in two ways

depending on how the paths are presented: the harder tautologies STCONN (n) [Bus06]

express the red and blue edges as two sets, with the condition that every node except

the corners has degree 0 or 2 (thus allowing disjoint cycles as well as paths). The easier

tautologies STSEQ(n) express the paths as sequences of edges.

In 1997 Cook and Rackoff [CR97] showed, using the idea of winding numbers, that

the easier tautologies STSEQ(n) have polynomial size TC0-Frege-proofs. Buss [Bus06]

showed that the harder tautologies STCONN (n) also have polynomial size TC0-Frege-

proofs, improving the earlier result. His proof shows how the red and blue edges in each

column of the grid graph determine an element of a certain finitely-generated group.

The first and last columns determine different elements, but assuming the red and blue

paths do not cross, adjacent columns must determine the same element. This leads to a

contradiction.

We give proofs of the principles in the theories V0 and V0(2), which imply upper

bounds on the propositional proof complexity of the principles. In Section 7.1 we show

that V0(2) proves the part of the discrete JCT asserting a closed curve divides the plane

into at least two connected components, for the (harder) case in which the curve and

paths are given as sets of edges. The proof is based on the idea that a vertical line passing

through a grid curve can detect which regions are inside and outside the curve by the

parity of the number of horizontal edges it intersects. It follows that V0(2) proves the

st-connectivity principle for edge sets.
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As a corollary we conclude that the STCONN (n) tautologies (as well as Urquhart’s

Hex tautologies, see [Bus06]) have polynomial size AC0(2)-Frege-proofs, thus strength-

ening Buss’s [Bus06] result that is stated for the stronger TC0-Frege system. Our result

is stronger in two senses: the proof system is weaker, and we show the existence of

uniform proofs by showing the st-connectivity principle is provable in V0(2). In fact,

showing provability in a theory such as V0(2) is often easier than directly showing its

corollary that the corresponding tautologies have polynomial size proofs. This is because

we can use the fact that the theory proves the induction scheme and the minimization

scheme for formulas expressing concepts in the corresponding complexity class.

In Section 7.2 we prove the surprising result that when the input curve and paths

are presented as sequences of grid edges then even the very weak theory V0 proves the

Jordan Curve Theorem. The proof is technically complicated because we can use only

AC0 concepts. The key idea is to show that in every column of the grid, the horizontal

edges of the curve alternate between pointing right and pointing left. It follows that V0

proves the st-connectivity principle for sequences of edges. As a corollary we conclude that

the STSEQ(n) tautologies have polynomial size AC0-Frege-proofs. This strengthens the

early result [CR97] (based on winding numbers) that STSEQ(n) have polynomial size

TC0-Frege-proofs.

1.2.2 Distribution of Prime Numbers

It is shown in [HAB02] that there is a uniform TC0 algorithm for integer division, or

in other words, there is an FO(M ) formula (i.e., a first-order formula with the counting

quantifier) that express the relation Z = ⌊X/Y ⌋. The results in this chapter come out

of the effort (which has been so far unsuccessful) to formalize this algorithm in VTC0.

The TC0 algorithm given in [HAB02] uses the Chinese Remainder Theorem which

requires a lower bound for the number of prime numbers of certain magnitude, e.g., there

are Ω(n/ ln(n)) prime numbers between n and 2n. The lower bound is taken for granted



Chapter 1. Introduction 13

when designing the TC0 circuit or defining the FO(M ) formula because we know that it

exists by the Prime Number Theorem. In formalizing the algorithm in VTC0, however,

we first need to establish such a lower bound. We are able to prove the existence of a

sufficient number of primes for the algorithm from [HAB02], and our results can be seen

as the first step toward proving the correctness of the algorithm in VTC0.

Let π(n) denote the number of primes that are ≤ n. Chebyshev’s Theorem states

that π(n) = Θ(n/ ln(n)). Indeed, with simple proofs it can be shown that for sufficiently

large n,

ln(2)

2

n

ln(n)
≤ π(n) ≤ 2 ln(2)

n

ln(n)
(1.4)

We will give a VTC0 proof of Chebyshev’s Theorem, though with a bigger constant

factor than 2 ln(2) for the upper bound. (This constant can be improved using the same

method but at the cost of increasing the threshold for n to some unpleasantly high value.)

We will also give a VTC0 proof for the facts that

π(2n) − π(n) = Ω(n/ ln(n)) and π(2n) − π(n) ≥ 1 (for n ≥ 1)

Here we use the idea from [Mos49]. The proof from [Mos49], however, uses the upper

bound for π(n) shown in (1.4). As mentioned before, we do not have such tight upper

bound for π(n). So our VTC0 proof is derived from [Mos49] by a more careful case

analysis.

The original proofs that we follow all use “big” objects such as (2n)!/n!n!, which is

O(4n). We avoid computing such big objects by computing their logarithms instead.

Notice that the function log(x) = ⌊log2(x)⌋ is definable in I∆0 [Ben62, HP93, Bus98,

CN06], however it provides a very crude approximation to log2(x) and seems insufficient

for our purpose. We are lead to define a finer approximation, and since

ln(x) =

∫ x

1

1

y
dy

a sufficient approximation to ln(n) can be calculated in VTC0 using the numones func-

tion.
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Our formalizations here are similar to Woods’ formalization of the proof of the un-

boundedness of prime numbers in the theory I∆0 + PHP(∆0) [Woo81]. For example,

[Woo81] also defines an approximation to ln(x) (for x ≤ (log(a))c for some c ∈ N and

for some a). Our approximation to ln(x) is more direct, and we prove in addition the

lower bound for π(2n) − π(n). Note that the method used in [Woo81] and in this thesis

gives an I∆0-proof of Bertrand’s Postulate for numbers n where n ≤ (log(a))c, while the

formalization in [D’A92] proves the postulate only for n ≤ log(a). (The fact that we can

approximate ln(x) for values of x larger than those in [Woo81] is because in I∆0 it is

possible to “count” a set of cardinality up to only (log(a))c, while in VTC0 we can count

up to a.)

We discovered some earlier results [CD94, Cor95] just as the thesis is to be submitted.

They are discussed in Section 8.7.

1.3 Organization

In Chapter 2 we formally define the two-sorted setting and the theories V0, V
0
. The

materials in this chapter are from [Coo05] and [CN06, Chapter 5]. The theories VC are

developed in Chapter 3. They have appeared in [NC05] and [CN06, Chapter 9]. The

function algebras for a number of subclasses of L are discussed in Chapter 4. Chapter

5 proves the equivalence between VNC1 and QALV. The results of this chapter will

appear in [Ngu07]. The new definitions of the relativizations of classes in (1.3) and their

theories are given in Chapter 6 and have been presented in [ACN07]. The proofs of

the discrete Jordan Curve Theorem in V0 and V0(2) are in Chapter 7; they have been

presented in [NC07]. The formalizations in VTC0 of the facts about distribution of prime

numbers are given in Chapter 8. Finally, Chapter 9 contains some concluding remarks.



Chapter 2

Preliminaries

We present a two-sorted setting for first-order theories and complexity classes. Then we

define the base theory V0 and its universal conservative extension V
0
. The materials of

this chapter are from [Coo05, CN06].

2.1 Two-Sorted First-Order Logic

There are two kinds of variables: x, y, z, . . . (number variables) are intended to range over

N; and X, Y, Z, . . . (set, or string variables) are intended to range over finite subsets of N

(which are represented as binary strings). The basic two-sorted vocabulary is

L2
A = [0, 1,+, ·, | | ; =1, =2,≤,∈]

where 0, 1,+, ·,=1,≤ are for arithmetic over N; |X| is the length function (1 plus the

largest element in X, or 0 if X is empty) which is roughly the length of the binary

string representing X; t ∈ X (or X(t)) is the membership relation; and =2 is equality

for strings. We often write = for both =1 and =2, the exact meaning is clear from the

context.

Number terms are built from 0, 1, x, y, z, . . . and the length term |X| using +, ·. The

only string terms are X, Y, . . .. The atomic formulas are s = t, s ≤ t, X = Y,X(t) for

15
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number terms s, t and string variables X, Y . Formulas are built from atomic formulas us-

ing ∧,∨,¬ and both number and string quantifiers ∃x, ∀x, ∃X, ∀X. Bounded quantifiers

are: ∃x ≤ t ϕ stands for ∃x(x ≤ t ∧ ϕ), ∀x ≤ t ϕ stands for ∀x(x ≤ t ⊃ ϕ), ∃X ≤ t ϕ

stands for ∃X(|X| ≤ t ∧ ϕ), and ∀X ≤ t ϕ stands for ∀X(|X| ≤ t ⊃ ϕ), where t is an

L2
A number term that does not contain x (or X).

ΣB
0 is the set of all L-formulas where all number quantifiers are bounded and with

no string quantifiers. ΣB
1 formulas begin with zero or more bounded existential string

quantifiers, followed by a ΣB
0 formula. These classes are extended to ΣB

i , i ≥ 2, (and

ΠB
i , i ≥ 0) in the usual way. (Thus ΣB

1 corresponds to strict Σ1,b
1 in [Kra95a]). We will

consider vocabularies L ⊇ L2
A. We will use s, t as metasymbols for number terms, S, T

for string terms. Also, the sets ΣB
i (L) and ΠB

i (L) are defined in the same way as ΣB
i

and ΠB
i .

2.2 Two-Sorted Complexity Classes

To define circuit complexity classes we use FO (or equivalently DLOGTIME) uniformity

(see [BIS90, Imm99]).

Definition 2.1. For k ≥ 0, ACk (resp. NCk) is the class of languages accepted by

uniform families of polynomial-size Boolean circuits that have depth O((logn)k) (where

n is the number of inputs) whose gates have unbounded (resp. bounded) fan-in. TC0

(resp. AC0(m)) is the class of languages computable by uniform family of polynomial-

size, constant-depth circuits with threshold gates (resp. modulo m gates). L (resp.

NL) denotes the class of languages computable by deterministic (resp. nondeterministic)

logspace Turing machines, and P is the class of languages computable in polynomial time

by deterministic Turing machines.

In defining the complexity of a relation R(~x, ~X) or function f(~x, ~X) or F (~x, ~X),

the arguments xi are represented in unary notation (a string of xi ones), and Xj are
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represented as bit strings. We think of the number arguments as auxiliary inputs useful

for indexing the bit strings. Here we are interested in functions that grow polynomially

in length.

Definition 2.2. A function F (~x, ~X) (resp. f(~x, ~X)) is polynomially bounded (or p-

bounded) if there is a polynomial p(n) such that |F (~x, ~X)| ≤ p(max (~x, | ~X|)) (resp.

f(~x, ~X) ≤ p(max (~x, | ~X|))).

The complexity of a string function is related to its bit graph (defined below) rather

than its graph. For example, consider the factoring function

F (X) = 〈Y1, m1, Y2, m2, . . . , Yk, mk〉

where Yi are distinct prime factors of X and
∏k

i=1 Y
m1
i = X, for X ≥ 2. Then the graph

of F is a polytime relation, while F is not known to be in P.

Definition 2.3. The bit graph of a string function F is BF (i, ~x, ~X) ≡ F (~x, ~X)(i).

Definition 2.4 (Function Class). If C is a two-sorted complexity class of relations, then

the corresponding function class FC consists of all p-bounded number functions whose

graphs are in C, together with all p-bounded string functions whose bit graphs are in C.

Uniform AC0 (or just AC0) has several equivalent definitions: LTH (the log time

hierarchy on alternating Turing machines) and FO (describable by a first-order formula

using < and Bit predicates). Here we have [Zam96, Imm99, CN06]:

Theorem 2.5 (ΣB
0 Representation Theorem). A relation R(~x, ~X) is in AC0 iff it is

represented by some ΣB
0 formula ϕ(~x, ~X).

The following example is from [Ben62, HP93, Bus98, CN06]:

Example 2.6. The relation (on numbers) y = zx is in AC0.
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Also, binary addition F+(X, Y ) = X + Y is in FAC0, and binary multiplication

F×(X, Y ) = X · Y is in FTC0 but not in FAC0.

Theorem 2.5 motivates the following notion of AC0-reducibility [Coo05]. The idea is

that a function F is AC0-reducible to a collection L of functions if F can be computed

by a uniform polynomial-size constant-depth family of circuits which have unbounded

fan-in gates computing functions from L, in addition to Boolean gates. All classes that

we consider are closed under AC0 reduction.

Definition 2.7. A string function F (resp. number function f) is ΣB
0 -definable from L

if it is polynomially bounded, and its bit graph (resp. graph) is represented by a ΣB
0 (L)

formula.

Definition 2.8 (AC0 Reduction). A string function F (resp. number function f) is

AC0-reducible to L if there is a sequence of string functions F1, . . . , Fn (n ≥ 0) such that

Fi is ΣB
0 -definable from L ∪ {F1, . . . , Fi−1}, for i = 1, . . . , n; (2.1)

and that F (resp. f) is ΣB
0 -definable from L ∪ {F1, . . . , Fn}. A relation R is AC0-

reducible to L if there is a sequence F1, . . . , Fn as above, and R is represented by a

ΣB
0 (L ∪ {F1, . . . , Fn}) formula.

If in the above definition L consists only of functions in FAC0, then a single iteration

(n = 1) is enough to obtain any function in FAC0, and it can be shown that no more

functions are obtained by further iterations. However, if we start with a function such

as numones(z,X) (the number of elements of X that are < z), then repeated iterations

generate the complexity class TC0. As far as we know there is no bound on the number

of iterations needed, because (as far as we know) there is no fixed d such that every

member of TC0 can be defined by a polynomial-size family of circuits of depth d.

The next lemma is immediate from definition.

Lemma 2.9. Let L be a set of functions, and C be the class of relations which are

AC0-reducible to L. Then FC is the class of functions which are AC0-reducible to L.



Chapter 2. Preliminaries 19

B1. x+ 1 6= 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y

B2. x+ 1 = y + 1 ⊃ x = y B8. x ≤ x+ y

B3. x+ 0 = x B9. 0 ≤ x

B4. x+ (y + 1) = (x+ y) + 1 B10. x ≤ y ∨ y ≤ x

B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1

B6. x · (y + 1) = (x · y) + x B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)

L1. X(y) ⊃ y < |X| L2. y + 1 = |X| ⊃ X(y)

SE. [|X| = |Y | ∧ ∀i < |X|(X(i) ↔ Y (i))] ⊃ X = Y

Figure 2.1: 2-BASIC

2.3 V0

A theory T over L is polynomial-bounded if (i) it extends V0 (defined below), (ii) it can

be axiomatized by a set of bounded formulas, and (iii) all functions in L are p-bounded.

All theories considered in this thesis are polynomial-bounded. It follows from Parikh’s

Theorem that provably total functions of a polynomial-bounded theory are p-bounded.

Definition 2.10 (Comprehension Axiom). If Φ is a set of formulas, then the compre-

hension axiom scheme for Φ, denoted by Φ-COMP, is the set of all formulas

∃X ≤ y∀z < y(X(z) ↔ ϕ(z)), (2.2)

where ϕ(z) is any formula in Φ, and X does not occur free in ϕ(z).

Definition 2.11 (V0). V0 is the theory over L2
A axiomatized by the sets 2-BASIC

(Figure 2.1) and ΣB
0 -COMP.

It is known that V0 is finitely axiomatizable [CK03]. Therefore the theories that we

introduce in Chapter 3 are all finitely axiomatizable.
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Definition 2.12 (Number Induction Axiom). If Φ is a set of two-sorted formulas, then

Φ-IND axioms are the formulas

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(x+ 1)] ⊃ ∀zϕ(z)

where ϕ is a formula in Φ.

Definition 2.13 (Number Minimization Axiom). The number minimization axioms (or

least number principle axioms) for a set Φ of two-sorted formulas are denoted Φ-MIN

and consist of the formulas

ϕ(y) ⊃ ∃x ≤ y(ϕ(x) ∧ ¬∃z < xϕ(z))

where ϕ is a formula in Φ.

Using the function |X| it can be shown that V0 proves both ΣB
0 -IND and ΣB

0 -MIN.

In fact we have:

Theorem 2.14. Let T be an extension of V0 and Φ be a set of formulas in T . Suppose

that T proves the Φ-COMP axiom scheme. Then T also proves the Φ-IND and Φ-MIN.

It follows that V0 extends I∆0. It is known, furthermore, that V0 is conservative

over I∆0. See [CN06, Chapter 5] for a proof of these facts.

We can generalize the ΣB
0 -comprehension axiom scheme to multiple dimensions. We

use the pairing function 〈x, y〉 defined in (2.3), and write 〈x1, x2, . . . , xk〉 for 〈x1, 〈x2, 〈. . .〉〉〉

and X(~x) for X(〈~x〉).

〈x, y〉 =def (x+ y)(x+ y + 1) + 2y (2.3)

Definition 2.15 (Multiple Comprehension Axiom). For a set Φ of formulas, the multiple

comprehension axiom scheme for Φ, denoted by Φ-MULTICOMP, is the set of all

formulas

∃X ≤ 〈y1, . . . , yk〉∀z1 < y1 . . . ∀zk < yk(X(z1, . . . , zk) ↔ ϕ(z1, . . . , zk)) (2.4)

where ϕ(z) is any formula in Φ which may contain other free variables, but not X.
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The next lemma is straightforward:

Lemma 2.16. Suppose that T ⊇ V0 is a theory with vocabulary L which proves the

ΣB
0 (L)-COMP axioms. Then T proves the ΣB

0 (L)-MULTICOMP axioms.

Definition 2.17 (Two-Sorted Definability). Let T be a theory with vocabulary L ⊇ L2
A,

and Φ a set of L-formulas. A number function f (not in L) is Φ-definable in T if there

is a formula ϕ(~x, y, ~X) in Φ such that T ⊢ ∀~x∀ ~X∃!yϕ(~x, y, ~X) and

y = f(~x, ~X) ↔ ϕ(~x, y, ~X) (2.5)

A string function F (not in L) is Φ-definable in T if there is a formula ϕ(~x, ~X, Y ) in Φ

such that T ⊢ ∀~x∀ ~X∃!Y ϕ(~x, ~X, Y ) and

Y = F (~x, ~X) ↔ ϕ(~x, ~X, Y ) (2.6)

(2.5) (resp. (2.6)) is a defining axiom for f (resp. F ). We say that f (or F ) is definable

in T if it is Φ-definable in T for some Φ. Also, f (or F ) is provably total in T iff it is

Σ1
1-definable in T .

Example 2.18. The function log(x), where log(0) = 0 and log(x) = ⌊log2(x)⌋ if x ≥ 1,

is provably total in V0. This is because the relation 2x = y is representable by a ∆0

formula (Example 2.6).

Theorem 2.19. a) Let T be a theory and T ′ be the theory obtained from T by adding

a definable function in T together with its defining axiom. Then T ′ is a conservative

extension of T .

b) Suppose that T1, T2, . . . is a sequence of theories where Ti+1 is a conservative extension

of Ti for i ≥ 1. Then T =
⋃

i Ti is a conservative extension of T1.

Proof Sketch. a) Every model of T can be expanded to a model of T ′.

b) Follow from a) by compactness. �
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Using Theorem 2.5 it can be shown that the provably total functions of V0 are

precisely FAC0. Now we define two AC0 functions that are useful for encoding sequences

of strings and numbers.

Definition 2.20 (Row and seq). The function Row(x, Z) (also denoted Z [x]) has the

bit-defining axiom

|Row(x, Z)| ≤ |Z| ∧ (Row(x, Z)(i) ↔ i < |Z| ∧ Z(x, i)) (2.7)

The number function seq(x, Z) (also denoted (Z)x) has the defining axiom:

y = seq(x, Z) ↔ (y < |Z| ∧Z(x, y)∧∀z < y¬Z(x, z))∨ (∀z < |Z|¬Z(x, z)∧ y = |Z|)

2.4 V
0
: A Universal Conservative Extension of V0

All theories VC introduced in Chapter 3 are extensions of V
0

defined here.

To obtain a universal conservative extension of V0, the idea is to introduce Skolem

functions that are definable in V0 in order to eliminate the quantifiers in the axioms of

V0. First, we introduce some AC0 functions in order to eliminate the quantifiers in the

2-BASIC axioms. The existential quantifier in B12 is eliminated using the predecessor

function pd :

B12′. pd(0) = 0 B12′′. x 6= 0 ⊃ pd(x) + 1 = x (2.8)

The extensionality axiom SE contains an implicit existential quantifier ∃i < |X|. We

introduce the function fSE(X, Y ) which is the smallest number < |X| that distinguishes

X and Y , and |X| if no such number exists:

(fSE(X, Y ) ≤ |X|) ∧ (z < fSE(X, Y ) ⊃ (X(z) ↔ Y (z))) ∧

(fSE(X, Y ) < |X| ⊃ (X(fSE(X, Y )) 6↔ Y (fSE(X, Y )))) (2.9)
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(The defining axiom (2.9) is an instance of the axiom (2.12) below, where ϕ(z,X, Y ) ≡

X(z) 6↔ Y (z), and t(X, Y ) = |X|.) In V
0

the axiom SE is replaced by SE′:

(|X| = |Y | ∧ fSE(X, Y ) = |X|) ⊃ X = Y. (2.10)

Now we introduce other AC0 functions. For each formula ϕ(z, ~x, ~X) and L2
A-term

t(~x, ~X), let Fϕ,t(~x, ~X) be the string function with bit definition

Fϕ,t(~x, ~X)(z) ↔ z < t(~x, ~X) ∧ ϕ(z, ~x, ~X) (2.11)

Also, let fϕ,t(~x, ~X) be the least y < t such that ϕ(y, ~x, ~X) holds, or t if no such y exists.

Then fϕ,t has defining axiom (we write f for fϕ,t, t for t(~x, ~X), and . . . for ~x, ~X):

f(. . .) ≤ t ∧ [v < f(. . .) ⊃ ¬ϕ(v, . . .)] ∧ [f(. . .) < t ⊃ ϕ(f(. . .), . . .)] (2.12)

Definition 2.21. LFAC
0 is the smallest set that satisfies

1) LFAC
0 includes L2

A ∪ {pd , fSE}.

2) For each open formula ϕ(z, ~x, ~X) over LFAC
0 and term t = t(~x, ~X) of L2

A there is

a string function Fϕ,t and a number function fϕ,t in LFAC
0.

Definition 2.22. V
0
is the theory over LFAC

0 with the following set of axioms: B1-B11,

L1, L2 (Figure 2.1), (2.8), (2.9), (2.10), and (2.11) for each function Fϕ,t and (2.12)

for each function fϕ,t of LFAC
0.

The next lemma is straightforward:

Lemma 2.23. a) For every ΣB
0 (LFAC

0) formula ϕ there is an open LFAC
0-formula ϕ+

such that V
0 ⊢ ϕ↔ ϕ+.

b) For every ΣB
0 (LFAC

0) formula ϕ there is a ΣB
0 (L2

A) formula ϕ′ such that V
0 ⊢ ϕ↔ ϕ′.

Theorem 2.24. V
0

is a conservative extension of V0.
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Proof. Let ϕ(x) be a ΣB
0 formula. By Lemma 2.23 a) there is an open LFAC

0-formula

ϕ+(x) such that V
0 ⊢ ϕ(x) ↔ ϕ+(x). Now the string function Fϕ+,y satisfies the com-

prehension axiom (2.2) for ϕ. In other words, V
0

proves ΣB
0 -COMP. Hence V

0
extends

V0. The conservativity follows from Lemma 2.23 b). (See [CN06, Section 5.6].) �



Chapter 3

Theories for Small Classes

We start by defining VTC0 and VTC
0

and stating the results for these two theories

in Section 3.1. The proofs are given in Section 3.2 for the general framework where we

develop theories VC and VC for subclasses C of P. The last step for applying the

general framework to VTC0 is proved in Section 3.2.4. The subsequent sections define

other theories which are instances of VC. In Section 3.3 we define the theories V0(m) and

their union VACC. In Section 3.4 we define VNC1 and prove that VTC0 ⊆ VNC1;

the proof of this inclusion is a formalization of Buss’s [Bus87b] arguments which give

NC1 circuits that compute the function numones. The theories VNL and VL are

introduced in Sections 3.5 and 3.6 respectively. In Section 3.7 we define VP and show

that VP = TV0. Finally in Section 3.8 we discuss theories for classes in the ACk, NCk

hierarchies.

3.1 VTC0

We define VTC0 and the universal theory VTC
0

over the language of FTC0 functions.

In Section 3.2 we will introduce a scheme of theories VC and VC (where VC is a

universal theory) and prove that VC is conservative over VC. It follows from Lemma

3.18 in Section 3.2.4 that VTC0 and VTC
0

are instances of VC and VC, respectively.

25
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So VTC
0

is a conservative extension of VTC0, and this implies that the provably total

functions of VTC0 are precisely FTC0 (see Theorem 3.11).

First, numones(z,X) is the number of elements of X that are < z:

Definition 3.1. numones(z,X) is the number function with defining axioms:

numones(0, X) = 0 (3.1)

X(z) ⊃ numones(z + 1, X) = numones(z,X) + 1 (3.2)

¬X(z) ⊃ numones(z + 1, X) = numones(z,X). (3.3)

Proposition 3.2. TC0 is the AC0 closure of numones. FTC0 is the FAC0 closure of

numones.

Proof Sketch. The fact that TC0 is the AC0 closure of numones can be proved by induc-

tion using the fact [BIS90] that TC0 = FO(M ), i.e., TC0 is the class of relations that

are expressible by first-order formulas with the majority quantifiers. The second half of

the proposition follows from the first and Lemma 2.9. �

The theory VTC0 is axiomatized by V0 and a ΣB
1 defining axiom for numones. Recall

that (Y )z is the z-th element of the bounded sequence of numbers coded by Y (Definition

2.20). In the formula δNUM below, Y encodes a computation of numones(x,X): for z ≤ x,

(Y )z = numones(z,X).

Definition 3.3 (VTC0). VTC0 is the theory over L2
A that is axiomatized by V0 and

NUMONES ≡ ∀X∀x∃Y δNUM (x,X, Y ), where

δNUM (x,X, Y ) ≡ (Y )0 = 0 ∧

∀z < x, (X(z) ⊃ (Y )z+1 = (Y )z + 1) ∧ (¬X(z) ⊃ (Y )z+1 = (Y )z) (3.4)

Theorem 3.4 (Definability Theorem for VTC0). A function is in FTC0 if and only if

it is provably total in VTC0.
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Below we will introduce VTC
0
, a universal theory that contains all TC0 functions

and their defining axioms (based on the fact that FTC0 is the AC0 closure of numones,

see Proposition 3.2). The Definability Theorem for VTC0 follows from Theorem 3.7

below (see the proof of Theorem 3.8).

Recall the functions pd , fSE and the notations fϕ,t, Fϕ,t from Section 2.4.

Definition 3.5 (LFTC
0). LFTC

0 is the smallest set that satisfies

1) LFTC
0 includes L2

A ∪ {pd , fSE, numones}

2) For each open formula ϕ(z, ~x, ~X) over LFTC
0 and term t = t(~x, ~X) of L2

A, there is

a string function Fϕ,t and a number function fϕ,t in LFTC
0.

Definition 3.6. VTC
0

is the theory over LFTC
0 with the following quantifier-free ax-

ioms: B1–B11, L1, L2 (Figure 2.1), (2.8), (2.9), (2.10), the defining axioms (3.1), (3.2)

and (3.3) for numones, and (2.11) for each function Fϕ,t and (2.12) for each function

fϕ,t of LFTC
0.

The Definability Theorem for VTC0 follows from the next theorem:

Theorem 3.7. VTC
0

is a conservative extension of VTC0. A function is in FTC0 if

and only if it is ΣB
1 (L2

A)-definable in VTC
0
.

It is rather straightforward to show that VTC
0

extends VTC0. However, proving

that VTC
0

is conservative over VTC0 is not as easy as proving that V
0

is conservative

over V0 (see Theorem 2.24). This is because we do not know whether every open formula

of LFTC
0 is equivalent in VTC

0
to a ΣB

0 (numones) formula. (If this is indeed the case,

then the languages in TC0 would be computable by threshold circuits where the nesting

depth of the threshold gates are bounded by some constant. It would then be easy to

show that the functions in LFTC
0 are definable in VTC0.) In the next section we prove

the above theorem in a more general setting that applies to many other classes. The

proof of Theorem 3.7 is completed in Section 3.2.4.
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3.2 Theories for other Subclasses of P

Consider a polytime function F , and let C be the class of two-sorted relations which are

AC0-reducible to F . Then FC is the set of functions AC0-reducible to F (Lemma 2.9).

Our goal is to develop a theory VC that characterizes C.

Suppose that F (X) has a defining axiom

F (X) = Y ↔ (|Y | ≤ t ∧ ϕ(X, Y )) (3.5)

for some term t and ΣB
0 (L2

A) formula ϕ. Suppose also that

V0 ⊢ ∀Y1∀Y2(|Y1| ≤ t ∧ |Y2| ≤ t ∧ ϕ(X, Y1) ∧ ϕ(X, Y2) ⊃ Y1 = Y2)

Notice that δNUM (3.4) can be seen as a special case of ϕ.

The theory VC has vocabulary L2
A ∪{Row} and is axiomatized by V0(Row) and the

following axiom (which is really a defining axiom for the function F ⋆, see Section 3.2.3):

∀b∀X∃Y ∀u < bϕ(X [u], Y [u]) (3.6)

Our main result of this chapter is the following theorem, which follows from Theorem

3.11. In Sections 3.3–3.8 we introduce instances of VC that are associated with the

remaining classes in (1.1). Theorem 3.8 serves as a meta-theorem that applies for each

of these theories.

Theorem 3.8 (Definability Theorem for VC). A function is provably total in VC iff it

is in FC.

How do we obtain a function F and its defining axiom (3.6) for each class in (1.1)?

We will address this issue before proving the above theorem.

3.2.1 Obtaining Theories for the Classes in (1.1)

It turns out that for each class C of interest, there is a polytime Turing machine M such

that the function

FM(X) = “the computation of M on input X”
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is complete for C. For the case of TC0, M is the machine Mnumones that computes

numones(|X|, X) by computing numones(z,X) inductively on z, and FM(X) is essen-

tially the string Y in (3.4) (page 26).

The ΣB
0 (L2

A) defining axiom (3.5) for FM can be obtained using the following AC0

functions (whose presence in a ΣB
0 formula can be eliminated using their ΣB

0 bit defini-

tions):

• InitM(X) is the initial configuration of M given input X,

• NextM(U) is the next configuration of the configuration U , and

• Cut(t, Z) is the set of all elements of Z that are less than t:

Cut(t, Z) = {z : z ∈ Z ∧ z < t} (3.7)

Let t be an L2
A term that bounds the running time of M. We have

F (X) = Y ↔ |Y | ≤ 〈t, t〉 ∧ Y [0] = Cut(t, InitM(X)) ∧

∀x < t, Y [x+1] = Cut(t,NextM(Y [x]))

3.2.2 The Theory VC

The language LFC is the smallest set containing LFAC
0 ∪{F} and satisfying the following

condition: for each open formula ϕ(z, ~x, ~X) over LFC and term t = t(~x, ~X) of L2
A, there

is a string function Fϕ,t and a number function fϕ,t in LFC.

Note that by Lemma 2.23 a) the ΣB
0 defining axiom (3.5) for F is equivalent in V

0

to a quantifier-free formula over LFAC
0 .

Notation Let ϕF denote the quantifier-free LFAC
0-formula that is equivalent (in V

0
) to

the defining axiom (3.5) of F , as stated in Lemma 2.23 a.

Definition 3.9. VC is the extension of V
0

with the additional axioms F (X) = Y ↔ ϕF

and (2.11)/ (2.12) for each (new) function Fϕ,t/fϕ,t of LFC.
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Lemma 3.10. VC extends VC.

Proof. Each ΣB
0 (LFC) formula ϕ is equivalent in VC to an open formula ϕ′ of LFC. So

the string X in the comprehension axiom (2.2) for ϕ can be taken to be Fϕ′,t for a suitable

L2
A term t. Hence VC ⊢ ΣB

0 (LFC)-COMP, and therefore VC extends V0.

The fact that VC ⊢ ΣB
0 (LFC)-COMP also shows that (3.6) is provable in VC: Take

Y such that |Y | ≤ 〈b, t〉 ∧ (Y (u, i) ↔ F (X [u])(i)). As a result, VC extends VC. �

Theorem 3.8 follows from the following theorem, which in turn follows from Corollary

3.17.

Theorem 3.11. a) VC is a conservative extension of VC.

b) The functions of LFC are ΣB
1 (L2

A)-definable in VC.

Proof of Definability Theorem for VC. The fact that each function in FC is Σ1
1-definable

in VC follows immediately from Theorem 3.11. For the other direction, suppose that

a string function F (~x, ~X) is Σ1
1-definable in VC. (The case of a number function is

similar.) So there is a Σ1
1 formula ∃~Y ϕ(~x, ~X, ~Y , Z), where ϕ is a ΣB

0 formula, so that

(see Definition 2.17)

F (~x, ~X) = Z ↔ ∃~Y ϕ(~x, ~X, ~Y , Z)

and that

VC ⊢ ∀~x∀ ~X∃!Z∃~Y ϕ(~x, ~X, ~Y , Z)

By Lemma 2.23 (and because VC extends V
0
) there is an open LFAC

0-formula ψ so that

VC ⊢ ϕ(~x, ~X, ~Y , Z) ↔ ψ(~x, ~X, ~Y , Z)

Hence (using Theorem 3.11 a) we have

VC ⊢ ∀~x∀ ~X∃!Z∃~Y ψ(~x, ~X, ~Y , Z)

Now by Herbrand’s Theorem, the existence of Z and ~Y is witnessed by some functions

from LFC. In particular, F is a function in FC. �
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3.2.3 Aggregate Functions

Now we set out to prove Theorem 3.11. First, consider part a. (Part b will follow from

Theorem 3.16 below.) Let L1 = LFAC
0 ∪ {F}, and for n ≥ 1, Ln+1 be obtained from Ln

by adding the functions fϕ,t and Fϕ,t for each open formula ϕ of Ln and L2
A term t. For

n ≥ 1 let Tn be the extension of VC obtained by adding the functions in Ln and their

defining axioms (specified in Definition 3.9). Because VC extends VC (Lemma 3.10),

we have

VC =
⋃

n≥1

Tn

Thus, to show that VC is conservative over VC, by Theorem 2.19 b) it suffices to show

that for n ≥ 1:

Tn+1 is a conservative extension of Tn (3.8)

By Theorem 2.19 a), to prove (3.8) it suffices to show that the new functions fϕ,t, Fϕ,t

in Ln+1 are definable in Tn. The graph of each new function fϕ,t is an open formula of

Ln, so to prove the definability of fϕ,t in Tn it suffices to show that Tn ⊢ ΣB
0 (Ln)-MIN.

Similarly, to prove the definability of each new function Fϕ,t it suffices to show that

Tn ⊢ ΣB
0 (Ln)-COMP. Thus, using Theorem 2.14, (3.8) follows from:

Tn ⊢ ΣB
0 (Ln)-COMP (3.9)

The idea is to prove (3.9) by induction on n. It turns out that we need a slightly

stronger induction hypothesis, which is stated using the notion of aggregate functions

defined below. Informally, for a string function F (or a number function f), the aggregate

function F ⋆ (resp. f ⋆), is the string function that gathers the values of F (resp. f) for

a polynomially long sequence of arguments. Recall the functions Row and seq from

Definition 2.20.

Definition 3.12 (Aggregate Function). Let F (x1, . . . , xk, X1, . . . , Xn) be a string func-
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tion. Then F ⋆(b, Z1, . . . , Zk, X1, . . . , Xn) is the set

{〈u, v〉 : u < b ∧ v ∈ F ((Z1)
u, . . . , (Zk)

u, X
[u]
1 , . . . , X [u]

n )}

Similarly, for a number function f(x1, . . . , xk, X1, . . . , Xn),

f ⋆(b, ~Z, ~X) = {〈u, f((Z1)
u, . . . , (Zk)

u, X
[u]
1 , . . . , X [u]

n )〉 : u < b}

Notice that if F (or f) is polynomially bounded, so is F ⋆ (resp. f ⋆). Universal

defining axioms for F ⋆ and f ⋆ are as follows:

F ⋆(b, ~Z, ~X)(u, v) ↔ u < b ∧ v < |F (
−−→
(Z)u,

−−→
X [u])| ∧ F (

−−→
(Z)u,

−−→
X [u])(v) (3.10)

f ⋆(b, ~Z, ~X)(u, v) ↔ u < b ∧ v = f(
−−→
(Z)u,

−−→
X [u]) (3.11)

Example 3.13 (numones⋆).

numones⋆(b, Z,X) = Y ↔ (|Y | ≤ 〈b, 1 + |X|〉∧

∀w < 〈b, 1 + |X|〉, Y (w) ↔ ∃u < b, w = 〈u, numones((Z)u, X [u])〉) (3.12)

In Lemma 3.18, we will show that numones⋆ is provably total in VTC0.

The function seq can be eliminated from (3.10) and (3.11) using its defining axiom

(see Definition 2.20). For the rest of this section, let T be a theory over L, where

L2
A ∪ {Row} ⊆ L, T ⊢ ΣB

0 (L)-COMP, and T extends V0(Row) (3.13)

Also, we will be interested in whether F (resp. f) satisfy

both F and F ⋆ are ΣB
1 -definable in T and T (F, F ⋆) proves (3.10) (3.14)

(resp. both f and f ⋆ are ΣB
1 -definable in T and T (f, f ⋆) proves (3.11)) (3.15)

Lemma 3.14. Let T and L be as in (3.13). Let F (or f) be a function ΣB
0 -definable

from L (recall Definition 2.7). Then the function F ⋆ (or f ⋆) is ΣB
0 -definable from L. In

addition, (3.14) holds (resp. (3.15) holds). In fact, both F and F ⋆ (resp. f and f ⋆) are

ΣB
0 (L)-definable (and hence provably total) in T .
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Proof. The fact that F ⋆ (resp. f ⋆) is ΣB
0 -definable from L is obvious. The definability

of F and F ⋆ (resp. f and f ⋆) in T follows from the fact that T proves multiple com-

prehension for ΣB
0 (L) formulas (by (3.13) and Lemma 2.16). For example, suppose that

f(~x, ~X) is bounded by t and has a ΣB
0 (L) graph ϕ(~x, y, ~X). Then f can be defined in T

by first defining using ΣB
0 (L)-COMP the set Y such that

|Y | ≤ t+ 1 ∧ ∀y < t+ 1, Y (y) ↔ ϕ(~x, y, ~X)

Now y = |Y | −· 1. �

The next theorem is useful in proving the induction step of (3.9). The condition

in (3.14) (resp. (3.15)) that F and F ⋆ (resp. f and f ⋆) be ΣB
1 -definable in T can be

replaced by the (weaker) condition that they are p-bounded and definable in T .

Theorem 3.15. Let T , L and F (resp. f) be as in (3.13) and (3.14) (resp. (3.15)).

Then T (F ) proves ΣB
0 (L ∪ {F})-COMP (resp. T (f) proves ΣB

0 (L ∪ {f})-COMP).

Proof. We will consider the case of extending L by a string function F . The case where

L is extended by a number function is handled similarly by using number variables wi

instead of the string variables Wi in the argument below.

First, since T proves ΣB
0 (L)-COMP, by Lemma 2.16 it proves the Multiple Com-

prehension axioms for ΣB
0 (L) formulas.

Claim For any L-terms ~s, ~T that contain variables ~z, T (F ) proves

∃Y ∀z1 < b1 . . .∀zm < bm, Y
[~z] = F (~s, ~T ) (3.16)

Proof of the Claim. Since T proves the Multiple Comprehension axiom scheme for ΣB
0 (L)

formulas, it proves the existence of ~X such that X
[~z]
j = Tj, for 1 ≤ j ≤ n. It also proves

the existence of Zi such that (Zi)
〈~z〉 = si, for 1 ≤ i ≤ k. Now the value of Y that satisfies

(3.16) is just F ⋆(〈~b〉, ~Z, ~X). �
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Let L′ = L∪{F}. We show by induction on the quantifier depth of a ΣB
0 (L′) formula

ψ that T (F ) proves

∃Z ≤ 〈b1, . . . , bm〉∀z1 < b1 . . . ∀zm < bm, Z(~z) ↔ ψ(~z) (3.17)

where ~z are all free number variables of ψ. It follows that T (F ) ⊢ ΣB
0 (L′)-COMP.

For the base case, ψ is quantifier-free. The idea is to replace every occurrence of a

term F (~s, ~T ) in ψ by a new string variable W which has the intended value of F (~s, ~T ).

The resulting formula is ΣB
0 (L), and we can apply the hypothesis.

Formally, suppose that F (~s1, ~T1), . . . , F (~sk, ~Tk) are all occurrences of F in ψ. Note

that the terms ~si, ~Ti may contain ~z as well as nested occurrences of F . Assume further

that ~s1, ~T1 do not contain F , and for 1 < i ≤ k, any occurrence of F in ~si, ~Ti must be

of the form F (~sj, ~Tj), for some j < i. We proceed to eliminate F from ψ by using its

defining axiom.

Let W1, ...,Wk be new string variables. Let
−→
s′1 = ~s1,

−→
T ′

1 = ~T1, and for 2 ≤ i ≤ k,
−→
s′i

and
−→
T ′
i be obtained from ~si and ~Ti respectively by replacing every maximal occurrence

of any F (~sj, ~Tj), for j < i, by W
[~z]
j . Thus F does not occur in any

−→
s′i and

−→
T ′
i , but for

i ≥ 2,
−→
s′i and

−→
T ′
i may contain W1, . . . ,Wi−1.

By the claim above, for 1 ≤ i ≤ k, T (F ) proves the existence of Wi such that

∀z1 < b1 . . .∀zm < bm, W
[~z]
i = F (

−→
s′i ,

−→
T ′
i ) (3.18)

Let ψ′(~z,W1, . . . ,Wk) be obtained from ψ(~z) by replacing each maximal occurrence of

F (~si, ~Ti) by W
[~z]
i , for 1 ≤ i ≤ k. Then, by Multiple Comprehension for ΣB

0 (L) and the

fact that L contains Row ,

T ⊢ ∃Z ≤ 〈b1, . . . , bm〉∀z1 < b1 . . .∀zm < bm, Z(~z) ↔ ψ′(~z,W1, . . . ,Wk).

Such Z satisfies (3.17) when each Wi is defined by (3.18).

The induction step is straightforward. Consider for example the case ψ(~z) ≡ ∀x <

tλ(~z, x). By the induction hypothesis,

T (F ) ⊢ ∃Z ′∀z1 < b1 . . .∀zm < bm∀x < t, Z ′(~z, x) ↔ λ(~z, x).
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Now, by Lemma 2.16

V0 ⊢ ∃Z∀z1 < b1 . . .∀zm < bm, Z(~z) ↔ ∀x < tZ ′(~z, x).

Thus T (F ) ⊢ ∃Z∀~z <~bZ(~z) ↔ ψ(~z). �

Part a) of Theorem 3.11 follows from Lemma 3.14 and Theorem 3.15 (see the proof

below). The next theorem is to prove Theorem 3.11 part b. Here we are interested in

triples 〈T ,L,L′〉 such that (we will often have L′ = L2
A)

for each ΣB
0 (L) formula θ there is a Σ1

1(L′) formula η such that T ⊢ θ ↔ η (3.19)

Theorem 3.16. Let T , L and F (resp. f) satisfy (3.13) and (3.14) (resp. (3.15)). Sup-

pose that L2
A ⊆ L′ ⊆ L such that (3.19) holds. Then (3.19) holds for 〈T (F ),L ∪ {F},L′〉

(resp. 〈T (f),L ∪ {f},L′〉).

Proof. We prove for the case of the string function F . The case for the number function

f is similar. Suppose that

θ ≡ Q1z1 < r1 . . .Qnzn < rnψ(~z)

is a ΣB
0 (L, F ) formula, where Q1, . . . , Qn ∈ {∃, ∀} and ψ is a quantifier-free formula. Let

~si, ~Ti,
−→
s′i ,

−→
T ′
i and ψ′(~z,W1, . . . ,Wk) be as described in the proof of Theorem 3.15, and let

λi be the formula (3.18) for 1 ≤ i ≤ k. Define

θ′(W1, ...,Wk) ≡ Q1z1 < r1 . . .Qnzn < rnψ
′(~z,W1, ...,Wk).

Then, θ is equivalent in T (F ) to

∃W1 . . .∃Wk, ((
∧

λi) ∧ θ′(W1, . . . ,Wk))

By the given assumption that each ΣB
0 (L) is equivalent in T to a Σ1

1(L′) formula, we

may replace the whole matrix of the formula above by a ΣB
1 (L′) formula. �
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Corollary 3.17. Let T0,L0,L′ be such that T0 and L0 satisfy (3.13) and 〈T0,L0,L′〉

satisfy (3.19). Let T0 ⊂ T1 ⊂ T2 ⊂ . . . be a sequence of extensions of T0, where each Ti+1

is obtained from Ti by adding the defining axiom for a provably total function F (or f)

that satisfies (3.14) (resp. (3.15)) (with Ti in place of T ). Let

T∞ =
⋃

i≥0

Ti, L∞ =
⋃

i≥0

Li

Then (i) T∞ is a conservative extension of T0, (ii) the additional functions in T∞ are

Σ1
1(L′)-definable in T0.

Proof. For (i), by the hypothesis that T0 proves ΣB
0 (L0)-COMP, it is easy to prove by

induction on i, using Lemma 3.14 and Theorem 3.16, that Ti ⊢ ΣB
0 (Li)-COMP, and

that the new function Fi+1/fi+1 in Li+1, as well as F ⋆
i+1/f

⋆
i+1 are provably total in Ti.

As a result, Ti+1 is a conservative extension of Ti (by Theorem 2.19 a). Hence T∞ is a

conservative extension of T0 by Theorem 2.19 b.

For (ii), using Theorem 3.16 we can prove by induction that each ΣB
0 (Li) formula

is provably equivalent in Ti to a Σ1
1(L′) formula. Hence the Σ1

1(Li) defining axiom for

Fi+1/fi+1 in Ti+1 is equivalent (in T∞) to a Σ1
1(L′) formula which can be taken as the

defining axiom for Fi+1/fi+1 in T0 (because T∞ is conservative over T0). �

Proof of Theorem 3.11. First we apply Corollary 3.17 for L′ = L2
A, L0 = LFAC

0 , T0 =

VC(LFAC
0), T1 = VC(F,LFAC

0) and 〈Ti〉i≥2 is a sequence of extensions of T0 such that

(i) VC =
⋃

i≥0 Ti and (ii) each Ti+1 contains only one extra function F or f not already in

Ti. (The condition (ii) is not important, but it is stated so that Ti satisfies the hypothesis

of Corollary 3.17.)

Condition (3.19) holds for 〈T0,LFAC
0 ,L2

A〉 because every ΣB
0 (L2

A) formula is equivalent

(in V
0
) to a ΣB

0 formula (Lemma 2.23).

It is easy to see that (3.14) holds for T0 and F . By Lemma 3.14, (3.14) (or (3.15)) also

holds for each new function Fϕ,t (or fϕ,t) in Ti for i ≥ 1. In other words, the hypothesis

of Corollary 3.17 is satisfied.
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The conclusions of Theorem 3.11 now follow from Corollary 3.17 for the sequence

VC(LFAC
0), T1, . . . and the fact that VC(LFAC

0) is a conservative extension of VC. �

3.2.4 Proof of the Definability Theorem for VTC0

Notice that (3.6) is really a defining axiom for F ⋆, while NUMONES (3.4) is just a

defining axiom for numones . So in order to apply the results of Section 3.2 for the theory

VTC0, essentially we need to show that numones⋆ is provably total in VTC0; i.e., we

need the following lemma:

Lemma 3.18. VTC0(Row) ⊢ ∃Y ∀u < b δNUM (t(u), X [u], Y [u]).

Proof. The idea is to construct Y using ΣB
0 (Row)-COMP from the counting array Y ′

for a “big” string X ′, where X ′ is the concatenation of the initial segments of the rows

X [0], . . . , X [b−1] of X. Formally, let s be an L2
A number term that dominates t(u), for all

u < b. Let X ′ be defined by

X ′(us+ z) ↔ z < t(u) ∧X [u](z), for z < s, u < b.

In other words, for u < b, the bit string X ′(us) . . . X ′(us + t(u) − 1) is a copy of

X [u](0) . . . X [u](t(u) − 1), and X ′(us + t(u)), . . . , X ′((u + 1)s − 1) are all 0. Therefore,

for z ≤ t(u),

numones(z,X [u]) = numones(us+ z,X ′) − numones(us,X ′)

i.e., we will define Y so that

(Y [u])z + numones(us,X ′) = numones(us+ z,X ′)

Let Y ′ be the counting array for X ′: (Y ′)z = numones(z,X ′). Hence, (Y [u])z = y ↔

y + (Y ′)us = (Y ′)us+z. Consequently, Y exists in V0 by ΣB
0 Multiple Comprehension. �
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3.3 V0(m) and VACC

We use the following fact:

Proposition 3.19. For m ≥ 2, AC0(m) is the AC0 closure of modm, where

modm(x,X) = numones(x,X) mod m

The theory V0(m) is defined using the formula δMODm(x,X, Y ), which states that Y

is a “counting modulo m” array for X:

δMODm(x,X, Y ) ≡ Y (0, 0) ∧ ∀z < x,

(X(z) ⊃ (Y )z+1 = ((Y )z + 1) mod m) ∧ (¬X(z) ⊃ (Y )z+1 = (Y )z).

Note that here we write ϕ(y mod m) for the formula

∃r < m, ∃q ≤ y, y = qm+ r ∧ ϕ(r).

Definition 3.20. For each m ≥ 2, let MODm ≡ ∀X∀x∃Y δMODm(x,X, Y ). The the-

ory V0(m) has vocabulary L2
A and is axiomatized by V0 and the axiom MODm. Also,

VACC =
⋃{V0(m) | m ≥ 2}.

The theory V0(2) can be equivalently defined using the axiom ∀X∃Y δparity(X, Y )

instead of MOD2, where δparity(X, Y ) asserts that for 0 ≤ i < |X|, bit Y (i + 1) is 1 iff

the number of 1’s among bits X(0), ..., X(i) is odd:

δparity(X, Y ) ≡ ¬Y (0) ∧ ∀i < |X|(Y (i+ 1) ↔ (X(i) ⊕ Y (i))) (3.20)

where ⊕ is exclusive OR. The function mod2(x,X) is also called parity(x,X) and has

the defining axiom

parity(x,X) = y ↔ ∃Y ≤ |X|, δparity(X, Y )∧ (Y (x) ⊃ y = 1)∧ (¬Y (x) ⊃ y = 0) (3.21)

Similar to Lemma 3.18, it can be shown that mod⋆m is provably total in V0(m).
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3.4 VNC1

The theory VNC1 [CM05, NC05] originated from Arai’s single sorted theory AID

[Ara00]. The idea comes from the fact that the problem of evaluating a balanced Boolean

formula given the values of its propositional variables is complete for NC1 (the problem

is still complete for NC1 when the formula is not required to be balanced, see [Bus87b]).

Consider the following encoding of a monotone Boolean formula using the heap data

structure. We view the formula as a balanced binary tree with (2a− 1) nodes: a leaves

numbered a, (a + 1), . . . , (2a − 1); and (a − 1) inner nodes numbered 1, 2, . . . , (a − 1).

The two children of an inner node x are 2x and (2x+ 1) (as in the heap data structure).

Each inner node x is labeled with either ∧ or ∨. Therefore the circuit can be encoded

by (a,G), where G(x) specifies the label of node x: G(x) holds iff node x is an ∧-gate.

In the formula δMFV (a,G, I, Y ) given below (MFV stands for Monotone Formula

Value), Y encodes an evaluation of the circuit (a,G) given input I, i.e., Y (x) is the value

of gate x (see Figure 3.1):

δMFV (a,G, I, Y ) ≡ ∀x < a, (Y (x+ a) ↔ I(x)) ∧ [0 < x ⊃ Y (x) ↔

[(G(x) ∧ Y (2x) ∧ Y (2x+ 1)) ∨ (¬G(x) ∧ (Y (2x) ∨ Y (2x+ 1)))]] (3.22)

Y (6) Y (7)

I(0) I(1)

Y (8) Y (9)

I(2) I(3)

Y (10) Y (11)

I(4) I(5)

Y (3) Y (4) Y (5)

Y (2)

Y (1)

Figure 3.1: Computing Fval(6, G, I) (G is not shown).
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Definition 3.21. VNC1 is the theory over L2
A axiomatized by V0 and MFV , where

MFV ≡ ∀a∀G∀I∃Y δMFV (a,G, I, Y ).

Proposition 3.22. Fval is AC0-many-one complete for NC1, where

Fval(a,G, I) = Y ↔ |Y | ≤ 2a ∧ δMFV (a,G, I, Y ) (3.23)

Proof. The proposition follows from the fact [Bus87b] that the Boolean Sentence Value

Problem is in ALogTime (which is the same as FO-uniform NC1) and the fact [BIS90,

Lemma 6.2] that every language in ALogTime is AC0-many-one reducible to Fval . �

By Theorem 3.8, to show that the provably functions of VNC1 are precisely functions

in FNC1, it suffices to show that the axiom ∀b∀X∀G∀I∃Y ∀u < bδMFV ((X)u, G[u], I [u], Y [u])

is provable in VNC1. This follows from Theorem 3.25 below.

The original definition of VNC1 [CM05] uses ΣB
0 -TreeRec, the set of axioms of the

form

∃Y ∀x < a, [(Y (x+ a) ↔ ψ(x)) ∧ (0 < x ⊃ (Y (x) ↔ ϕ(x)[Y (2x), Y (2x+ 1)]))] (3.24)

where ψ(x) is a ΣB
0 formula, ϕ(x)[p, q] is a ΣB

0 formula which contains two Boolean

variables p and q, and Y does not occur in ψ and ϕ. We will show that our definition

of VNC1 is equivalent to the definition from [CM05]. Since MFV is an instance of the

ΣB
0 -TreeRec axiom scheme, we need only to show that ΣB

0 -TreeRec is provable in VNC1

(Theorem 3.23); Theorems 3.24 and 3.25 below will show that indeed VNC1 proves

several generalizations of ΣB
0 -TreeRec.

Theorem 3.23. The ΣB
0 -TreeRec axiom scheme is provable in VNC1.

Proof. Given a, ψ and ϕ, the idea is to construct a (large) treelike circuit (b, G) and

inputs I so that from Fval(b, G, I) we can extract Y (using ΣB
0 -COMP) that satisfies

(3.24).
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Notice the “gates” ϕ(x)[p, q] in (3.24) can be any of the sixteen Boolean functions in

two variables p, q. We will (uniformly) construct binary treelike ∧-∨ circuits of constant

depth that compute ϕ(x)[p, q].

Let

β1, . . . , β8, β9 ≡ ¬β1, . . . , β16 ≡ ¬β8

be the sixteen Boolean functions in two variables p, q. Each βi can be computed by

a binary treelike and-or circuit of depth 2 with inputs among 0, 1, p, q, ¬p, ¬q. For

1 ≤ i ≤ 16, let Xi be defined by

Xi(x) ↔ (x < a ∧ ϕ(x)[p, q] ↔ βi(p, q))

Then,

ϕ(x)[p, q] ↔
16
∨

i=1

(Xi(x) ∧ βi(p, q))

Consequently, ϕ(x)[p, q] can be computed by a binary and-or tree Tx of depth 7 whose

inputs are 0, 1, p,¬p, q,¬q,Xi(x). Similarly, ¬ϕ(x)[p, q] is computed by a binary and-or

tree T ′
x having the same depth and set of inputs. Our large tree G has one copy of T1,

and in general for each copy of Tx or T ′
x, there are multiple copies of T2x, T2x+1, T

′
2x, T

′
2x+1

that supply the inputs Y (2x), Y (2x + 1),¬Y (2x),¬Y (2x + 1), and other trivial treelike

circuits that provide inputs 0, 1, Xi(x) (1 ≤ i ≤ 16).

Finally, I is defined as follows: I(x) ↔ (x < a ∧ ψ(x)). �

3.4.1 VTC0 ⊆ VNC1

To show that VNC1 extends VTC0 it suffices to show that the axiom NUMONES is

provable in VNC1. In other words, we need to formalize in VNC1 the construction

of NC1 circuits that compute numones and prove (in VNC1) the correctness of this

construction. We formalize the construction by Buss [Bus87b].

The next two theorems show that VNC1 proves some generalizations of ΣB
0 -TreeRec.

They are useful in formalizing the construction of the counting circuits.
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Theorem 3.24. Suppose that 2 ≤ k ∈ N, and ψ(x) and ϕ(x)[p0, . . . , pk−1] are ΣB
0

formulas. Then VNC1 proves

∃Y, ∀x < ka, a ≤ x ⊃ Y (x) ↔ ψ(x)∧

∀x < a, Y (x) ↔ ϕ(x)[Y (kx), . . . , Y (kx+ k − 1)] (3.25)

Proof. We prove for the case k = 4; similar arguments work for other cases.

Using Theorem 3.23 we will define a′, ψ′, ϕ′ so that from Y ′ that satisfies the ΣB
0 -TreeRec

axiom (3.24) for a′, ψ′ and ϕ′ we can obtain Y that satisfies (3.25) above.

Intuitively, consider Y in (3.25) as a forest of three trees whose nodes are labeled with

Y (x), x < |Y |. Then Y has branching factor of 4 (since k = 4), and the three trees are

rooted at Y (1), Y (2) and Y (3). So it suffices to simulate each layer in Y by two layers

in the binary tree Y ′. (See Figure 3.2.)

Y (4) . . . Y (7) Y (8) . . . Y (11) Y (12) . . . Y (15)

Y (1) Y (2) Y (3)

Y ′(4) Y ′(5) Y ′(6) Y ′(7)

Y ′(2) Y ′(3)

Y ′(1)

Figure 3.2: The forest Y in Theorem 3.24 when k = 4. Trees rooted at Y (1), Y (2) and

Y (3) are simulated by the sub-trees Y ′(4), Y ′(5) and Y ′(6), respectively.

We will define an injective map f so that Y (x) ↔ Y ′(f(x)). Since the trees rooted

at Y (1), Y (2) and Y (3) are disjoint, f is defined so that these trees are the images of
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disjoint subtrees in the tree Y ′. Here we take

f(1) = 4, f(2) = 5, f(3) = 6

f(4m + y) = 4m+1 + y for 0 ≤ y < 3 · 4m

(Note that f has a ∆0 graph (Example 2.6), so it is provably total in I∆0 and hence also

in V0.)

Now we need ψ′ such that

ψ′(f(x)) ↔ ψ(x) for a ≤ x < 4a

Define ψ′ by

ψ′(4m+1 + y) ↔ ψ(4m + y) for y < 3 · 4m and a ≤ 4m + y < 4a

To obtain ϕ′, write ϕ(x)[p0, p1, p2, p3] in the form

ϕ1(x)[ϕ2(x)[p0, p1], ϕ3(x)[p2, p3]]

where ϕi is ΣB
0 with at most 2 Boolean variables, for 1 ≤ i ≤ 3. Define ϕ′ so that

ϕ′(4m+1 + y)[p, q] ↔ ϕ1(4
m + y)[p, q] for y < 3 · 4m

ϕ′(2 · 4m+1 + 2y)[p, q] ↔ ϕ2(4
m + y)[p, q] for y < 3 · 4m/2

ϕ′(2 · 4m+1 + 2y + 1)[p, q] ↔ ϕ3(4
m + y)[p, q] for y < 3 · 4m/2

Finally, let a′ = f(a). Let Y ′ satisfies (3.24) for a′, ψ′ and ϕ′, and let Y be such that

Y (x) ↔ Y ′(f(x))

It is easy to verify that Y satisfies (3.25). �

The next theorem shows that in VNC1 we can evaluate multiple inter-connected

Boolean circuits with logarithmic depth and constant fan-in.
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Theorem 3.25. Suppose that 1 ≤ m, ℓ ∈ N, ψi(x, y) and ϕi(x, y)[p1, q1, . . . , pmℓ, qmℓ] are

ΣB
0 formulas for 1 ≤ i ≤ m, where ~p, ~q are the Boolean variables. Then VNC1 proves

the existence of Z1, . . . , Zm such that

∀z < c∀x < a
m
∧

i=1

[(Z
[z]
i (x+ a) ↔ ψi(z, x)) ∧ 0 < x ⊃

(Z
[z]
i (x) ↔ ϕi(z, x)[Z

[z]
1 (2x), Z

[z]
1 (2x+ 1), . . . , Z [z+ℓ−1]

m (2x), Z [z+ℓ−1]
m (2x+ 1)]))]

Proof. The idea is to construct a constant k, a number a′ and ΣB
0 formulas ψ′(c, x) and

ϕ′(c, x)[p0, . . . , pk−1] so that from Y that satisfies (3.25) (for k, a′, ψ′ and ϕ′) we can

obtain Z1, . . . , Zm.

Consider, for example, m = 2, ℓ = 2. W.l.o.g., assume that c ≥ 1. The following

(overlapping) subtrees

Z
[0]
1 , Z

[0]
2 , . . . , Z

[c−1]
1 , Z

[c−1]
2 (3.26)

have branching factor 8 (i.e., 2mℓ). So let k = 8 (i.e., k = 2mℓ). We will construct Y

(with branching factor 8) so that the disjoint subtrees rooted at

Y (c), . . . , Y (3c− 1) (3.27)

are exactly the subtrees listed in (3.26).

We will define an 1-1, into map s : {1, 2} × N2 → N so that

Z
[z]
i (x) ↔ Y (s(i, z, x))

For the root level of the trees in (3.26) we need

s(1, 0, 1) = c, s(2, 0, 1) = c+ 1, s(1, 1, 1) = c+ 2, s(2, 1, 1) = c+ 3, . . .

For other levels we need: If s(i, z, x) = y, then

s(1, z, 2x) = 8y, s(1, z, 2x+ 1) = 8y + 1, . . . , s(2, z + 1, 2x+ 1) = 8y + 7

To define s, we define partial, onto maps f, g : N → N and h : N → {1, 2} so that

s(h(y), g(y), f(y)) = y
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In other words,

Y (y) ↔ Z
[g(y)]
h(y) (f(y))

For example, for 0 ≤ z < 2c:

f(c+ z) = 1, g(c+ z) = ⌊z/2⌋, h(c + z) = 1 + (z mod 2)

In general, we need to define f, g, h only for values of x of the form 8rc+z for 0 ≤ z < 2·8rc.

The definitions of f, g, h at 8rc + z are straightforward using the base 8 notation for z,

where 0 ≤ z < 2 · 8rc.

Once f, g, h are defined, the formula ψ′ and ϕ′ are defined by

ψ′(c, x) ↔ ψh(x)(g(x), f(x)) and ϕ′(c, x)[. . .] ↔ ϕh(x)(g(x), f(x))[. . .]

(where . . . is the list of 2mℓ Boolean variables). �

Theorem 3.26. VTC0 ⊆ VNC1.

Proof. numones(n,X) can be computed using the divide-and-conquer technique: let ci

(1 ≤ i < 2n) be such that

ci+n = X(i) for 0 ≤ i < n

ci = c2i + c2i+1 for 1 ≤ i < n

Then numones(n,X) = c1. (See Figure 3.3 for an example.) The next theorem shows

c6

X(0)

c7

X(1)

c8

X(2)

c9

X(3)

c10

X(4)

c11

X(5)

c3 c4 c5

c2

c1

Figure 3.3: Computing numones(6, X) in NC1
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that we can formalize the same computation, but the “counters” are strings Z [i] instead of

numbers ci. This is more general since converting a number into its binary representation

can be done in V0.

Finally, the fact that VNC1 proves the correctness of the construction is shown in

Theorem 3.28. �

Theorem 3.27. VNC1 proves

∃Z∀x < a, Z [a+x] = I [x] ∧ x > 0 ⊃ Z [x] = Z [2x] + Z [2x+1]

Proof. We compute Z [i] as in Figure 3.3 where now the nodes contain Z [x] instead of cx.

Note that if for each x < a we simply construct an AC0 circuit that performs string

addition to compute Z [x] (= Z [2x] + Z [2x+1]), then we will end up with an AC1 circuit.

Here we use the fact that

X + Y + T = G(X, Y, T ) +H(X, Y, T ) (3.28)

where G(X, Y, T ) is the string of bit-wise sums, and G(X, Y, T ) is the string of carries:

G(X, Y, T )(z) ↔X(z) ⊕ Y (z) ⊕ T (z)

H(X, Y, T )(0) ↔⊥

H(X, Y, T )(z + 1) ↔((X(z) ∧ Y (z)) ∨ (X(z) ∧ T (z)) ∨ (Y (z) ∧ T (z)))

It is straightforward to show that V0(G,H) proves the equation (3.28).

Thus, for each Z [x] we have a pair of strings (S [x], C [x]) where S [x] is the string of

bit-wise sums and C [x] is the string of carries for computing Z [x]. For 1 ≤ x < 2a,

Z [x] = S [x] + C [x]. For a ≤ x < 2a, S [x] = I [x], C [x] = ∅ (∅ denotes the empty set), and

for 1 ≤ x < a we will have:

S [x] + C [x] = S [2x] + C [2x] + S [2x+1] + C [2x+1]

S [x] and C [x] are computed as follows:

S [x] = G(C [2x+1], U, V ), C [x] = H(C [2x+1], U, V )
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where

U = G(S [2x], C [2x], S [2x+1]), V = H(S [2x], C [2x], S [2x+1])

In other words, let F1, F2 be the AC0 functions

F1(X, Y, Z,W ) = G(W,G(X, Y, Z), H(X, Y, Z))

F2(X, Y, Z,W ) = H(W,G(X, Y, Z), H(X, Y, Z))

Then

S [x] = F1(S
[2x], C [2x], S [2x+1], C [2x+1]), C [x] = F2(S

[2x], C [2x], S [2x+1], C [2x+1])

We need to prove in VNC1 the existence of S and C such that

∀x < a, S [x+a] = I [x] ∧ C [x+a] = ∅ ∧ 0 < x ⊃

S [x] = F1(S
[2x], C [2x], S [2x+1], C [2x+1]) ∧ C [x] = F2(S

[2x], C [2x], S [2x+1], C [2x+1])

Notice that for each z, the bits S [x](z), C [x](z) are computed from the bits

{S [2x](y), S [2x+1](y), C [2x](y), C [2x+1](y) : z − 2 ≤ y ≤ z}

(where we define S [2x](y) ≡ ⊥ if y < 0, etc.). This is not in the form of the hypothesis of

Theorem 3.25, but we can put it in the right form by “transposing” S and C. Formally,

let S ′ and C ′ be such that

S ′[y](x) ↔ S [x](y), C ′[y](x) ↔ C [x](y)

Then S ′[z](x) and C ′[z](x) are computed from

{S ′[y](2x), S ′[y](2x+ 1), C ′[y](2x), C ′[y](2x+ 1) : z − 2 ≤ y ≤ z}

by some ΣB
0 formulas. By Theorem 3.25, VNC1 proves the existence of S ′ and C ′, and

hence the existence of S and C. �
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Given a, I, let Z be constructed as above. Define Sum(a, I) by

Sum(0, I) = ∅, Sum(a, I) = Z [1] for a ≥ 1

Then Sum is provably total in VNC1, so VNC1(Sum) is a conservative extension of

VNC1. The fact that VNC1 proves the correctness of the construction given above is

shown in the next theorem.

Theorem 3.28. VNC1(Sum) ⊢ Sum(z, I) + I [z] = Sum(z + 1, I).

Proof. Let z0 = 1, z1, z2, . . . , zd = z be the initial segment of the binary representation

of z. Let Z be the string constructed for computing Sum(z + 1, I) as in the proof of

Theorem 3.27. Then the path from root Z [1] to leaf Z [z] (the rightmost path, see Figure

3.3) consists of the nodes

Z [z0], Z [z1], . . . , Z [zd]

Let Z0 be the string constructed for computing Sum(z, I). It can be proved by

(reverse) induction on i that

(Z [zi] = Z
[zi]
0 + I [z]) ∧ ∀x < z(|x| = |zi| ∧ x < zi ⊃ Z [x] = Z

[x]
0 ) �

3.5 VNL

Suppose that (a, E) encode a directed graph G: the vertices of G are numbered 0, . . . , (a−

1), and for x, y < a, E(x, y) holds if and only if there is a directed edge from x to y.

Then the string function Conn(a, E) is AC0 complete for FNL, where Conn(a, E)(z, x)

holds iff there is a path in G from 0 to x of length at most z:

Proposition 3.29. Conn is AC0 many-one complete for NL, where Conn(a, E) = Y ↔

|Y | ≤ 〈a, a〉 ∧ δCONN (a, E, Y ), and

δCONN (a, E, Y ) ≡ Y (0, 0) ∧ ∀x < a(x 6= 0 ⊃ ¬Y (0, x)) ∧

∀z < a∀x < a, Y (z + 1, x) ↔ (Y (z, x) ∨ ∃y < a, Y (z, y) ∧E(y, x)). (3.29)
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Definition 3.30. VNL is the theory over L2
A that is axiomatized by V0 and the axiom

CONN ≡ ∀a∀E∃Y δCONN (a, E, Y ),

To apply Theorem 3.8 for VNL we need the next lemma, which essentially shows

that Conn⋆ is provably total in VNL(Row , seq). (Recall that seq(u,X) = (X)u is the

u-th number of the sequence encoded by X.)

Lemma 3.31. VNL(Row , seq) ⊢ ∀b∀Z∀E∃Y ∀u < b δCONN ((Z)u, E[u], Y [u]).

Proof. Given the graphs Gu encoded by ((Z)u, E[u]) (for 0 ≤ u < b), the idea is to

construct a (larger) graph G encoded by (a, E ′) so that from Conn(a, E ′) we can define

(using ΣB
0 -COMP) Conn((Z)0, E[0]), . . . ,Conn((Z)b−1, E[b−1]). The graph G is obtained

by introducing a common source node s with directed edges to the sources of Gu.

Formally, for each u, there is a copy of Gu in G with vertices

su = 〈u+ 1, 0〉, 〈u+ 1, 1〉, . . . , 〈u+ 1, (Z)u − 1〉

Let a = 〈b,max{(Z)u}〉. E ′ has, in addition, edges 〈0, su〉, for 0 ≤ u < b.

Now, there is a path of length z from 0 to x in Gu iff there is a path of length z + 1

from 0 to 〈u+ 1, x〉 in G, i.e.,

Conn((Z)u, E[u])(z, x) ↔ Conn(a, E ′)(z + 1, 〈u+ 1, x〉)

for 0 ≤ x, z < (Z)u. �

3.6 VL

Let SinglePath(a, E) be the function that when (a, E) encode a directed graph whose

out-degree is exactly one gives the unique path from the source node 0 of length a. Then

SinglePath is complete for L. In the following formula, (P )z = x iff x has distance z to
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0. The function (P )z can be eliminated using its defining axiom (Definition 2.20). Let

δSinglePath(a, E, P ) ≡ P ↔ [∃x < a¬∃!y < aE(x, y) ⊃ P = ∅]

∧ [∀x < a∃!y < aE(x, y) ⊃ (P )0 = 0 ∧ ∀z < aE((P )z, (P )z+1)]

Proposition 3.32. SinglePath is AC0 many-one complete for L, where SinglePath(a, E) =

P ↔ |P | ≤ 〈a, a〉 ∧ δSinglePath(a, E, P ).

Definition 3.33 (VL). Let SinglePATH ≡ ∀a∀E∃P ≤ 〈a, a〉, δSinglePath(a, E, P ). VL is

the theory over L2
A that is axiomatized by V0 and SinglePATH.

To apply Theorem 3.8 for VL and L we need

Lemma 3.34. VL ⊢ ∀b∀X∀E∃P∀u < b, δSinglePath((X)u, E[u], P [u]).

Proof. Informally, given b graphs Gu = (a, E[u]) (for 0 ≤ u < b) whose out-degree is ex-

actly 1 we need to construct simultaneously in VL the paths P [u] that satisfy SinglePATH

for (a, E[u]), for 0 ≤ u < b.

We will construct a graph G = (a′, E ′) so that from Q = SinglePath(a′, E ′) we can

define P [0], . . . , P [b−1]. In fact, Q will be just the concatenation of P [u], 0 ≤ u < b.

The nodes of G are triples 〈u, z, x〉 (0 ≤ u < b, 0 ≤ z ≤ a, 0 < x < a). Our aim is

that if P [u] encodes the path (0, x1, . . . , xa), then Q has a sub-path:

〈u, 0, 0〉, 〈u, 1, x1〉, . . . , 〈u, a, xa〉

The set E ′ (of edges of G) consist of (for 0 ≤ u < b):

(〈u, z, x〉, 〈u, z + 1, y〉) for 0 ≤ z, x, y < a and (x, y) ∈ E[u]

(〈u, a, x〉, 〈u+ 1, 0, 0〉) for x < a

Let a′ and Q = SinglePath(a′, E ′). We can prove by induction (on u and z) that the

(u(a+ 1) + z)-th node in Q must be of the form 〈u, z, x〉:

(Q)u(a+1)+z = 〈u, z, x〉 for some x, 0 ≤ x < a
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Define P so that

(P [u])z = x iff (Q)u(a+1)+z = 〈u, z, x〉

It is straightforward that each P [u] satisfies SinglePATH for (a, E[u]). �

Zambella [Zam97] introduced the theory ΣB
0 -Rec which is axiomatized essentially by

V0 together with the following axiom scheme:

∀w < b∀x < a∃y < aϕ(w, x, y) ⊃ ∃Z, ∀w < bϕ(w, (Z)w, (Z)w+1).

for all ΣB
0 formulas ϕ not involving Z. It is easy to show that VL is the same as ΣB

0 -Rec.

Now we prove:

Theorem 3.35. VNC1 ⊆ VL.

Proof. It suffices to show that VL proves MFV (Definition 3.21), or equivalently, Fval

(3.23) is provably total in VL.

Thus, given (a,G, I) (specifying a “balanced” formula and the truth values of its

variables), for each inner node z of this balanced tree (where 1 ≤ z < a) we construct a

graph encoded by (a′, E) so that the value of this node, Fval(a,G, I)(z), can be obtained

from SinglePath(a′, E). Then, since SinglePath⋆ is provably total in VL, all nodes in

(a,G, I) can be evaluated at once.

The graph (a′, E) describes a depth-first traversal in the circuit (a,G) starting from

node z. Each vertex is a (potential) state of the traversal. There is a source (vertex 0),

and each other vertex is of the form

〈x, d, 0〉 or 〈x, u, v〉, where z ≤ x < 2a, v ∈ {0, 1}

(here d = 1, u = 2 indicate the direction of the traversal). A vertex 〈x, d, 0〉 corresponds

to the state when the depth-first traversal visits the gate numbered x for the first time

(so in general it will go “down”). Similarly, a state 〈x, u, v〉 is when the search visits gate

x the second time (thus the direction is “up”); by this time the truth value of the gate is

known, and v carries this truth value.
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The edges of this graph represent the transition between the states of the search. The

search starts at the root, and when visiting a gate x for the first time, it will travel down

along the left-most branch from x. Thus we have the following edge:

(0, 〈z, d, 0〉), and (〈x, d, 0〉, 〈2x, d, 0〉) for z ≤ x < a

And here are the transitions when the algorithm reaches the input gates:

(〈x+ a, d, 0〉, 〈x+ a, u, 0〉) if ¬I(x), 0 ≤ x < a

(〈x+ a, d, 0〉, 〈x+ a, u, 1〉) if I(x), 0 ≤ x < a

For an ∨–gate x (i.e., if ¬G(x), where 1 ≤ x < a), if the left child (2x) is ⊤ then the

search can ignore the right child (2x+ 1). We have the following edges:

either child is ⊤: (〈2x, u, 1〉, 〈x, u, 1〉) and (〈2x+ 1, u, 1〉, 〈x, u, 1〉)

the left child is ⊥: (〈2x, u, 0〉, 〈2x+ 1, d, 0〉) (go the the right child)

the right child is ⊥: (〈2x+ 1, u, 0〉, 〈x, u, 0〉) (value of gate x must be ⊥)

The transitions for an ∧–edge are similar.

Let a′ = 〈2a− 1, 2, 1〉. It is easy to see that (a′, E) encodes a graph of out-degree ≤ 1.

To make the out-degree exactly 1 we can create an extra vertex and connect all vertices

with out-degree 0 to it. The value of node z in (a,G, I) is determined by whether 〈z, u, 1〉

is reachable from 0:

Fval(a,G, I)(z) ↔ ∃w (SinglePath(a′, E))w = 〈z, u, 1〉

To prove the correctness of the construction, let Pz be the path in the graph con-

structed for computing Fval(a,G, I)(z) (1 ≤ z < a). Let Y be defined by

|Y | ≤ 2a ∧ ∀z < a ((Y (a+ z) ↔ I(z)) ∧ (z 6= 0 ⊃ Y (z) ↔ ∃w(Pz)
w = 〈z, u, 1〉))

We show that Y satisfies δMFV (a,G, I, Y ) (3.22). It suffices to show that

0 < z < a ⊃ (Y (z) ↔ [(G(z) ∧ Y (2z) ∧ Y (2z + 1)) ∨ (¬G(z) ∧ (Y (2z) ∨ Y (2z + 1)))])

This can be proved by reverse induction on the length of z. �
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3.7 VP

We use the fact that evaluating a monotone Boolean circuit, where the gates are numbered

0, 1, 2, . . . , (a−1) and inputs of a gate x come only from gates y, where y < x, is complete

for P. Suppose that (a,G,E) code a monotone circuit, where

• G(0) and G(1) are constants 0 and 1 respectively,

• G(x) specifies gate x for 2 ≤ x < a (G(x) holds iff gate x is an ∧ gate), and

• for 0 ≤ y < x, 2 ≤ x < a, E(y, x) states that the output of gate y is connected to

an input of gate x.

In the formula δMCV below (MCV stands for Monotone Circuit Value) Y evaluates the

circuit: Y (x) holds iff the output of gate x is 1.

δMCV (a,G,E, Y ) ≡ ¬Y (0) ∧ Y (1) ∧ ∀x < a, 2 ≤ x ⊃

Y (x) ↔ [(G(x) ∧ ∀y < x(E(y, x) ⊃ Y (y))) ∨ (¬G(x) ∧ ∃y < x(E(y, x) ∧ Y (y)))]

Proposition 3.36. Mcv is AC0-many-one complete for P, where Mcv(a,G,E) = Y ↔

|Y | ≤ a ∧ δMCV (a,G,E, Y ).

Definition 3.37. VP is the theory over L2
A and is axiomatized by the axioms of V0 and

MCV ≡ ∀a∀G∀E∃Y δMCV (a,G,E, Y ).

Notice that because Mcv is AC0-many-one complete for P, proving directly that VP

can Σ1
1-define all functions in FP is easier than the proof of the general case for VC in

Section 3.2: For each polytime function F we can describe a circuit (a,G,E) and from

Y that satisfies δMCV (a,G,E, Y ) we can extract the value of F .

Of course the results in Section 3.2 also imply that the provably total functions of

VP are precisely FP. We will need to show that

VP ⊢ ∀b∀X∀G∀E∃Y ∀u < b, δMCV ((X)u, G[u], E[u], Y [u])

This is straightforward and we leave the details to the reader.
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3.7.1 VP = TV0

To define TV0 we need the empty set ∅ and the successor function for strings: S(X) is

the set whose binary representation when interpreted as a natural number is one plus that

of X. (Both functions are AC0.) The theory TV0 [Coo05] has vocabulary L2
A ∪ {∅, S}

and extends V0 by ΣB
0 -SIND, the string induction axioms for ΣB

0 formulas. In general,

Φ-SIND is the set of axioms of the form

[ϕ(∅) ∧ ∀X(ϕ(X) ⊃ ϕ(S(X))] ⊃ ϕ(Y )

for ϕ(X) in Φ that may have free variables other than X.

Write X<z for Cut(z,X) (see (3.7) on page 29), and define

ϕrec(y,X) ≡ ∀i < y(X(i) ↔ ϕ(i, X<i))

The bit recursion scheme Φ-BIT-REC is the set of axioms of the form ∃Xϕrec(y,X)

where ϕ(i, X) is in Φ and ϕ may have free variables other than X. The next theorem is

proved by Cook [Coo05].

Theorem 3.38. TV0(Cut) is equivalent to V0(∅, S) + ΣB
0 -BIT-REC.

We will use the above theorem to prove the next theorem:

Theorem 3.39. TV0 is a conservative extension of VP.

Proof. The axiom MCV is a special case of ΣB
0 -BIT-REC, so by Theorem 3.38 MCV

is provable in TV0(Cut), and hence in TV0. Therefore VP ⊆ TV0.

For the conservativity, it suffices to show that VP(Cut) ⊢ ΣB
0 -BIT-REC. Thus for

each ΣB
0 -formula ϕ(~w, y,X, ~W ) we must show

VP(Cut) ⊢ ∃X∀z < y, X(z) ↔ ϕ(~w, z,X<z, ~W ) (3.30)

We will show that VP proves the existence of a monotone circuit C that computes X.

It is easier to describe C by its sub-circuits.
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Our circuit C will compute the bits of X in the order of X(0), X(1), . . .. Because

C is monotone, we will compute explicitly both X(z) and ¬X(z) for 0 ≤ z < y by a

sub-circuit Cz. Since the outputs of Cz′ are fed to Cz for z′ < z, we need to make sure

that the gates in Cz+1 have larger indices than those in Cz. Thus the gates in Cz have

indices 〈(z + 1)n, i〉 for 1 ≤ i ≤ m where m is specified below and n is sufficiently large so

that 〈(z + 1)n, 1〉 > 〈zn,m〉 for z ≤ y. The constants 0,1 and inputs ~w and ~W are given

by the gates 0, 1, 〈0, 1〉, . . . , 〈0, m〉. Here ~w are presented in unary while ~W are given in

binary; we also need ¬Wj(t) (see below). In short, we need m = O(
∑

wi +
∑ |Wj|) and

m be larger than the maximum size of all Cz.

The construction of Cz below will guarantee that

gates 〈(z + 1)n,m〉 and 〈(z + 1)n,m− 1〉 evaluate X(z) and ¬X(z), respectively

(3.31)

Let Y be the string that evaluates C (Y exists by the axiom MCV ). Then the string X

in (3.30) is defined by

X(z) ↔ Y ((z + 1)n,m) (3.32)

We will need to prove that such X satisfies (3.30). The proof is by induction on z, and

is clear from our construction of Cz given below.

In constructing Cz we may assume that string equality Y = Z has been removed from

ϕ by using the V0 axiom SE and the equality axioms. Further we can use De Morgan’s

laws to push negations in so that in both ϕ and ¬ϕ negations appear only in front of

atomic formulas. We proceed to construct the sub-circuits Cz by structural induction on

the resulting formulas.

For the base case we consider the possible literals

s = t, s 6= t, s ≤ t, t < s, Z(t), ¬Z(t) (3.33)

The values of all variables except |X| making up each term t are precomputed from the

data ~w, z, ~W , so t = t(|X|) is known as a polynomial in |X| before constructing Cz. In
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general, the value v of a term t is represented in unary notation as a sequence Tt of b

gates in Cz (for some precomputed upper bound b on t) whose output Tt(i) satisfy

Tt(i) ↔ i = v for 0 ≤ i < b

In case t is |X|, this sequence computes the following formulas:

T|X|(i) ≡ X(i− 1) ∧
z−1
∧

j=i

¬X(j)

where the first term X(i − 1) is omitted if i = 0. For example, for i ≥ 1 gate T|X|(i) is

an ∧-gate with inputs from gates 〈in,m〉 and 〈(j + 1)n,m− 1〉 for i ≤ j ≤ z − 1 (see

(3.31)).

The sum s+ t or product st of two terms is easily computed from s and t; for example

Tst(i) ≡
∨

i=jk

(Ts(j) ∧ Tt(k))

Using these ideas sub-circuits Cz for the first four literals in (3.33) are easily constructed.

Now consider the cases Z(t) and ¬Z(t). When Z is X: X(i) and ¬X(i) are outputs

of gates 〈(i+ 1)n,m〉 and 〈(i+ 1)n,m− 1〉, respectively. We can simplify the cases in

which Z is a parameter variable W by preprocessing ϕ so that any occurrence of the form

W (t), where t contains |X|, is replaced by ∃x ≤ s(x = t ∧W (x)), where s is a term not

involving |X| which is an upper bound for t (and similarly for ¬W (t)). Thus for literals

W (t) and ¬W (t) we may assume that t is a constant known “at compile time” and hence

W (t) and ¬W (t) are outputs of appropriate gates 〈0, j〉.

For the induction step, the cases where ϕ is ϕ1 ∧ ϕ2 and ϕ is ϕ1 ∨ ϕ2 are easy. So it

remains to consider the bounded quantifier cases, say

ϕ(z,X) ≡ ∃x ≤ tψ(x, z,X) (3.34)

We may assume the bounding term t in (3.34) does not contain |X| by replacing t by an

upper bound s for t, and adding the conjunct x ≤ t. Hence the value of t is known at
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compile time. By the induction hypothesis, V0 proves the existence of sub-circuits for

ψ(x, z,X). A circuit for ∃x ≤ tψ(x, z,X) can be constructed by placing circuits for each

of ψ(0, z, X), ψ(1, z, X), . . . , ψ(t, z,X) side by side so that these formulas are evaluated

in parallel. Then ϕ can be computed by a single ∨ gate from the outputs of these circuits.

The circuit for ¬ϕ is constructed using the equivalence ¬ϕ ↔ ∀x ≤ t¬ψ(x, z,X) and

following the case ∀x ≤ t, which is handled similarly. This completes the description of

the sub-circuits Cz. �

3.8 VACk and VNCk

Recall ACk and NCk from Definition 2.1.

Consider encoding a layered, monotone Boolean circuit C with (d + 1) layers and n

unbounded fan-in (∧ or ∨) gates on each layer. We need to specify the type (either ∧

or ∨) of each gate, and the wires between the gates. Suppose that layer 0 contains the

inputs which are specified by a string variable I of length |I| ≤ n. To encode the gates

on other layers, there is a string variable G such that for 1 ≤ z ≤ d, G(z, x) holds if and

only if gate x on layer z is an ∧-gate (otherwise it is an ∨-gate). Also, the wires of C are

encoded by a 3-dimensional array E: 〈z, x, y〉 ∈ E iff the output of gate x on layer z is

connected to the input of gate y on layer z + 1.

The following algorithm computes the outputs of C using (d+ 1) loops: in loop z it

identifies all gates on layer z which output 1. It starts by singling out the input gates with

the value 1. Then in each subsequent loop (z + 1) the algorithm identifies the following

gates on layer (z + 1):

• ∨–gates that have at least one input which is identified in loop z;

• ∧–gates all of whose inputs are identified in loop z.

The formula δLMCV (n, d, E,G, I, Y ) below formalizes this algorithm (LMCV stands

for Layered Monotone Circuit Value). The 2–dimensional array Y stores the result of
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computation: For 1 ≤ z ≤ d, row Y [z] contains the gates on layer z that output 1.

δLMCV (n, d, E,G, I, Y ) ≡ ∀x < n∀z < d, (Y (0, x) ↔ I(x))∧

[Y (z + 1, x) ↔ (G(z + 1, x) ∧ ∀u < n, E(z, u, x) ⊃ Y (z, u))∨

(¬G(z + 1, x) ∧ ∃u < n, E(z, u, x) ∧ Y (z, u))] (3.35)

For NCk we need the following formula which states that the circuit with underlying

graph (n, d, E) has fan-in 2:

Fanin2 (n, d, E) ≡ ∀z < d∀x < n∃u1, u2 < n∀v < n, E(z, v, x) ⊃ v = u1 ∨ v = u2

Recall (Example 2.18) that the function log(x) = ⌊log2(x)⌋ (or |x|) can be defined by a

ΣB
0 formula. Let

Lmcv k(n,E,G, I) = Y ↔ |Y | ≤ 〈n, |n|k〉 ∧ δLMCV (n, |n|k, E,G, I, Y )

Lmcv k,2(n,E,G, I) = Y ↔ (¬Fanin2 (n, d, E) ∧ Y = ∅)∨

(Fanin2 (n, d, E) ∧ |Y | ≤ 〈n, |n|k〉 ∧ δLMCV (n, |n|k, E,G, I, Y ))

Proposition 3.40. For k ≥ 1, Lmcvk is AC0 many-one complete for ACk. For k ≥ 2,

Lmcvk,2 is AC0 many-one complete for NCk.

Proof Sketch. First, it is easy to see that every function in uniform ACk (resp. NCk) is

AC0 many-one reducible to Lmcvk (resp. Lmcvk,2). It remains to show that the Lmcv

functions belong to the respective classes.

We show that Lmcv1 is in AC1. The argument for Lmcvk in general is similar.

Consider a tuple (n, d, E,G, I) that encodes an unbounded fan-in circuit C of depth

d ≤ c log(n) for some c ∈ N, and I encodes the inputs to C. For each z ≤ c log(n) and

x ≤ n we construct a constant-depth sub-circuit Kz,x that computes the output of gate

〈z, x〉 (gate numbered x on layer z) in C. The inputs to Kz,x are the bits of E (that

specify the inputs to gate 〈z, x〉) and the output of other gates Kz−1,y. In particular, Kz,x
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computes the following formula (recall that G(z, x) holds iff gate 〈z, x〉 is an ∧ gate):

(G(z, x)∧
∧

y<n

(E(z−1, y, x) ⊃ K(z−1, y)))∨ (¬G(z, x)∧
∨

y<n

(E(z−1, y, x)∧K(z−1, y)))

Our AC1 circuit that computes Lmcv1 is obtained by stack the sub-circuits Kz,x

together. To make sure that it has depth log(m) where m is the length of the encoding

of (n, d, E,G, I), we require that m is at least nc whenever (c− 1) log(n) < d ≤ c log(n).

Now we show that Lmcv 2,2 is in NC2 (the argument for Lmcvk,2 where k > 2 is

similar). Suppose that (n, d, E,G, I) encodes a circuit C of of fan-in 2 and depth d ≤

c log(n) for some c ∈ N, and I encodes the inputs to C. We use a log log(n)-depth

unbounded fan-in circuit K that computes whether there is a path in E from a gate

〈z, y〉 to 〈z′, x〉 for any z < z′ ≤ d, z′ ≤ z + log(n) and x, y < n

Using circuit K we can evaluate each log(n)-depth sub-circuit of C rooted at gate

〈z, x〉 by a sub-circuit Kz,x of depth O(log(n). Our NC2 circuit computing Lmcv2,2 is

obtained by stacking the sub-circuits Ki log(n),x together (on top ofK), for i ≤ c. Note that

K can be simulated by a bounded fan-in circuit of depth O(log(n)). Again, we can make

sure that the resulting circuit has depth (log(m))2, where m is the length of the encoding

of (n, d, E,G, I), by requiring that m ≥ nc
′

whenever (c − 1) log(n) < d ≤ c log(n) for

some c′ depending on c. �

Note that we do not know whether Lmcv1,2 is in NC1.

Definition 3.41 (VACk and VNCk). For k ≥ 1, the theory VACk has vocabulary L2
A

and is axiomatized by V0 and the axiom ∀n∀E∀G∀I∃Y δLMCV (n, |n|k, E,G, I, Y ). For

k ≥ 2, VNCk has vocabulary L2
A and is axiomatized by V0 and the axiom

∀n∀E∀G∀I(Fanin2 (n, |n|k, E) ⊃ ∃Y δLMCV (n, |n|k, E,G, I, Y )).

It is straightforward to show that the functions Lmcv⋆k (resp. Lmcv ⋆k,2, for k ≥ 2) is

provably total in VACk (resp. VNCk, for k ≥ 2). Thus these theories are instances of

VC discussed in Section 3.2.
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Some Function Algebras

In this chapter we introduce the bounded number recursion (BNR) operation and use it

to characterize a number of function classes inside FL. Essentially each of these classes

is the closure of the empty set of functions under AC0 reduction together with some

(limited version of) BNR. This operation is defined in Section 4.1 where we prove the

characterizations of FL, FTC0 and FAC0(2). The characterization of FAC0(6) is more

technical and is presented in Section 4.2. (The characterization of FNC1 is yet more

complicated and follows from the result in Chapter 5.) Finally we show in Section 4.3

that the use of AC0 reduction in these characterizations can be replaced by only two

operations: composition and a newly defined operation called string comprehension.

As mentioned in Section 1.1.2, the algebras for FAC0(2) and FAC0(6) are two-sorted

version of the algebras given in [CT95, PW85]; here we carry out the proofs in more

detail. Also, the algebra for FL is two-sorted version of Lind’s characterization [Per05].

The algebra for FTC0 is new.

These algebras can be used to obtained universal theories that are equivalent to VC

introduced in Chapter 3.2. In fact, in the next chapter we use the algebra for FNC1 to

develop the theory VALV and prove that VALV is a conservative extension of VNC1.

In effect, our result there shows that VALV is equivalent to VNC
1
.
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Notation In this chapter, ∅ denotes the empty set of functions (as oppose to the empty-

set element of the second sort used in the previous chapter).

4.1 Bounded Number Recursion

Definition 4.1 (Bounded Number Recursion). For a number term t(y, ~x, ~X) and number

functions g(~x, ~X) and h(y, z, ~x, ~X), we say that a number function f(y, ~x, ~X) is obtained

by t-bounded number recursion (t-BNR) from g and h if f < t and

f(0, ~x, ~X) = g(~x, ~X) (4.1)

f(y + 1, ~x, ~X) = h(y, f(y, ~x, ~X), ~x, ~X) (4.2)

If t is a polynomial in ~x, | ~X| then we also say that f is obtained from g, h by polynomial-

bounded number recursion (pBNR).

Theorem 4.2. FL is precisely the closure of ∅ under AC0 reduction and pBNR.

Proof. First, it is straightforward to show that SinglePath (Definition 3.33 on page 50)

can be obtained from FAC0 by pBNR. For the other direction, we prove by induction

on the number of the applications of the number recursion operation. For the induction

step, suppose that f is obtained from FL functions g, h by t-BNR, for some polynomial

t(~x, | ~X|). Consider the graph (〈t, t〉, E) where E(〈y, u〉, 〈y + 1, v〉) iff v = h(u, ~x, ~X), for

u, v, y < t. Then f(y) = z iff 〈y, z〉 is reachable from 〈0, g〉. Hence f is AC0 reducible to

{g, h, SinglePath}. �

Theorem 4.3. FAC0(2) is precisely the closure ∅ under AC0 reduction and 2-BNR.

Proof. For one direction, it is easy to show that the function mod2 (Proposition 3.19

on page 38) can be obtained from FAC0 using 2-BNR. We prove the other direction by

induction on the number of applications of the 2-BNR operation. For the induction step,
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suppose that f is obtained from FAC0(2) functions g, h by 2-BNR as in Definition 4.1.

For y ≥ 1, let (we drop mention of ~x, ~X)

z = max({0} ∪ {u < y : h(u, 0) = h(u, 1)})

n = mod2(y, {u : z < u < y ∧ h(u, 0) 6= 0})

v =















g if z = 0

h(z, 0) otherwise

Then f(y) = 0 iff either (i) v = 0 and n = 0, or (ii) v = 1 and n = 1. In other words, f

can be obtained from g, h and mod2 by AC0 reduction. �

The characterization of FTC0 is stated using the following operation which is a special

instance of polynomial-bounded number recursion (take h(y, z) = y + z).

Definition 4.4 (Number Summation). For a number function f(y, ~x, ~X), the function

sumf(y, ~x, ~X) below is said to be defined from f by number summation, or just summa-

tion:

sumf (y, ~x, ~X) =

y
∑

z=0

f(z, ~x, ~X)

Theorem 4.5. A function is in FTC0 iff it can be obtained from ∅ by AC0 reduction

and number summation.

Proof. The (=⇒) direction follows from the fact that (where we write 0 for ⊥ and 1 for

⊤):

numones(x,X) =

x
∑

y=0

X(y)

We prove the other direction by induction on the number of applications of the sum-

mation operation. For the induction step it suffices to show that sumf can be obtained

from f and numones using AC0 reduction. Define a string W that contains the right

number of bits:

W (xa + v) ↔ x ≤ y, v < f(x)
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for some a > max({f(x) : x < y}). Then it is easy to verify that sumf(y) =

numones((y + 1)a,W ). �

4.2 Number Recursion for Permutations

Definition 4.6. For 2 ≤ k ∈ N, we say that a function h(x) is a k-permutation (or just

permutation) if on domain {0, . . . , k − 1}, the range of h is {0, . . . , k − 1}. kk denotes

the set of all functions {0, . . . , k − 1} → {0, . . . , k − 1}, and Sk ⊆ kk the set of all

k-permutations.

We now show that the (general) k-BNR can be simulated by AC0 reduction and

BNR for k-permutations (that is, k-BNR as in Definition 4.1 but g(~x, ~X) ≤ k − 1 and

hy,~x, ~X(z) = h(y, z, ~x, ~X) is a k-permutation). In the following discussion we will often

drop mentions of ~x, ~X. First, we show that if for all y, hy(z) = h(y, z) is not a k-

permutation, then k-BNR using h can be replaced by (k − 1)-BNR.

Lemma 4.7. Let be h(y, z, ~x, ~X) be a function such that for all y, hy,~x, ~X 6∈ Sk, where

hy,~x, ~X(z) = h(y, z, ~x, ~X). Suppose that k ≥ 2 and that f(y, ~x, ~X) is obtained from g(~x, ~X)

and h(y, z, ~x, ~X) by k-BNR. Then f can be obtained from g, h by AC0 reduction and

(k − 1)-BNR.

Proof. Intuitively, since hy are not k-permutation, we need the values of hy only on

a (k − 1)-element subset of {0, 1, . . . , k − 1}. So define ℓ(y) to be the least element

in {0, 1, . . . , k − 1} that can be discarded from the domain of hy without affecting the

computation of f :

ℓ(0) = min{w : w 6= g} ∧ ℓ(y + 1) = min{w : w 6∈ hy({0, 1, . . . , k − 1})}

Define h′y ∈ (k−1)(k − 1) and bijection ry(z) (where [k] = {0, 1, . . . , k − 1}):

[k] \ {ℓ(y)} ry−→ [k − 1]
h′y−→ [k − 1]

r−1
y+1−→ [k] \ {ℓ(y + 1)}
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so that on domain [k] \ {ℓ(y)}, r−1
y+1 ◦ h′y ◦ ry = hy. Thus

ry(z) =















z if z < ℓ(y)

z − 1 if ℓ(y) < z < k

and h′y = ry+1 ◦ hy ◦ r−1
y

Let f ′ be obtained from g and h′ by (k − 1)-BNR, then it is easy to see that f(y) =

r−1
y (f ′(y)). �

Now we show that if h0 is not a k-permutation, then k-BNR using h can be simulated

by (k − 1)-BNR and number recursion using k-permutation:

Lemma 4.8. Let 2 ≤ k ∈ N and g(~x, ~X), h(y, z, ~x, ~X) be functions such that h0,~x, ~X(z) 6∈

Sk, where h0,~x, ~X(z) = h(0, z, ~x, ~X). Suppose that f is obtained from g, h by k-BNR.

Then f can also be obtained from g and h by AC0 reduction, (k − 1)-BNR and number

recursion using k-permutations.

Proof. Since h0(z) = h(0, z) is not a k-permutation, for each y ≥ 0 we need the values

of hy on only a (k − 1)-elements subset of {0, 1, . . . , k − 1}. The issue is to uniformly

identify these subsets, then we can use Lemma 4.7 above. First, we identify a redundant

number ℓ(y) ≤ k− 1 that can be removed from the domain of hy+1 without affecting the

computation of f .

Let m(y) = max{u ≤ y : hu 6∈ Sk}. Then 0 ≤ m(y) ≤ y for y ≥ 0. Consider the case

where m(y) = y (i.e., hy is not a k-permutation). Define

ℓ(y) = min{w ≤ k − 1 : ¬∃z < k hy(z) = w}

Now suppose that m(y) < y, then hu are k-permutations, for m(y) < u ≤ y. The

redundant value in the domain of hm(y)+1 (which exists because hy is not a k-permutation)

propagates through hm(y)+2, . . . , hy. These redundant values can be computed by number

recursion using k-permutations as follows. Let ℓ′(u) be obtained by number recursion

using k-permutation:

ℓ′(0) = min{w ≤ k − 1 : ∀z < k hm(y)(z) 6= w} ∧ ∀u ≥ 0, ℓ′(u+ 1) = h(u, ℓ′(u))
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Now ℓ(y) = ℓ′(y−· m(y)) can be safely removed from the range of hy.

Now for z < k let

h′(y, z) =















h(y, z) if h(y, z) 6= ℓ(y)

k otherwise

Then h′y 6∈ Sk (for all y), and it can be shown that f is obtained from g and h′ by k-BNR.

By Lemma 4.7, f can also be obtained from g and h′ by AC0 reduction and (k−1)-BNR.

�

Theorem 4.9. Suppose that 1 ≤ k ∈ N and f is obtained from g and h using k-BNR.

Then f can be obtained from g and h by AC0 reduction and k-BNR using k-permutations.

Proof. We prove by induction on k. The base case (k = 1) is trivially true.

For the induction step, assume that the theorem is true for (k− 1), we prove it for k.

Suppose that for some y, hy(z) = h(y, z) is not a k-permutation. The idea is to identify

the first point m where hm is not a k-permutation:

m = min({u < y : hu 6∈ Sk} ∪ {y})

Then hx is a k-permutation for x < m, and for x ≥ m we can use Lemma 4.8 above and

the induction hypothesis. �

Now we show that FAC0(6) is closed under 3-BNR and 4-BNR. Essentially, the proofs

are based on the solvability of the groups associated with these operations (i.e., S3, S4).

Theorem 4.10. FAC0(6) is closed under 3-BNR.

Proof. By Theorem 4.9, it suffices to consider 3-BNR for 3-permutations. Suppose that

g and h(x, z) are in FAC0(6), g < 3 and hx(z) = h(x, z) ∈ S3 for all x. Let f be obtained

from g and h using 3-BNR. We show that f is also in FAC0(6).

Note that

f(x) = hx−1 ◦ hx−2 ◦ . . . ◦ h0(g)
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Let A3 be the normal subgroup of S3 which consists of the even permutations, and e be

the identity of S3. Then S3 = {e, (0 1)} × A3, i.e., every element in S3 is the product

γ ◦ σ where γ ∈ {e, (0 1)} and σ ∈ A3. In particular,

hu = (0 1)ǫu ◦ σu where ǫu ∈ {0, 1} and σu ∈ A3.

For u < x let

δu = (0 1)ǫx−1 ◦ . . . ◦ (0 1)ǫu = (0 1)(ǫx−1+...+ǫu) mod 2

Then δu can be computed in V0(2), and it is easy to see that

f(x) =

(

u=0
∏

u=x−1

(δu ◦ σu ◦ δ−1
u )

)

◦ δ0(g) (4.3)

We compute ηu = δu ◦ σu ◦ δ−1
u simultaneously for all u < x. Here ηu ∈ A3, and therefore

is of the form

(0 1 2)λu where λu ∈ {0, 1, 2}.

As a result,
∏u=0

u=x−1 ηu can be computed in FAC0(3) by computing (λx−1 + . . . + λ0)

mod 3. This shows that f(x) can be computed in FAC0(6). �

Theorem 4.11. FAC0(6) is closed under 4-BNR.

Proof. Again, by Theorem 4.9 it suffices to show that FAC0(6) is closed under 4-BNR

for 4-permutations. Let g and h(x, z) be in FAC0(6), g < 4 and hx(z) = h(x, z) ∈ S4 for

all x. Suppose that f is defined from g and h using 4-BNR.

As in the proof of Theorem 4.10, we need to compute (4.3) but now σu are in A4, the

normal subgroup of S4 that consists of all even permutations. As before, ηu = δu◦σu◦δ−1
u

can be computed simultaneously for all u < x, but here ηu ∈ A4. Our next step is to

compute
u=0
∏

u=x−1

ηu, (for ηu ∈ A4) (4.4)

Using the same idea as in the proof of Theorem 4.10, i.e., using the fact that A4

contains a normal subgroup V = {e, (0 1)(2 3), (0 2)(1 3), (0 3)(1 2)} (the Klein group).

In particular, A4 = {e, (0 1 2), (0 2 1)} × V .
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We repeat the steps in the proof of Theorem 4.10 and write ηu = (0 1 2)ǫ
′

u ◦σ′
u, where

ǫ′v ∈ {0, 1, 2} and σ′
u ∈ V . Also, for u < x let

δ′u = (0 1 2)ǫ
′

x−1 ◦ . . . ◦ (0 1 2)ǫ
′

u = (0 1 2)(ǫ′x−1+...+ǫ
′

u) mod 3

Thus δ′u can be computed in FAC0(6) by computing (ǫ′x−1 + . . .+ ǫ′u) mod 3. Now (4.4)

can be rewritten as (see (4.3))
(

u=0
∏

u=x−1

(δ′u ◦ σ′
u ◦ (δ′u)

−1)

)

◦ δ′0

Here η′u = δ′u ◦ σ′
u ◦ (δ′u)

−1 are in V , so the above product can be computed in FAC0(2)

using the fact that V is Abelian and its members have order 2. �

Corollary 4.12. FAC0(6) is the closure ∅ under AC0 reduction and 4-BNR.

Proof. For one direction, it is straightforward to show that mod6 can be obtained from

AC0 functions by 3-bounded number recursion. The other direction follows from Theo-

rem 4.11 above. �

4.3 The String Comprehension Operation

In many cases (such as all previous results in this chapter), AC0 reduction is equivalent

to the combination of composition and the following operation:

Definition 4.13 (String Comprehension). For a number function f(x), the string com-

prehension of f is the string function

F (y) = {f(x) : x ≤ y}

Note that if f is polynomially bounded, then so is F .

For example, consider the ΣB
0 formula δparity(X, Y ) (3.20) on page 38. As a function

of X, Y = F (|X|, X), where F is the string comprehension of

f(x,X) =















x if x > 0 and the number of 1 in X(0), . . . , X(x− 1) is odd

|X| + 1 otherwise
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Theorem 4.14. Suppose that L is a class of polynomially bounded functions that includes

FAC0. Then a function is AC0-reducible to L iff it can be obtained from L by finitely

many applications of composition and string comprehension.

Proof. For the IF direction, it suffices to prove that a function obtained from input

functions by either of the operations composition or string comprehension is ΣB
0 -definable

from the input functions.

For composition, suppose

F (~x, ~X) = G(h1(~x, ~X), . . . , hk(~x, ~X), H1(~x, ~X), . . . , Hm(~x, ~X))

where G and h1, . . . , hk, H1, . . . , Hm are polynomially bounded. Then F is also polyno-

mially bounded, and its bit graph F (~x, ~X)(z) is represented by the open formula

G(h1(~x, ~X), . . . , hk(~x, ~X), H1(~x, ~X), . . . , Hm(~x, ~X))(z)

(A similar argument works for a number function f .)

For string comprehension, suppose that f(x) is a polynomially bounded number func-

tion. As noted before, the string comprehension F (y) of f is also polynomially bounded,

and it has bit graph

F (y)(z) ↔ z < t ∧ ∃x ≤ y z = f(x)

where t is the bounding term for F . Hence F is also ΣB
0 -definable from f .

For the ONLY IF direction, it suffices to show that if L ⊇ FAC0 and F (or f) is

ΣB
0 -definable from L, then F (resp. f) can be obtained from L by composition and string

comprehension.

Claim : If L ⊇ FAC0 and ϕ(~z, ~X) is a ΣB
0 (L) formula, then the characteristic function

cϕ defined by

cϕ(~z, ~Z) =











1 if ϕ(~z, ~Z)

0 otherwise

can be obtained from L by composition.
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The claim holds because cψ(~x, ~X) is in FAC0 for every ΣB
0 (L2

A)-formula ψ, and (by

structural induction on ϕ) it is clear that for every ΣB
0 (L)-formula ϕ(~z, ~Z) there is a

ΣB
0 (L2

A)-formula ψ(~x, ~X) such that

ϕ(~z, ~Z) ↔ ψ(~s, ~T )

for some L-terms ~s and ~T . Hence cϕ(~z, ~Z) = cψ(~s, ~T ).

Now suppose that F is ΣB
0 -definable from L, so for some L2

A term t(~z, ~X) and ΣB
0 (L)

formula ϕ(x, ~z, ~X):

F (~z, ~X)(x) ↔ x < t ∧ ϕ(x, ~z, ~X)

Define the number function f by cases as follows:

f(x, ~z, ~X) =















x if ϕ(x, ~z, ~X)

t if ¬ϕ(x, ~z, ~X)

Then by the claim, f can be obtained from L by composition:

f(x, ~z, ~X) = g(x, cϕ, t, c¬ϕ)

where g is the FAC0 function: g(x, y, z, w) = x · y + z · w. Now

F (~z, ~X) = Cut(t, G(t, ~z, ~X))

where G(y, ~z, ~X) is the string comprehension of f(x, ~z, ~X), and Cut (see (3.7) on page

29) is the FAC0 function defined by

Cut(x,X)(z) ↔ z < x ∧X(z)

It remains to show that if a number function f is ΣB
0 -definable from L then f can be

obtained from L by composition and string comprehension. Suppose f satisfies

y = f(~z, ~X) ↔ y < t ∧ ϕ(y, ~z, ~X)
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where t = t(~z, ~X) is a L2
A term and ϕ is a ΣB

0 (L) formula. Use the claim to define

cϕ(y, ~z, ~X) by composition from L, and define g by

g(x, ~z, ~X) = x · cϕ(x, ~z, ~X)

Then

f(~z, ~X) = |G(t, ~z, ~X)| −· 1

where G(y, ~z, ~X) is the string comprehension of g(x, ~z, ~X). �



Chapter 5

VNC1 RSUV≃ QALV

The equivalence between a single-sorted theory and a two-sorted theory are known as

their RSUV isomorphism [Tak93, Raz93, Kra90]. We briefly define this notion in Section

5.1, for more details see [CN06]. The RSUV isomorphism between VNC1 and QALV

is proved as follows. We first introduce a two-sorted theory called VALV (Section 5.2)

which is easily shown to be RSUV isomorphic to QALV. Then the major task is to

show that VALV is a conservative extension of VNC1. To show that VALV extends

VNC1, we need to formalize and prove the correctness of Barrington’s reduction from

the Boolean Sentence Value Problem to the word problem for S5. This is carried out in

Section 5.3. The fact that VALV is conservative over VNC1 follows from the results

proved in Chapter 3.

5.1 RSUV Isomorphism

Essentially, to show that a single-sorted theory T1 is RSUV isomorphic to a two-sorted

theory T2 (i.e., T1
RSUV≃ T2) we need to (a) construct from each model M of T1 a model M♯

of T2 whose second sort universe is the universe M of M, and whose first sort universe is

the subset log(M) = {|u| | u ∈ M}; and (b) construct from each model N of T2 a model

N ♭ of T1 whose universe is the second sort universe of N . These constructions have the

71
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property that M and (M♯)♭ are isomorphic, and so are N and (N ♭)♯.

These semantic mappings between models are associated with syntactic translations

of formulas between the languages of T1 and T2. In particular, each two-sorted formula

ϕ is translated into a single-sorted formula ϕ♭ such that for any model M of T1:

M♯ |= ∀ϕ if and only if M |= ∀ϕ♭

and each single-sorted formula ψ is translated into a two-sorted formula ψ♯ so that for

any model N of T2:

N ♭ |= ∀ψ if and only if N |= ∀ψ♯

For example, the single sorted formula x ≤ y is translated into X ≤2 Y , where

X ≤2 Y ≡ X =2 Y ∨ |X| < |Y |∨

|X| = |Y | ∧ ∃x < |X|(Y (x) ∧ ¬X(x) ∧ ∀y < |X|, x < y ⊃ (X(y) ↔ Y (y))) (5.1)

It turns out that the hard work in proving RSUV isomorphism is often in interpret-

ing certain functions in the appropriate structures, e.g., interpreting the multiplication

function in VTC0 [Ngu04, NC05]. In the case of QALV and VNC1, a difficulty is in

interpreting the function Fval in a model for QALV.

5.2 The Theory VALV

VALV is defined in style of VNC
1

(an instance of VC, Definition 3.9), but using the

5-bounded number recursion operation (Definition 4.1) instead of the function Fval (Def-

inition 3.22). Suppose that fg,h(y, ~x, ~X) is defined from g(~x, ~X) and h(y, z, ~x, ~X) by 5-

BNR. Then fg,h has the following defining axiom (we drop mention of ~x, ~X, and write f

for fg,h):

(g < 5 ∧ f(0) = g) ∨ (g ≥ 5 ∧ f(0) = 0) (5.2)

(h(y, f(y)) < 5 ∧ f(y + 1) = h(y, f(y))) ∨ (h(y, f(y)) ≥ 5 ∧ f(y + 1) = 0) (5.3)
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Definition 5.1. LFALV is the smallest set that satisfies

1) LFALV includes L2
A ∪ {pd , fSE}.

2) For each open formula ϕ(z, ~x, ~X) over LFALV and term t = t(~x, ~X) of L2
A there is

a string function Fϕ,t and a number function fϕ,t in LFALV.

3) For any two functions g, h of LFALV, there is a number function fg,h in LFALV.

Definition 5.2. VALV is the theory over LFALV with the following set of axioms: B1-

B11, L1, L2 (Figure 2.1), (2.8), (2.9), (2.10), (2.11) for each function Fϕ,t, (2.12) for

each function fϕ,t, and (5.2), (5.3) for each function fg,h of LFALV.

Theorem 5.3. VALV proves ΣB
0 (LFALV)-COMP and ΣB

0 (LFALV)-IND.

Proof. The fact that VALV proves ΣB
0 (LFALV)-COMP can be proved as for Lemma

3.10. The fact that VALV proves ΣB
0 (LFALV)-IND now follows from Theorem 2.14. �

5.2.1 QALV

The single-sorted theory ALV′ [Clo93] is an equational theory whose axioms include

the defining axioms for some basic AC0 functions and the functions defined inductively

by composition, Concatenation Recursion on Notation (CRN) and k-Bounded Recursion

on Notation (k-BRN). QALV is a (single-sorted) first-order theory whose non-logical

symbols are those of ALV′ and whose axioms are the universal closure of the axioms of

ALV′ (together with some basic axioms, see [Coo98]).

Let s0(x) = 2x, s1(x) = 2x+ 1. Suppose that h0(x), h1(x) ≤ 1. Then f(x) is defined

by CRN from g, h0 and h1 by CRN if (here f, g, h0, h1 might have other parameters):

f(0) = g, f(1) = sh1(x)(g), and f(si(x)) = shi(x)(f(x)) for x > 0 (5.4)

Intuitively, if g > 0, then |f(x)| = |g| + |x|; otherwise

|f(x)| = |x| −· |min{z : h0(z) > 0 ∨ h1(z) > 0}|
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In addition, the bits of f(x) are computed in parallel from the bits of g and x using hi(x).

So this operation corresponds to taking the AC0-closure (i.e., defining fϕ,t and Fϕ,t in

Definition 5.2).

k-BRN can be seen as the single-sorted version of our (k + 1)-BNR (see the next

section): a function f is defined by k-BRN from g, h0 and h1 provided that f(x) ≤ k for

all x, and

f(0) = g, f(1) = h1(0, g), and f(si(x)) = hi(x, f(x)) for x > 0 (5.5)

Theorem 5.4. VALV and QALV are RSUV isomorphic.

In the next section we outline a proof of this theorem.

5.2.2 QALV
RSUV≃ VALV

We refer to [Tak93, Raz93, Kra90, CN06] for back-and-forth translations between single-

sorted and two-sorted theories. The translations of initial functions of QALV and the

functions in L2
A are straightforward, and we outline here only the translations of functions

that are obtained by BRN, CRN and composition (for functions in QALV) and AC0-

reduction (i.e., Fϕ,t and fϕ,t) and BNR (for functions in VALV). (Note that VALV is

defined using 5-BNR while QALV is defined using k-BRN for all k ∈ N. The fact that

VALV extends VNC1 (Section 5.3) shows that 5-BNR simulates k-BNR for all k > 5,

because it is easy to show that if f is obtained from g and h by k-BNR where g, h are

provably total in VNC1, then f is also provably total in VNC1.)

First we show how to interpret functions of QALV in VALV. Suppose that f(x) is

obtained from g and hi(x, z) using BRN as in (5.5). Using the terminologies of Section 5.1,

the functions g, hi(x, z) are translated into string functions g♯, h♯i(X,Z) in the two-sorted

setting. These functions have values bounded by k♯ which is the set: k♯ = {i : Bit(i, k)},

where Bit(i, k) holds iff the i-th least significant bit of k is 1; for example, 5♯ = {2, 0}.

Here we compare two strings X, Y using ≤2 defined in (5.1). We will briefly show how to
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obtain the translation f ♯(X) of f(x) from g♯ and h♯i(X,Z) using (k + 1)-BNR and AC0

reduction.

Because g♯ and h♯i(X,Z) are bounded by a constant string, we can treat them as

number functions. Indeed, define number functions g′ and h′i(X, z) so that g′ = g and

h′i(x
♯, z) = hi(x, z). Then g′ and h′i(X, z) can be obtained from g♯ and h♯i(X,Z) by AC0

reduction. Let the number function h′′(i, X, z) be defined as follows (for 0 ≤ i ≤ |X|−1):

h′′(i, X, z) =















h′1(Trim(i, X), z) if X(|X| −· i−· 1)

h′0(Trim(i, X), z) otherwise

where Trim(i, X) = {z : z + (|X| −· i) ∈ X} is the substring of the i most significant

bits of X (for 0 ≤ i ≤ |X|).

Define by (k + 1)-BNR a number function ℓ(i, X) as follows

ℓ(0, X) = g′, ℓ(i+ 1, X) = h′′(i, X, ℓ(i, X)) for 0 ≤ i ≤ |X| − 1.

Then f ♯(Trim(i, X)) = (ℓ(i, X))♯, so f ♯(X) = (ℓ(|X|, X))♯ (here (ℓ(i, X))♯ denotes the

set {j : Bit(j, ℓ(i, X))}).

Next, suppose that f(x) is obtained from g and hi(x) by CRN as in (5.4). It is easy

to define the bits of the string functions f ♯(X) using g♯ and Hi(z,X) = h♯i(Trim(z,X)).

Finally, suppose that f is obtained by composition, i.e., f = g(h1, h2, . . . , hk). Then f ♯ is

also obtained from g♯, h♯1, h
♯
2, . . . , h

♯
k by composition, and it is clear that FALV is closed

under composition.

For the other direction, first, suppose that f(y) is obtained from g and h(y, z) by

5-BNR (we omit the parameters ~x, ~X). The functions g and h are translated into g♭ and

h♭(y, z), respectively. We show that f ♭(y) can be obtained from g♭ and h♭ using 4-BRN;

here we only need to define f ♭(y) for y ≤ |a|, for some a. Thus f ♭(y) = f ′(|y|), where

f ′(y) is obtained from g and h′(y, z) = h(|y|, z) as follows:

f ′(0) = g, f ′(s0(y)) = f ′(s1(y)) = h′(y, f ′(y))
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Now suppose that the translations ϕ♭(z, ~x, ~y) and t♭(~x, ~y) have been obtained, for a

ΣB
0 (LFALV) formula ϕ(z, ~x, ~X) and an L2

A term t(~x, ~X). We show how to obtain F ♭
ϕ,t(~x, ~y)

and f ♭ϕ,t(~x, ~y).

The function f is said to be obtained from g and h by sharply bounded minimization

if

f(x) =















i if i < |g(x)| ∧ h(i, x) = 0 ∧ ∀j < i, h(j, x) 6= 0

|g(x)| otherwise

It can be shown (using only CRN and composition and some initial functions of QALV)

that the functions in QALV are closed under taking sharply bounded minimization (see

the remark after (5.4) and also [Clo93, Lemma 6]). This shows that f ♭ϕ,t(~x, ~y) can be

obtained from the functions in ϕ♭(z, ~x, ~y) and initial functions of QALV by CRN and

composition.

The characteristic function cϕ(~x) of a formula ϕ(~x) is defined as follows

c(~x) =















1 if ϕ(~x)

0 otherwise

Using sharply bounded minimization, it can be shown that the characteristic function cϕ

for any sharply bounded formula ϕ of QALV is also in QALV. Hence cϕ♭(z, ~x, ~y) is in

QALV. We leave it to the reader to verify that the function F ♭
ϕ,t(~x, ~y) can be obtained

from cϕ♭(z, ~x, ~y) and t♭(~x, ~y) using composition, CRN and initial functions of QALV.

5.3 VALV is Equivalent to VNC1

The fact that QALV
RSUV≃ VNC1 follows from Theorems 5.4 and 5.5.

Theorem 5.5. VALV is a conservative extension of VNC1.

Proof of Conservativity. The language LFALV can be seen as being constructed in stages

from L0 = LFAC
0 using (2) and (3) in Definition 5.1. We will apply Corollary 3.17
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for Ti = VNC1(Li) + ΣB
0 (Li)-COMP. Note that T0 = VNC1 + V

0
is a conservative

extension of VNC1, and the hypothesis of Corollary 3.17 applies to T0 (i.e., 〈T0,L0,L2
A〉

satisfies (3.19)). Therefore it suffices to show that for each new function F (or f) in

Ln+1, F (or f) is provably total in Tn and (3.14) (resp. (3.15)) holds.

The case where the new function in Ln+1 is of the form Fϕ,t or fϕ,t follows from Lemma

3.14. So suppose that the new function f in Ln+1 is of the form fg,h where g, h ∈ Ln.

Write hy(z) for h(y, z). Then

f(y) = hy−1 ◦ . . . ◦ h1 ◦ h0(g)

The composition hy−1 ◦ . . . ◦ h1 ◦ h0 is computed by a balanced binary tree with leaves

labelled by h0, h1, . . . , hy−1. The tree is depicted in Figure 5.1 and is constructed using

Theorem 3.25.

h3 h2 h1 h0

h3 ◦ h2 h1 ◦ h0

h3 ◦ . . . ◦ h0

Figure 5.1: Computing f by a binary tree.

The fact that the new function f defined as above satisfies the defining axioms (5.2)

and (5.3) of fg,h is proved in Tn by proving by induction (on the height of the subtree)

that each subtree with leaves hi, hi+1, . . . , hj computes the composition hi◦hi+1◦ . . . ◦hj .

To show that f ⋆ is also provably total in Tn, we need polynomially many trees similar

to the binary tree we used for computing f above. Again, the existence of these trees

is provable in VNC1 using Theorem 3.25. The fact that Tn(f, f ⋆) proves (3.11) follows

from the construction of the circuits. �
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In the remainder of this chapter we show that VALV extends VNC1. First, it follows

from Theorem 5.3 that VALV extends V0, so it remains to show that VALV proves

MFV (Definition 3.21). To prove the existence of Y in MFV , we formalize Barrington’s

proof [Bar89] that the Boolean Sentence Value Problem is reducible to the word problem

for S5. Given a Boolean sentence (represented as a balanced binary tree), we construct

a S5 word whose value determines the truth value of the sentence. Once this has been

done, the string Y can be obtained by ΣB
0 -COMP.

First we outline the reduction.

5.3.1 The Reduction to the Word Problem for S5

Notation Let σ1 = (12345), σ2 = (13542) and σ = σ−1
1 ◦ σ−1

2 ◦ σ1 ◦ σ2 = (12534). Also,

let e be the identity in S5.

Consider a tree-like circuit T of depth log(a), with inputs I(0), . . . , I(a−1). The goal

is to (uniformly) construct for each gate x in T a sequence Px of permutations in S5:

Px = px,0, px,1, . . . , px,k−1

where k depends on x (see below), so that

◦Px = px,0 ◦ px,1 ◦ . . . ◦ px,k−1 =















σ if T (x) = 1

e if T (x) = 0

(5.6)

(◦ is the composition operator). Here Px has length k = k(x) = 4h, where h is the height

(i.e., longest distance to a leaf) of the gate x in T .

The sequence Px is defined inductively based on the height of gate x. We use the fact

that σ in Notation above is a nontrivial commutator of S5. Consider the following cases:

Case I: Gate x of T is an input gate. Then k(x) = 1, and

px,0 =















σ if I(x) = 1

e if I(x) = 0
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Case II: Gate x is an ∧-gate with inputs from gates y, z. Then Px is of the form

Px = P ′
y, P

′
z, P

′′
y , P

′′
z

where P ′
y, P

′′
y , P

′
z, P

′′
z are obtained from Py, Pz (see below) so that

◦P ′
y =















σ−1
1 if T (y) = 1

e if T (y) = 0

◦ P ′′
y =















σ1 if T (y) = 1

e if T (y) = 0

◦P ′
z =















σ−1
2 if T (z) = 1

e if T (z) = 0

◦ P ′′
z =















σ2 if T (z) = 1

e if T (z) = 0

Notation θ1 = (14532), θ2 = (13425), η1 = (13254), η2 = (12543). Note that

θi ◦ σ ◦ θ−1
i = σi, ηi ◦ σ ◦ η−1

i = σ−1
i

The sequences P ′
y, P

′′
y both have length k(y), and P ′

z, P
′′
z both have length k(z). They

are obtained from Py and Pz as follows:

p′y,i = η1 ◦ py,i ◦ η−1
1 , p′′y,i = θ1 ◦ py,i ◦ θ−1

1 (0 ≤ i ≤ k(y) − 1) (5.7)

p′z,i = η2 ◦ pz,i ◦ η−1
2 , p′′z,i = θ2 ◦ pz,i ◦ θ−1

2 (0 ≤ i ≤ k(z) − 1) (5.8)

Case III: Gate x of T is an ∨-gate with inputs from gates y and z. Essentially, this case

reduces to the previous case using the identity:

A ∨ B ⇔ ¬(¬A ∧ ¬B)

So first we will construct sequences Q′
y, Q

′′
y and Q′

z , Q
′′
z so that the sequence

Q = Q′
y, Q

′
z, Q

′′
y, Q

′′
z

satisfies

◦Q =















e if T (x) = 1

σ−1 if T (x) = 0
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Then the sequence Px is defined to be the same as Q except for the last permutation q

is replaced by q ◦ σ. It is easy to verify that P satisfies (5.6).

Note that σ−1 = σ−1
2 ◦ σ−1

1 ◦ σ2 ◦ σ1. We want the sequences Q′
y, Q

′′
y and Q′

z, Q
′′
z so

that

◦Q′
y =















e if T (y) = 1

σ−1
2 if T (y) = 0

◦Q′′
y =















e if T (y) = 1

σ2 if T (y) = 0

◦Q′
z =















e if T (z) = 1

σ−1
1 if T (z) = 0

◦Q′′
z =















e if T (z) = 1

σ1 if T (z) = 0

The elements of Q′
y, Q

′′
y, Q

′
z, Q

′′
z are defined as follows:

q′y,i = θ2 ◦ py,i ◦ θ−1
2 , q′′y,i = η2 ◦ py,i ◦ η−1

2 (for 0 ≤ i ≤ k(y) − 2) (5.9)

q′z,i = θ1 ◦ pz,i ◦ θ−1
1 , q′′z,i = η1 ◦ pz,i ◦ η−1

1 (for 0 ≤ i ≤ k(z) − 2) (5.10)

q′y,k(y)−1 = θ2 ◦ py,k(y)−1 ◦ θ−1
2 ◦ σ−1

2 , q′′y,k(y)−1 = η2 ◦ py,k(y)−1 ◦ η−1
2 ◦ σ2 (5.11)

q′z,k(z)−1 = θ1 ◦ pz,k(z)−1 ◦ θ−1
1 ◦ σ−1

1 , q′′z,k(z)−1 = η1 ◦ pz,k(z)−1 ◦ η−1
1 ◦ σ1 (5.12)

5.3.2 Nonsolvability of S5

Before formalizing the above reduction, we analyze how the fact that S5 is nonsolvable

is used. (In general, Barrington shows that the word problem for any nonsolvable group

is complete for NC1.)

What is needed is the existence of distinct elements σ1, σ2 of the group S5 so that

they both are conjugates of their commutator σ. We will show that this implies the

nonsolvability of S5.

Lemma 5.6. Suppose that G is a group that contains two elements σ1, σ2 with the prop-

erty that that σi is a conjugate of σ = σ−1
1 ◦ σ−1

2 ◦ σ1 ◦ σ2, for i = 1, 2. Then G is

nonsolvable.
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Proof. Let H = 〈σ1, σ2〉 (the group generated by σ1 and σ2). We show that H is a

nonsolvable group. It follows that G is nonsolvable, since G contains a nonsolvable

subgroup.

Let K be the commutator subgroup of H . Then consider the quotient map q : H →

H/K. Since σ ∈ K, q(σ) = 1. Also, since σi are conjugates of σ, q(σi) = 1, for i = 1, 2.

Thus H = K, and hence H is nonsolvable. �

5.3.3 Formalizing the Proof of Barrington’s Theorem

For simplicity, assume a = 2d for d ≥ 1. Consider a gate x of height h ≥ 0, then

2d−h ≤ x < 2d−h+1, and the S5-word Px has length 4h. We will show how to compute the

i-th permutation px,i in Px, for 0 ≤ i < 4h.

Let y = 2x, z = 2x+ 1 (the outputs of gates y, z are connected to the inputs of gate

x). For i < 4h, write i in base 4:

i = ih−1 . . . i0, where 0 ≤ ir ≤ 3. (5.13)

Bit ih−1 states which of the “quarters” P ′
y, P

′
z, P

′′
y , P

′′
z (or Q′

y, Q
′
z, Q

′′
y, Q

′′
z) that px,i comes

from. For example, suppose that gate x is an ∧-gate. Then for i < 4h−1 (i.e, ih−1 = 0),

using (5.7) we have

px,i = η1 ◦ py,i′ ◦ η−1
1 , where i′ = ih−2 . . . i0 (base 4)

In other words, px,i is defined from p2x+(ih−1 mod 2),i′ using (5.7)–(5.8) and (5.9)–(5.12).

In general, the base 4 representation (5.13) of i fully describes a path from the input

gate 2hx+ k to gate x, where k is the number with the binary representation

(ih−1 mod 2)(ih−2 mod 2) . . . (i0 mod 2) (5.14)

The ℓ-th gate on this path is the gate numbered 2h−ℓx + j, where j is the number with

binary representation

(ih−1 mod 2) . . . (iℓ mod 2) (5.15)
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(when ℓ = h, j = 0).

The sequence Px can be seen as being constructed in h stages: In each stage we

have a sequence of length 4h whose i-th element (a 5-permutation) is obtained from the

i-th element of the previous sequence. The ℓ-th sequence will be encoded by fℓ,x,i(u) for

0 ≤ i < 4h. Thus we will define a function f(ℓ, x, i, u) so that

px,i(u) = f(h, x, i, u) for i < 4h

We will write f(ℓ, x, i, ·) for the permutation fℓ,x,i(u) = f(ℓ, x, i, u).

Recall (Section 3.4) that the value of the leaf gate x is I(x − a). First, for i as in

(5.13),

f(0, x, i, ·) =















σ if I(2hx+ k − a) = 1

e otherwise

where k is the number with binary representation (5.14).

Next, for 1 ≤ ℓ ≤ h, f(ℓ, x, i, ·) is defined from f(ℓ− 1, x, i, ·) by cases, depending on

the type of gate (2h−ℓx + j), where j is the number with binary representation (5.15).

(note that when ℓ = h, j = 0).

For example, suppose that gate (2h−ℓx + j) is an ∧-gate. Then (following (5.7) and

(5.8)):

f(ℓ, x, i, ·) =















































η1 ◦ f(ℓ− 1, x, i, ·) ◦ η−1
1 if iℓ−1 = 0

η2 ◦ f(ℓ− 1, x, i, ·) ◦ η−1
2 if iℓ−1 = 1

θ1 ◦ f(ℓ− 1, x, i, ·) ◦ θ−1
1 if iℓ−1 = 2

θ1 ◦ f(ℓ− 1, x, i, ·) ◦ θ−1
1 if iℓ−1 = 3

Since θ1, θ2, η1, η2 are 5-permutations, it is clear that f is defined using 5-BNR.

Finally, the value of gate x is determined by the composition px,0 ◦ . . . ◦ px,k(x)−1, i.e.,

f(h, x, 0, ·) ◦ f(h, x, 1, ·) ◦ . . . ◦ f(h, x, 4h − 1, ·) (5.16)
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To compute this, define g(h, x, i, k, ·) using 5-BNR from f as follows:

g(h, x, i, 0, ·) = f(h, x, i, ·)

g(h, x, i, j + 1, ·) = g(h, x, i, j, ·) ◦ f(h, x, i+ j + 1, ·)

Then

g(h, x, i, j, ·) = f(h, x, i, ·) ◦ . . . ◦ f(h, x, i+ j, ·) (5.17)

Hence, (5.16) is just g(h, x, 0, 4h− 1, ·). As a result, T (x) is 1 if and only if g(h, x, 0, 4h−

1, ·) = σ.

Our definitions of f, g above show that they are in LFALV.

Since VALV extends V0 (see the discussion after the Proof of Conservativity on page

76), to show that VALV extends VNC1 it remains to prove the following theorem (recall

MFV from Definition 3.21):

Theorem 5.7. VALV ⊢ MFV .

Proof. Let Y be defined (using ΣB
0 (LFALV)-COMP) as:

|Y | ≤ 2a ∧ ∀x < 2a, Y (x) ↔ g(h, x, 0, 4h − 1, ·) = σ

We will show that VALV ⊢ δMFV (a,G, I, Y ).

Following the formalization describe above, we will prove by induction on ℓ that the

sequence constructed in stage ℓ works as expected. More precisely, using (5.17), we will

prove by induction on ℓ that for

i = ih−ℓ−1 . . . i0 (base 4) and k = (ih−ℓ−1 mod 2) . . . (i0 mod 2)( base 2),

g(ℓ, x, i4ℓ, 4ℓ − 1, ·) =















σ if Y (2h−ℓx+ k) = 1

e otherwise

(5.18)

(When ℓ = h, k = i = 0 and we have g(h, x, 0, 4h − 1, ·) = σ iff Y (x).)
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The base case is obvious from the definition of f and Y . For the induction step,

suppose that (5.18) holds for (ℓ− 1), where 1 ≤ ℓ ≤ h. We prove (5.18) for ℓ.

Consider the case where gate (2h−ℓx + k) is an ∧-gate. We need to verify that

g(ℓ, x, i4ℓ, 4ℓ−1 − 1, ·), g(ℓ, x, i4ℓ + 4ℓ−1, 4ℓ−1 − 1, ·), g(ℓ, x, i4ℓ + 2 × 4ℓ−1, 4ℓ−1 − 1, ·) and

g(ℓ, x, i4ℓ + 3× 4ℓ−1, 4ℓ−1 − 1, ·) respectively compute the compositions of P ′
y, P

′
z, P

′′
y and

P ′′
z as in Case II in Section 5.3.1 (see (5.7) and (5.8). This can be verified by proving

by induction on j < 4ℓ−1 − 1 that

g(ℓ, x, i4ℓ, j + 1, ·) = η1 ◦ g(ℓ, x, i4ℓ, j, ·) ◦ η−1
1

(and g(ℓ, x, i4ℓ + 4ℓ−1, j + 1, ·) = η2 ◦ g(ℓ, x, i4ℓ + 4ℓ−1, j, ·) ◦ η−1
2 , etc.)

Other cases are handled similarly. �



Chapter 6

Theories for Relativized Classes

In Section 6.1 we give new definitions of the relativizations of NCk, L and NL and

show that they preserve the non-relativized inclusions. We also show that separating the

relativizations of any two classes in AC0(m),TC0,NC1,L,NL is as hard as separating

the nonrelativized classes themselves. The relativized theories are given in Section 6.2.

The materials of this chapter are from [ACN07].

6.1 Relativizing Subclasses of P

Recall the definitions of complexity classes from Section 2.2. To relativize a circuit class

where the gates have unbounded fanin, we simply allow the circuit to have unbounded

fanin oracle gates:

Definition 6.1 (ACk(α), AC0(m,α), TC0(α)). For k ≥ 0, the class ACk(α) (resp.

AC0(m,α), TC0(α)) is defined as uniform ACk (resp. AC0(m), TC0) except that

unbounded fan-in α gates are allowed.

Defining NCk(α) is more complicated. In [Coo85] the depth of an oracle gate with

m inputs is defined to be log(m). A circuit is an NCk(α)-circuit provided that it has

polynomial size and the total depth of all gates along any path from the output gate to

85
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an input gate is O((log n)k). Note that if there is a mix of large and small oracle gates,

the number of oracle gates may not be O((logn)k−1). Here we restrict the definition

further, requiring that the nested depth of oracle gates is O((log n)k−1).

Definition 6.2 (NCk(α)). For k ≥ 1, a language is in NCk(α) if it is computable by a

uniform family of NCk(α) circuits, i.e., ACk(α) circuits where the ∧ and ∨ gates have

fanin 2, and the nested depth of α gates is O((log n)k−1).

The following inclusions extend the inclusions of the nonrelativized classes:

AC0(α) ( AC0(2, α) ( AC0(6, α) ⊆ TC0(α) ⊆ NC1(α) ⊆ AC1(α) ⊆ . . .

To define oracle logspace classes, we use a modification of Wilson’s stack model

[Wil88]. An advantage is that the relativized classes defined here are closed under AC0-

reductions. This is not true for the non-stack model.

A Turing machine M with a stack of oracle tapes can write 0 or 1 onto the top oracle

tape if it already contains some symbols, or it can start writing on an empty oracle tape.

In the latter case, the new oracle tape will be at the top of the stack, and we say that M

performs a push operation. The machine can also pop the stack, and its next action and

state depend on α(Q), where Q is the content of the top oracle tape. Note that here the

oracle tapes are write-only.

Instead of allowing an arbitrary number of oracle tapes, we modify Wilson’s model by

allowing only a stack of constant height. This places the relativized classes in the same

order as the order of their unrelativized counterparts. In the definition of NL(α), we

also use the restriction [RST84] that the machine is deterministic when the oracle stack

is non empty.

Definition 6.3 (L(α), NL(α)). For a unary relation α on strings, L(α) is the class

of languages computable by logspace, polytime Turing machines using an α-oracle stack

whose height is bounded by a constant. NL(α) is defined as L(α) but the Turing machines

are allowed to be nondeterministic when the oracle stack is empty.
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Theorem 6.4. NC1(α) ⊆ L(α) ⊆ NL(α) ⊆ AC1(α).

Proof. The second inclusion is immediate from the definitions, the first can be proved as

in the standard proof of the fact that NC1 ⊆ L (see also [Wil88]). The last inclusion

can actually be strengthened, as shown in the next theorem. �

Theorem 6.5. Each language in NL(α) can be computed by a uniform family of AC1(α)

circuits whose nested depth of oracle gates is bounded by a constant.

Proof. We proceed as in the proof of the fact that NL ⊆ AC1. Let M be a nondeter-

ministic logspace Turing machine with a constant-height stack of oracle tapes. Let h be

the bound on the height of the oracle stack. There is a polynomial p(n) so that for each

input length n and oracle α, M has at most p(n) possible configurations:

u0 = START , u1 = ACCEPT , u2, . . . , up(n)−1 (6.1)

(Here a configuration ui encodes information about the state, the content of the work

tape, the position of the input tape head and the input symbol being read, but no

information about the oracle stack.)

Given an input of length n, consider the directed graph G with vertices (k, ui) for

0 ≤ k ≤ h, 0 ≤ i < p(n), where the edge relation E is as follows: For uj a next

configuration of ui,

(i) if M does not push or pop after ui, then ((0, ui), (0, uj)) ∈ E; if furthermore ui codes

a deterministic state, then ((k, ui), (k, uj)) ∈ E, for 1 ≤ k ≤ h;

(ii) if the next move of M after ui is push, then ((k, ui), (k + 1, uj)) ∈ E for 0 ≤ k < h;

(iii) otherwise, if the move of M after ui is pop, then ((k, ui), (k − 1, uj)) ∈ E for

1 ≤ k ≤ h.

(Here k is a possible height of the stack when M has configuration ui.)
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Suppose that edge relation E has been computed, then the Reachability relation in G

can be computed by an AC1 circuit. M accepts if and only if (0,ACCEPT ) is reachable

from (0, START ). It remains to show that E can be computed by an AC1(α) circuit.

Let Ek denote the subgraph of E that contains the edges in (i,ii), and the edges

((ℓ, ui), (ℓ − 1, uj)) as in (iii) where k ≤ ℓ ≤ h. (Thus E1 = E.) Also, let Eh+1 denote

the subgraph of E that contains only the edges as in (i,ii).

Note that Eh+1 can be computed by an AC0 circuit. We show that Ek can be

computed from Ek+1 by an AC1(α) circuit whose oracle depth is one (for 1 ≤ k ≤ h).

This will complete our proof of the theorem.

The new edges in Ek are of the form ((k, ui), (k− 1, uj)) where uj is resulted from ui

by a pop operation. To check whether ui, uj satisfy this condition, we need to compute

the oracle query on the current oracle tape that is asked when M moves from ui to uj.

This query is computed by tracing back the computation of M, starting at ui, until we

hit the first configuration v where the oracle stack height is k − 1. More precisely, we

compute the path in Ek+1 of the form

(k − 1, v), (k, v0), (k1, v1), . . . , (kt, vt), (k, ui)

where k ≤ k1, . . . , kt ≤ h. This path can be computed by a deterministic logspace

function, and hence an AC1 circuit.

Now, the oracle query Q asked at ui can be extracted from the sequence

(v, v0, v1, . . . , vt)

by an AC0 circuit. Then, ((k, ui), (k − 1, uj)) ∈ Ek if and only if α(Q). �

We now consider the relativization of the following classes:

{AC0(m),TC0,NC1,L,NL} (6.2)

Recall that each class C in (6.2) is the AC0 closure of a function FC: FTC
0 = numones,
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FAC
0(m) = modm, FNC

1 = Fval , FL = SinglePath, and FNL = Conn. (See Chapter 3,

Propositions 3.2, 3.19, 3.22, 3.29, 3.32.)

Theorem 6.6. For each class C in (6.2), C(α) (resp. FC(α)) is the class of relations

(resp. functions) AC0-reducible to {FC, α}.

Proof. For the classes TC0(α),AC0(m,α),NC1(α) this is immediate from the definitions

involved. For the classes L(α),NL(α) we show they are AC0-reducible to their corre-

sponding path problem and α using ideas in the proof of Theorem 6.5. (The AC1(α)

circuit that computes Ek from Ek+1 can be replaced by an AC0(α) circuit with gates

computing Conn.) Conversely, to show that a relation that is AC0-reducible to the path

problem and α is in the corresponding class L(α) or NL(α), the Turing machine performs

a depth-first search of the constant-depth reducing circuit. Each α query is answered us-

ing the constant-height oracle stack, and each path query is answered by simulating the

log-space Turing machine that solves that query, where each input bit of the query must

be recomputed each time it is needed in the computation. �

The following corollary generalizes results in [Wil89]:

Corollary 6.7. For any C1,C2 in (6.2), C1 = C2 if and only if for all α, C1(α) = C2(α).

On the other hand, it is shown [ACN07] that there is an oracle α so that

NC1(α) ( NC2(α) ( . . . ( P(α)

6.1.1 L(α) Reducibility

The next lemma can be used to show that Immerman-Szelepcsényi Theorem and Savitch’s

Theorems relativize. Recall that STCONN is the problem of given (G, s, t), where s, t

are two designated vertices of a directed graph G, decide whether there is a path from s

to t.

Lemma 6.8. A language is in NL(α) iff it is many-one L(α) reducible to STCONN.
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Proof. The IF direction is easy, so we prove the ONLY IF direction. Let L be a language

in NL(α) which is computed by M, an NL machine with a constant height oracle stack.

The L(α) transformation is as follows. Given an input string X to M, the graph G has

polynomially many vertices in (6.1), which are the configurations of M on input X. The

edges of G are

(i) (ui, uj) where uj is a next configuration of ui, and ui does not write on an empty

stack.

(ii) (ui, uj) where ui writes on an empty stack, and uj is the next time the stack is

empty.

The edges in (i) can be computed in AC0, while the edges in (ii) can be computed in

L(α) (because M is deterministic when the oracle stack is non-empty). �

Corollary 6.9 (Relativized Immerman-Szelepcsényi Theorem). NL(α) is closed under

complementation.

Proof. Any language in co-NL(α) is L(α) reducible to STCONN, which is AC0 re-

ducible to STCONN. So co-NL(α) ⊆ NL(α). �

Let L2(α) denote the class of languages computable by a deterministic oracle Turing

machine in O(log2) space and constant-height oracle stack.

Corollary 6.10 (Relativized Savitch’s Theorem). NL(α) ⊆ L2(α).

Proof. The corollary follows from Lemma 6.8 and the fact that the composition of a L(α)

function and a (log2) space function (for STCONN) is a L2(α) function. �

6.2 Relativizing the Theories

Recall the function Row from Definition 2.20.

Notation For a predicate α, let ΣB
0 (α) denote the class of ΣB

0 formulas in L2
A∪{Row , α}.
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Definition 6.11. V0(α) = V0 + ΣB
0 (α)-COMP. For each class C in (6.2), the the-

ory VC(α) is defined as VC (Definitions 3.3, 3.20, 3.21, 3.30, 3.33) with ΣB
0 -COMP

replaced by ΣB
0 (α)-COMP.

Notice that a natural relativized version of the additional axioms of VC, such as

CONN (Definition 3.30), are already provable in VC(α). For example, let CONN (α) be

the axiom scheme

∀a∃Y, Y (0, 0) ∧ ∀x < a(x 6= 0 ⊃ ¬Y (0, x)) ∧

∀z < a∀x < a, Y (z + 1, x) ↔ (Y (z, x) ∨ ∃y < a, Y (z, y) ∧ ϕ(y, x)).

where ϕ is a ΣB
0 (α) formula. Then it is easy to use ΣB

0 (α)-COMP to show that

VNL(α) ⊢ CONN (α).

Theorem 6.12. For a class C in {AC0,AC0(m),TC0,NC1,L,NL}, a function is in

FC(α) if and only if it is Σ1
1(α) definable in VC(α).

Proof. The theorem follows from Corollary 3.17 (for L′ = L2
A ∪ {Row , α}) and the fact

that for each class C, the aggregate function F ⋆
C

(see FC in Theorem 6.6, here FAC
0 is

simply a constant function) is provably total in VC. �

Now we present the theories VACk(α) (for k ≥ 1) and VNCk(α) (for k ≥ 2). We

use the fact that the problem of evaluating uniform ACk(α) (or NCk(α)) circuits is

AC0-complete for the corresponding relativized class. We will give a defining axiom (see

(3.5)) for the function Ocv that evaluates a given oracle circuit. (Ocv stands for oracle

circuit value.)

Similar to the encoding of a monotone circuit (3.35), here an oracle circuit C is

encoded by (w, d, E,G). The type (i.e., ∧, ∨, ¬ or α) of gate x on layer z is specified by

(G)〈z,x〉. Also, since the order of inputs to an oracle gate is important, the edge relation

is now encoded (by E) as follows: E(z, t, u, x) indicates that gate u on layer z is the t-th
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input to gate x on layer z + 1. We need

Proper(w, d, E) ≡ ∀z < d∀t, x, u1, u2 < w, (E(z, t, u1, x) ∧ E(z, t, u2, x)) ⊃ u1 = u2

In the following formula, Q[z+1,x] encodes the query to the oracle gate x on layer z+1:

δαOCV (w, d, E,G, I, Q, Y ) ≡ ∀z < d∀x < w

[∀t < w(Q[z+1,x](t) ↔ (∃u < w, E(z, t, u, x) ∧ Y (z, u)))] ∧ [Y (0, x) ↔ I(x)]∧

[Y (z + 1, x) ↔ (((G)〈z+1,x〉 = “∧” ∧ ∀t, u < w, E(z, t, u, x) ⊃ Y (z, u))∨

((G)〈z+1,x〉 = “∨” ∧ ∃t, u < w, E(z, t, u, x) ∧ Y (z, u))∨

((G)〈z+1,x〉 = “¬” ∧ ∀u < w, E(z, 0, u, x) ⊃ ¬Y (z, u))∨

((G)〈z+1,x〉 = “α” ∧ α(Q[z+1,x])))]

Definition 6.13 (VACk(α)). For k ≥ 1, VACk(α) is the theory over L2
A ∪ {Row , α}

and is axiomatized by V0 and the following axiom:

∀w,E,G, I(Proper(w, d, E) ⊃ ∃Q, Y δαOCV (w, (logw)k, E,G, I, Q, Y ))

To specify an NCk(α) circuit, we need to express the condition that ∧ and ∨ gates

have fanin 2. Here we use the following formula Fanin2 ′(w, d, E,G):

∀z < d∀x < w((G)〈z,x〉 6= “α” ⊃ ∃u1, u2 < w∀t, v < w, E(z, t, v, x) ⊃ v = u1 ∨ v = u2)

Moreover, the nested depth of oracle gates in circuit (w, d, E,G) needs to be bounded.

The formula ODepth(w, d, h, E,G,H) below states that this nested depth is bounded by

h (H(z, x, s) holds iff the nested depth of oracle gates in the subtree rooted at gate x on

layer z is s):

∀z ≤ d∀x < w∃!s ≤ hH(z, x, s) ∧ ∀x < wH(0, x, 0)∧

∀z < d∀x < w∃m,m = max{h : ∃t, u < wE(z, t, u, x) ∧H(z, u, h)}∧

[((G)〈z+1,x〉 = “α” ⊃ H(z + 1, x,m+ 1)) ∧ ((G)〈z+1,x〉 6= “α” ⊃ H(z + 1, x,m))]
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Definition 6.14 (VNCk(α)). For k ≥ 2, VNCk(α) is the theory over L2
A ∪ {Row , α}

and is axiomatized by V0 and the axiom

∀w∀E,G, I,H, [Proper(w, d, E) ∧ Fanin2 ′(w, |w|k, E,G)∧

ODepth(w, d, |w|k−1, E,G,H)] ⊃ ∃Q, Y δαOCV (w, (logw)k, E,G, I, Q, Y )

The next theorem can be proved as Theorem 6.12.

Theorem 6.15. For k ≥ 1, the functions in FACk(α) are precisely the provably total

functions of VACk(α). The same holds for FNCk(α) and VNCk(α), for k ≥ 2.



Chapter 7

The Discrete Jordan Curve Theorem

The Jordan Curve Theorem (JCT) asserts that a simple closed curve divides the plane

into exactly two connected components. We consider the discrete version of the theorem

where the curve lies on a grid graph. Thus a curve can be represented as a sequence of

edges that form a cycle of distinct vertices, or a set of edges where each grid vertex has

degree exactly 0 or 2. In the latter setting there may be multiple simple closed curves,

so we can only show that there are at least two connected components.

In Section 7.1 we present a V0(2)-proof of the theorem in the second setting above.

A V0-proof of the theorem in the first setting is given in Section 7.2. The reduction from

the st-connectivity problem to JCT is shown in Section 7.3.

7.1 Input as a Set of Edges

We start by defining the notions of (grid) points and edges, and certain sets of edges

which include closed curves, or connect grid points. All of these notions are definable by

ΣB
0 -formulas, and their basic properties can be proved in V0.

We assume a parameter n which bounds the x and y coordinates of points on the

curve in question. Thus a grid point (or simply a point) p is a pair (x, y) which is encoded

by the pairing function 〈x, y〉 (see (2.3) on page 20), where 0 ≤ x, y ≤ n. The x and y

94
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coordinates of a point p are denoted by x(p) and y(p) respectively. Thus if p = 〈i, j〉 then

x(p) = i and y(p) = j. An (undirected) edge is a pair (p1, p2) (represented by 〈p1, p2〉)

of adjacent points; i.e. either |x(p2) − x(p1)| = 1 and y(p2) = y(p1), or x(p2) = x(p1)

and |y(p2) − y(p2)| = 1. For a horizontal edge e, we also write y(e) for the (common)

y-coordinate of its endpoints.

Let E be a set of edges (represented by a set of numbers representing those edges).

The E-degree of a point p is the number of edges in E that are incident to p.

Definition 7.1. A curve is a nonempty set E of edges such that the E-degree of every

grid point is either 0 or 2. A set E of edges is said to connect two points p1 and p2 if

the E-degrees of p1 and p2 are both 1 and the E-degrees of all other grid points are either

0 or 2. Two sets E1 and E2 of edges are said to intersect if there is a grid point whose

Ei-degree is ≥ 1 for i = 1, 2.

Note that a curve in the above sense is actually a collection of one or more disjoint

closed curves. Also if E connects p1 and p2 then E consists of a path connecting p1 and

p2 together with zero or more disjoint closed curves.

We also need to define the notion of two points being on different sides of a curve.

We are able to consider only points which are “close” to the curve. It suffices to consider

the case in which one point is above and one point is below an edge in E. (Note that the

case in which one point is to the left and one point is to the right of E can be reduced

to this case by rotating the (n + 1) × (n+ 1) array of all grid points by 90 degrees.)

Definition 7.2. Two points p1, p2 are said to be on different sides of E if (i) x(p1) =

x(p2)∧ |y(p1)− y(p2)| = 2, (ii) the E-degree of pi = 0 for i = 1, 2, and (iii) the E-degree

of p is 2, where p is the point with x(p) = x(p1) and y(p) = 1
2
(y(p1)+ y(p2)). (See Figure

7.1.)

Now we show that any set of edges that forms at least one simple curve must divide

the plane into at least two connected components.
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b

b

b

E
p
p1

p2

x = m

Figure 7.1: p1, p2 are on different sides of E.

Theorem 7.3 (Main Theorem for V0(2)). The theory V0(2) proves the following: Sup-

pose that B is a set of edges forming a curve, p1 and p2 are two points on different sides

of B, and that R is a set of edges that connects p1 and p2. Then B and R intersect.

7.1.1 The Proof of the Main Theorem for V0(2)

We will actually work with the conservative extension V0(parity) of V0(2) that is ob-

tained from V0(2) by adding the function parity and its defining axiom (3.21) on page

38. Note that V0(parity) proves ΣB
0 (parity)-COMP (see the proof of Theorem 3.10)

and hence also ΣB
0 (parity)-IND and ΣB

0 (parity)-MIN (Theorem 2.14).

In the following discussion we also refer to the edges in B as “blue” edges, and the

edges in R as “red” edges.

We argue in V0(2), and prove the theorem by contradiction. Suppose to the contrary

that B and R satisfy the hypotheses of the theorem, but do not intersect.

Notation A horizontal edge is said to be on column k (for k ≤ n − 1) if its endpoints

have x-coordinates k and k + 1.

Let m = x(p1) = x(p2). W.l.o.g., assume that 2 ≤ m ≤ n− 2. Also, we may assume

that the red path comes to both p1 and p2 from the left, i.e., the two red edges that are

incident to p1 and p2 are both horizontal and on column m − 1 (see Figure 7.2). (Note

that if the red path does not come to both points from the left, we could fix this by

effectively doubling the density of the points by doubling n to 2n, replacing each edge in

B or R by a double edge, and then extending each end of the new path by three (small)
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edges forming a “C” shape to end at points a distance 1 from the blue curve, approaching

from the left.)

b1

p1r1

p2r2
b

b

m-1 m

Figure 7.2: The red (dashed) path must cross the blue (undashed) curve.

We say that edge e1 lies below edge e2 if e1 and e2 are horizontal and in the same

column and y(e1) < y(e2). For each horizontal red edge r we consider the parity of the

number of horizontal blue edges b that lie below r. The following notion is definable in

V0(2).

Notation An edge r is said to be an odd edge if it is red and horizontal and

parity({b : b is a horizontal blue edge that lies below r}) = 1

For example, it is easy to show in V0(2) that exactly one of r1, r2 in Figure 7.2 is an

odd edge.

For each k ≤ n− 1, define using ΣB
0 (parity)-COMP the set

Xk = {r : r is an odd edge in column k}

Lemma 7.4. It is provable in V0(2) that

a) parity(Xm−1) = 1 − parity(Xm).

b) For 0 ≤ k ≤ n− 2, k 6= m, parity(Xk) = parity(Xk+1).

Proof of the Main Theorem for V0(2). We may assume that there are no edges in either

B or R in columns 0 and n − 1, so parity(X0) = parity(Xn−1) = 0. On the other

hand, it follows by ΣB
0 (LFAC

0(2))-IND using b) that parity(X0) = parity(Xm−1) and

parity(Xm) = parity(Xn−1), which contradicts a). �
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Proof of Lemma 7.4. First we prove b). For k ≤ n − 1 and 0 ≤ j ≤ n, let ek,j be the

horizontal edge on column k with y-coordinate j. Fix k ≤ n− 2. Define the ordered lists

(see Figure 7.3)

L0 = ek,0, ek,1, . . . , ek,n; Ln+1 = ek+1,0, ek+1,1, . . . , ek+1,n

and for 1 ≤ j ≤ n:

Lj = ek+1,0, . . . , ek+1,j−1, 〈(k + 1, j − 1), (k + 1, j)〉, ek,j, . . . , ek,n

0 1 2 3 4
0

1

2

3

4

Figure 7.3: L2 (for n = 4, k = 1).

A red edge r is said to be odd in Lj if r ∈ Lj , and

parity({b : b is a blue edge that precedes r in Lj}) = 1

(In particular, Xk and Xk+1 consist of odd edges in L0 and Ln+1, respectively.) For

0 ≤ j ≤ n + 1, let

Yj = {r : r is an odd edge in Lj}

Thus Y0 = Xk and Yn+1 = Xk+1.

Claim: If k 6= m− 1 then parity(Yj) = parity(Yj+1) for j ≤ n.

This is because the symmetric difference of Yj and Yj+1 has either no red edges, or

two red edges with the same parity.

Thus by ΣB
0 (LFAC

0(2))-IND on j we have parity(Y0) = parity(Yn+1), and hence

parity(Xk) = parity(Xk+1).

The proof of a) is similar. The only change here is that parity(Lj) and parity(Lj+1)

must differ for exactly one value of j: either j = y(p1) or j = y(p2) (because either r1 is

odd in Ly(p1) or r2 is odd in Ly(p2), but not both). �
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7.2 Input as a Sequence of Edges

Now suppose that B is a sequence of edges

〈q0, q1〉, 〈q1, q2〉, . . . , 〈qt−2, qt−1〉, 〈qt−1, q0〉

that form a single closed curve (i.e, t ≥ 4 and q0, . . . , qt−1 are distinct). In this section

we will show that the weak base theory V0 proves two theorems that together imply

the Jordan Curve Theorem for grid graphs: The curve B divides the grid into exactly

two connected regions. Theorem 7.5 is the analog of Theorem 7.3 (Main Theorem for

V0(2)), and states that a sequence of edges forming a path connecting points p1 and p2

on different sides of the curve must intersect the curve. Theorem 7.13 states that any

point p in the grid off the curve can be connected by a path (in a refined grid) that does

not intersect the curve, and leads from p to one of the points p1 or p2.

There is no analog in Section 7.1 to the last theorem because in that setting it would

be false: the definition of a curve as a set of edges allows multiple disjoint curves.

7.2.1 There are at Least Two Regions

Theorem 7.5 (Main Theorem for V0). The theory V0 proves the following: Let B be a

sequence of edges that form a closed curve, and let p1, p2 be any two points on different

sides of B. Suppose that R is a sequence of edges that connect p1, p2. Then R and B

intersect.

(See Definition 7.1 to explain the notion of points p1, p2 being on different sides of a

curve.)

We use the fact that the edges B can be directed (i.e., from qi to qi+1). This theorem

follows easily from the Edge Alternation Theorem 7.7, which states that the horizontal

edges on each column m of a closed curve must alternate between pointing right and

pointing left.
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Alternating edges and proof of the Main Theorem

The following notion of alternating sets is fundamental to the proof of the Main Theo-

rem for V0. Two sets X and Y of numbers are said to alternate if their elements are

interleaved, in the following sense.

Definition 7.6. Two disjoint sets X, Y alternate if between every two elements of X

there is an element of Y , and between every two elements of Y there is an element of X.

These conditions are defined by the following ΣB
0 formulas:

(i) ∀x1, x2 ∈ X(x1 < x2 ⊃ ∃y ∈ Y, x1 < y < x2),

(ii) ∀y1, y2 ∈ Y (y1 < y2 ⊃ ∃x ∈ X, y1 < x < y2)

Theorem 7.7 (Edge Alternation Theorem). (Provable in V0) Let P be a sequence of

edges that form a closed curve. For each column m, let Am be the set of y-coordinates

of left-pointing edges of P on the column, and let Bm be the set of y-coordinates of

right-pointing edges of P on the column. Then Am and Bm alternate.

The proof of this theorem starts on page 106, after presenting necessary concepts and

lemmas.

Proof of Theorem 7.5 from the Edge Alternation Theorem. The proof is by contradiction.

Assume that R does not intersect B. We construct a sequence of edges P from B and R

that form a closed curve, but that violate the Edge Alternation Theorem.

Without loss of generality, assume that p1, p2 and B, R are as in Figure 7.2. Also, sup-

pose that the sequence R starts from p1 and ends in p2. We may assume that the edge b1 is

from right to left (otherwise reverse the curve). Assume that the point 〈x(p1) + 1, y(p1)〉

is not on B or R. (This can be achieved by doubling the density of the grid.)

We merge B and R into a sequence of edges as in Figure 7.4. Let P be the resulting

sequence of edges. Then P is a closed curve. However, the edges r1 and b1 have the same

direction, and thus violate the Edge Alternation Theorem. �
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b1
p1r1

p2r2
b

b

m-1 m

Figure 7.4: Merging the red (dashed) path and the blue (undashed) curve.

Bijections between alternating sets

Suppose that X and Y alternate and f : X → Y is a bijection from X to Y . Let

x1, x2 ∈ X, x1 < x2, and suppose that neither f(x1) nor f(x2) lies between x1 and x2.

Since the open interval (x1, x2) contains more elements of Y than X, it must contain an

image f(z) of some z ∈ X where either z < x1 or z > x2.

The above property can be formalized and proved in VTC0, where f is given by its

graph: a finite set of ordered pairs. However, it is not provable in V0, because it implies

the surjective Pigeonhole Principle, which is not provable in V0 [CN06]. Nevertheless

it is provable in V0 under the assumption that f satisfies the condition that connecting

each x to its image f(x) by an arc above the line N does not create any “crossings”, i.e.

(see Figure 7.5)

the sets {z1, f(z1)} and {z2, f(z2)} are not alternating, for all z1, z2 ∈ X, z1 6= z2.

(7.1)

z1 f(z1)f(z2) z2

Figure 7.5: f violates (7.1)

We need the following result to prove the Edge Alternation Theorem.

Lemma 7.8 (Alternation Lemma). (Provable in V0) Suppose that X and Y alternate
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and that f (given by a finite set of ordered pairs) is a bijection between X and Y that

satisfies (7.1). Let x1, x2 ∈ X be such that x1 < x2 and neither f(x1) nor f(x2) is in the

interval (x1, x2). Then,

∃z ∈ X, (z < x1 ∨ z > x2) ∧ x1 < f(z) < x2 (7.2)

Proof. We prove by contradiction, using the number minimization principle ΣB
0 -MIN.

Let x1, x2 be a counter example with the least difference x2 − x1.

Let y1 = max({y ∈ Y : y < x2}). We have x1 < y1 < x2. Let x′2 be the pre-image of

y1: f(x′2) = y1. By our assumption that (7.2) is false, x1 < x′2 < x2. In addition, since

y1 = max({y ∈ Y : y < x2}) and X, Y alternate, we have x1 < x′2 < y1. (See Figure

7.6.)

x1 x′2 y1 x2

Figure 7.6: f(x1), f(x2) 6∈ (x1, x2), and f(x′2) = y1.

Now by (7.1), for all z ∈ X, x′2 < z < y1 implies that x′2 < f(z) < y1. Hence the pair

x1, x
′
2 is another counter example, and x′2 −x1 < x2 −x1, contradicts our choice of x1, x2.

�

Alternating endpoints of curve segments

From now on, P denotes a sequence of edges

〈p0, p1〉, 〈p1, p2〉, . . . , 〈pt−2, pt−1〉, 〈pt−1, p0〉

that form a single closed curve (i.e, t ≥ 4 and p0, . . . , pt−1 are distinct).

For convenience, we assume that P has a point on the first vertical line (x = 0) and

a point on the last vertical line (x = n). To avoid wrapping around the last index, we

pick some vertical edge on the line (x = n) and define p0 to be the forward end of this

edge. In other words, the edge 〈pt−1, p0〉 lies on the line (x = n).
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It is easy to prove in V0 that for every m, 0 ≤ m ≤ n, P must have a point on the

vertical line (x = m). For otherwise there is a largest m < n such that the line (x = m)

has no point on P , and we obtain a contradiction by considering the edge 〈pi−1, pi〉, where

i is the smallest number such that x(pi) ≤ m.

For a < b < t, let P[a,b] be the oriented segment of P that contains the points

pa, pa+1, . . . , pb, and let P[a,a] = {pa}. We are interested in the segments P[a,b] where

x(pa) = x(pb)

The next Definition is useful in identifying segments of P that are “examined” as we

scan the curve from left to right. See Figure 7.7 for examples.

Definition 7.9. A segment P[a,b] is said to stick to the vertical line (x = m) if x(pa) =

x(pb) = m, and for a < c < b, x(pc) ≤ m. A segment P[a,b] that sticks to (x = m) is said

to be minimal if b − a > 1, and for a < c < b we have x(pc) < m. Finally, P[a,b] is said

to be entirely on (x = m) if x(pc) = m, for a ≤ c ≤ b.

pc
pb

pa

pd
pu
pv

pw
m

Figure 7.7: Segments that stick to (x = m).

In Figure 7.7, the segments P[a,b], P[a,c], . . ., P[u,w], P[v,w] all stick to the vertical line

(x = m). Among these, P[a,b], P[c,d] and P[u,v] are minimal, while P[b,c], P[d,u] and P[v,w] are

entirely on (x = m).

Notice that minimal segments that stick to a vertical line (x = m) are disjoint. Also,

if P[a,b] is a minimal segment that sticks to (x = m), then the first and the last edges
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of the segments must be horizontal edges in column m − 1, i.e., y(pa) = y(pa+1) and

y(pb) = y(pb−1). In fact, the left-pointing horizontal edges in column m− 1 are precisely

those of the form 〈pa, pa+1〉 for some minimal segment P[a,b] that sticks to the vertical line

(x = m), and the right-pointing horizontal edges in column m− 1 are precisely those of

the form 〈pb−1, pb〉 for some such minimal segment P[a,b].

These facts are provable in V0, and show that the Edge Alternation Theorem 7.7 is

equivalent to the following lemma (see Figure 7.8). Here (and elsewhere) the assertion

that two sets of points on a vertical line alternate means that the two corresponding sets

of y-coordinates alternate.

Lemma 7.10 (Edge Alternation Lemma). (Provable in V0) Let P[a1,b1], . . ., P[ak,bk] be

all minimal segments that stick to the vertical line (x = m). Then the sets {pa1 , . . . , pak
}

and {pb1 , . . . , pbk} alternate.

Note that although in V0 we can define the set of all segments P[ai,bi] in the lemma

above, we are not able to define k, the total number of such segments. Thus the index k

is used only for readability.

pa3

pb6

pa8

pb5

x = m

b

b

b

b

b

u

u

Figure 7.8: The end-edges of minimal segments that stick to (x = m) alternate.

Before proving the Edge Alternation Lemma we give two important lemmas needed

for the proof. The first states that the endpoints of two non-overlapping segments of P

that stick to the same vertical line do not alternate on the vertical line.

Lemma 7.11 (Main Lemma). (Provable in V0) Suppose that a < b < c < d and that
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the segments P[a,b] and P[c,d] both stick to (x = m). Then the sets {y(pa), y(pb)} and

{y(pc), y(pd)} do not alternate.

Proof. We argue in V0 using induction on m. The base case (m = 0) is straightforward:

both P[a,b] and P[c,d] must be entirely on (x = 0). For the induction step, suppose that

the lemma is true for some m ≥ 0. We prove it for m+ 1 by contradiction.

Assume that there are disjoint segments P[a,b] and P[c,d] sticking to (x = m+ 1) that

violate the lemma. Take such segments with smallest total length (b− a) + (d− c). It is

easy to check that both P[a,b] and P[c,d] must be minimal segments.

Now the segments P[a+1,b−1] and P[c+1,d−1] stick to the vertical line (x = m), and their

endpoints have the same y-coordinates as the endpoints of P[a,b] and P[c,d]. Hence we get

a contradiction from the induction hypothesis. �

From the Main Lemma we can prove an important special case of the Edge Alternation

Lemma.

Lemma 7.12 (Provable in V0). Let P[a,b] be a segment that sticks to (x = m), and

let P[a1,b1], . . . , P[ak,bk] be all minimal subsegments of P[a,b] that stick to (x = m), where

a ≤ a1 < b1 < . . . < ak < bk ≤ b. Then the sets {pa1 , . . . , pak
} and {pb1, . . . , pbk}

alternate.

Proof. We show that between any two pai
’s there is a pbj . The reverse condition is proved

similarly. Thus let i 6= j be such that y(pai
) < y(paj

). We show that there is some ℓ such

that y(pai
) < y(pbℓ) < y(paj

).

pai

paj

pbj−1

x = m

Figure 7.9: Proof of Lemma 7.12
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Consider the case where i < j (the other case is similar). Then the segment P[bj−1,aj ]

is entirely on (x = m). Now if y(pbj−1
) < y(paj

), then y(pai
) < y(pbj−1

), and we are done.

So suppose that y(pbj−1
) > y(paj

) (see Figure 7.9).

From the Main Lemma for the segments P[ai,bj−1] and P[aj ,bj ] it follows that y(pai
) <

y(pbj) < y(pbj−1
). Since P[bj−1,aj ] is entirely on (x = m), it must be the case that

y(pai
) < y(pbj) < y(paj

). �

Proof of the Edge Alternation Theorem

To prove Theorem 7.7 it suffices to prove the Edge Alternation Lemma 7.10. The proof

relies on Lemma 7.12, the Main Lemma, and the Alternation Lemma 7.8.

Proof of Lemma 7.10. We argue in V0 and use downward induction onm. The base case,

m = n, follows from Lemma 7.12, where the segment P[a,b] has a = 0 and b = t−1. (Recall

our numbering convention that the edge 〈pt−1, p0〉 lies on the vertical line (x = n).)

For the induction step, suppose that the conclusion is true for m+ 1, we prove it for

m by contradiction.

Let {P[a′1,b
′

1], . . . , P[a′k,b
′

k]} be the definable set of all minimal segments that stick to the

line (x = m+ 1). (k is not definable in V0, we use it only for readability.)

Notation Let aℓ = (a′ℓ + 1), bℓ = (b′ℓ − 1) and A = {y(paℓ
)}, B = {y(pbℓ)}.

Then, since y(paℓ
) = y(pa′ℓ) and y(pbℓ) = y(pb′ℓ), it follows from the induction hypoth-

esis that A and B alternate. (Note that each P[aℓ,bℓ] sticks to (x = m), but might not be

minimal.)

Now suppose that there are horizontal P -edges e1 and e2 on column m−1 that violate

the lemma, with y(e1) < y(e2). Thus both e1 and e2 point in the same direction, and

there is no horizontal P -edge e on column (m − 1) with y(e1) < y(e) < y(e2). We may

assume that both e1 and e2 point to the left. The case in which they both point to the

right can be argued by symmetry (or we could strengthen the induction hypothesis to

apply to both of the curves P and the reverse of P ).
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Let the right endpoints of e1 and e2 be pc and pd, respectively. Thus x(pc) = x(pd) = m

and y(pc) < y(pd).

Let P[ai,bi] be the segment of P containing pc, and let P[aj ,bj ] be the segment of P

containing pd. Note that the segments P[ai,bi] and P[aj ,bj ] stick to (x = m), but they are

not necessarily minimal. It follows from Lemma 7.12 that i 6= j.

We may assume that paj
lies above pc. This is because if paj

lies below pc, then we

claim that pai
lies below pd (since otherwise the segments P[ai,c] and P[aj ,d] would violate

the Main Lemma). Thus the case paj
lies below pc would follow by the case we consider,

by interchanging the roles of ai, c with aj, d, and inverting the graph.

pbj

pbi

pai

x1

x2

pc

pd

paj

pbj

pw

x = m

Figure 7.10: Case I: y(pai
) < y(pd)

Case I: y(pai
) < y(pd) (See Figure 7.10)

We apply the Alternation Lemma 7.8 for the alternating sets A and B with the

bijection f(y(paℓ
)) = y(pbℓ) and x1 = y(pai

) and x2 = y(paj
). Note that f satisfies the

non-arc-crossing condition (7.1) by the Main Lemma.

We claim that both f(x1) and f(x2) are outside the interval [x1, x2]. We show this

for f(x1); the argument for f(x2) is similar. Thus we are to show that the point pbi does

not lie on the vertical line (x = m) between the points pai
and paj

.

First we show pbi does not lie between pai
and pc. This is obvious if the segment P[ai,c]
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lies entirely on (x = m). Otherwise let w < c be such that the segment P[w,c] lies entirely

on x = m. (Note that y(pai
) < y(pw) < y(pc), because there is no horizontal edge in

column m− 1 between pc and pd.) Then pbi does not lie between pai
and pw by the Main

Lemma applied to the segments P[ai,w] and P[c,bi].

Next, note that pbi does not lie between pc and pd, because there is no horizontal edge

in column m−1 between these two points. Finally we claim that pbi does not lie between

pd and paj
. This is obvious if aj = d, and otherwise use the Main Lemma applied to the

segments P[aj ,d] and P[ai,bi].

This establishes the hypotheses for the Alternation Lemma. By that Lemma it follows

that there must be some paℓ
outside the vertical interval between pai

and paj
such that

pbℓ lies in that interval. But this is impossible, by applying the Main Lemma as above

(for either P[ai,c] and P[aℓ,bℓ] or P[aj ,d] and P[aℓ,bℓ]). This contradiction shows that Case I

is impossible.

Case II: y(pai
) > y(pd) (See Figure 7.11)

pc

pd

paj

pbj

pbi

pai

x1

x2

x = m

Figure 7.11: Case II: y(pai
) > y(pd)

In this case we must have y(pai
) > y(paj

), by the Main Lemma applied to the segments

P[ai,c] and P[aj ,d]. In fact, by repeated use of the Main Lemma we can show

y(paj
) < y(pbj) < y(pbi) < y(pai

)
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We get a contradiction by applying the Alternation Lemma, this time using the inverse

bijection f−1 : B → A, with x1 = y(pbj) and x2 = y(pbi). �

7.2.2 There Are at Most Two Regions

Here we formalize and prove the idea that if P is a sequence of edges that form a closed

curve, and p1 and p2 are points on opposite sides of P , then any point in the plane off

P can be connected to either p1 or p2 by a path that does not intersect P . However this

path must use points in a refined grid, in order not to get trapped in a region such as

that depicted in Figure 7.12. Thus we triple the density of the points by tripling n to

3n, and replace each edge in P by a triple of edges. We also assume that originally the

curve P has no point on the border of the grid. (This assumption is different from our

convention stated in Section 7.2.1.)

Figure 7.12: An “unwanted” region.

Let P ′ denote the resulting set of edges. (The new grid has size (3n) × (3n).)

Theorem 7.13. The theory V0 proves the following: Let P be a sequence of edges that

form a closed curve, and suppose that P has no point on the border of the grid. Let P ′ be

the corresponding sequence of edges in the (3n) × (3n) grid, as above. Let p1, p2 be any

two points on different sides of P ′ (Definition 7.2). Then any point p (on the new grid)

can be connected to either p1 or p2 by a sequence of edges that does not intersect P ′.

Proof. Since edges in P ′ are directed it makes sense to speak of edges a distance 1 to the

left of P ′ and a distance 1 to the right of P ′. Thus, taking care when P ′ turns corners, it

is straightforward to define (using ΣB
0 -COMP) two sequences Q1, Q2 of edges on either

side of P ′, i.e., both Q1 and Q2 have distance 1 (on the new grid) to P ′. Then p1 and p2
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must lie on Q1 or Q2. By the Main Theorem for V0, p1 and p2 cannot be on the same

Qi. So assume w.l.o.g. that p1 is on Q1 and p2 is on Q2.

We describe informally a procedure that gives a sequence of edges connecting any

point p to p1 or p2. First we compute (using the number minimization principle) the

Manhattan distances from p to Q1 and Q2 (d(p,Q1) and d(p,Q2), respectively). Suppose

w.l.o.g. that

d(p,Q1) ≤ d(p,Q2)

Let q be a point onQ1 so that d(p, q) = d(p,Q1). Then any shortest sequence of edges that

connect p and q does not intersect P ′, because any sequence of edges starting at p that

intersect P ′ must intersect either Q1 or Q2 before the first time the sequence intersects

P ′. Concatenate one such sequence and the sequence of edges on Q1 that connect q and

p1, we have a sequence of edges that connects p and p1 without intersecting P ′. �

7.3 Proving the st-Connectivity Principle

The st-connectivity principle states that it is not possible to have a red path and a blue

path of edges which connect diagonally opposite corners of the grid graph unless the

paths intersect. Here we use results from the previous sections to show that the set-of-

edges version of this is provable in V0(2), and the sequence-of-edges version is provable

in V0. As mentioned in Section 1.2.1, our results here strengthen earlier upper bounds

in [Bus06] and [CR97].

Theorem 7.14 (Provable in V0(2)). Suppose that B is a set of edges that connects

〈0, n− 1〉 and 〈n− 1, 0〉, and R is a set of edges that connects 〈0, 0〉 and 〈n− 1, n− 1〉.

Then B and R intersect.

Proof. We extend the grid (see Figure 7.13) and connect 〈0, n− 1〉 and 〈n− 1, 0〉 by the
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0

0
-1 n n+1

n

n-1

p1

p2

Figure 7.13: Reduction from st-Connectivity

edges

{(〈0, n− 1〉, 〈0, n〉), (〈n− 1, 0〉, 〈n, 0〉), (〈n, 0〉, 〈n+ 1, 0〉)}∪

{(〈i, n〉, 〈i+ 1, n〉) : 0 ≤ i ≤ n} ∪ {(〈n+ 1, j〉, 〈n+ 1, j + 1〉) : 0 ≤ j ≤ n− 1}

The above edges together with B form a curve B′.

Similarly, connect the point 〈0, 0〉 to p1 = 〈n,−1〉 by

{(〈0, 0〉, 〈0,−1〉)} ∪ {(〈i,−1〉, 〈i+ 1,−1〉) : 0 ≤ i ≤ n− 1}

and connect 〈n− 1, n− 1〉 to p2 = 〈n, 1〉 by the edges

{(〈n− 1, n− 1〉, 〈n, n− 1〉)} ∪ {(〈n, i〉, 〈n, i+ 1〉) : 1 ≤ i ≤ n− 2}

These edges and the edges in R form a set R′ that connects p1 and p2.

By Theorem 7.3, B′ and R′ intersect. As a result, B and R intersect. �

By the same proof, the next result follows from the Main Theorem for V0.

Theorem 7.15 (Provable in V0). Suppose that B is a sequence of edges connecting

〈0, n− 1〉 and 〈n− 1, 0〉, and R is a sequence of edges connecting 〈0, 0〉 and 〈n− 1, n− 1〉.

Then B and R intersect.



Chapter 8

Distribution of Prime Numbers

In this chapter we first give an outline of a proof of the lower bound for π(n), the number

of prime numbers ≤ n (Section 8.1). Then we define an approximation to the natural

logarithm function ln(x) (Section 8.2). The VTC0 proof of the lower bound for π(n) is

given in Section 8.3. Proof of an upper bound for π(n) are outlined and then formalized in

Sections 8.4 and 8.5. Finally, Section 8.6 sketches VTC0 proofs of Bertrand’s Postulate

(that π(2n) − π(n) ≥ 1 for all n) and of the fact that π(2n) − π(n) = Ω(n/ ln(n)). The

proofs outlined in Sections 8.1 and 8.4 can be found in many textbooks, such as [Sho07].

The proof in Section 8.6 is a slight modification of the proof from [Mos49].

Notice that the objects of interest in this chapter are numbers which we treat as

objects of the number sort (as opposed to the string sort, for example when we discuss

the integer division problem on pages 12 and 131). The function π(n) mentioned above

is a function on the number sort. It apparently cannot be defined by a ∆0 formula, so

here we use strings and a ΣB
0 formula to define it, and we need the axiom NUMONES

of VTC0 to prove its totality and properties.

These theorems can be formalized and proved in I∆0 for n ≤ (log(a))c, for some

c ∈ N and for some a. Informally, this is because in I∆0 we can define the number of

1-bits in strings whose lengths are polylogarithms in a. The details are left to the reader.

112
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CONVENTION: When p is used as the index in
∑

p or
∏

p, then p ranges over prime

numbers. Also, in the formalizations below, we will use the fact that that simple ma-

nipulations of summation (of numbers) can be carried out in VTC0 and its extensions.

See for example the proof of the Pigeonhole Principle in [Ngu04, CN06]. For readability

we will also write formulas using the function x − y, here x − y = z ↔ ((x ≤ y ∧ z =

0) ∨ (y < x ∧ y + z = x)), as abbreviations for the obvious equivalent formulas without

this function. For example, suppose that VTC0 ⊢ ti ≥ si for 0 ≤ i ≤ n, then it is

provable in VTC0 that
n
∑

i=0

ti −
n
∑

i=0

si =
n
∑

i=0

(ti − si) (8.1)

(Formally, we need to define (using ΣB
0 -COMP) a string that encodes the sequence {ti}

and then use numones to compute
∑n

i=0 ti, etc., but we will omit these details here.)

Note that π(n) is provably total in VTC0: Let P (n) = {p ≤ n | p is a prime}, then

P (n) is defined by ΣB
0 -COMP, and (recall the function numones from Definition 3.1)

π(n) = numones(n+ 1, P (n))

Note also that rational numbers can be defined in I∆0 (see Section 8.2 below). Therefore

our formulations of the Θ-, Ω-, O-notations in VTC0 will use the rational constants.

Recall that log(x) = ⌊log2(x)⌋ is definable in V0 (Example 2.18).

8.1 A Lower Bound Proof for π(n)

Note that π(2n − 1) = π(2n) for n ≥ 2. So it suffices to give a lower bound for π(2n).

The idea is to compute an upper bound and a lower bound for (2n)!
n!n!

; by comparing these

bounds we can derive a lower bound for π(2n).

First, for a prime p < n, the exponent of p in n! is (see also Lemma 8.8)

∞
∑

j=1

⌊

n

pj

⌋

(8.2)
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Hence, for a prime p < 2n, the exponent d of p in (2n)!
n!n!

is

d =
∞
∑

j=1

(⌊

2n

pj

⌋

− 2

⌊

n

pj

⌋)

(8.3)

Since ⌊2n
pj ⌋ − 2⌊ n

pj ⌋ ≤ 1 for j ≤ ln(2n)
ln(p)

and ⌊2n
pj ⌋ − 2⌊ n

pj ⌋ = 0 for j > ln(2n)
ln(p)

, it follows that

d ≤ ln(2n)
ln(p)

. Therefore,

(2n)!

n!n!
≤

∏

prime p<2n

p
ln(2n)
ln(p) =

∏

prime p<2n

2n = (2n)π(2n) (8.4)

On the other hand,

(2n)!

n!n!
=

n
∏

i=1

n + i

i
≥ 2n (8.5)

Thus 2n ≤ (2n)π(2n). So π(2n) ≥ ln(2)
2

2n
ln(2n)

.

The value of (2n)!
n!n!

is a string, and we do not know how to compute it in VTC0. To

formalize the proof above, we will therefore compute (approximately) the logarithm of

(2n)!
n!n!

instead. The crude approximation provided by the AC0 function log(x) = ⌊log2(x)⌋

(Example 2.18) seems not sufficient for our purpose, so we will first compute a better

approximation (to ln(x) instead of log2(x)): we will define ln(x,m), a rational-valued

function that approximates ln(x) with an error at most 1
m

. Our results will stated using

this function.

8.2 Approximating ln(x)

We will approximate the natural logarithm function by rational numbers. Here we only

need nonnegative numbers which can be defined in I∆0 by pairs 〈x, y〉. For readability

we will write x
y

for 〈x, y〉. Equality, inequality, addition and multiplication for rational

numbers are defined in the standard way, and these are preserved under the embedding

x 7→ x
1
. For example, =Q and ≤Q are defined as:

x

y
=Q

x′

y′
≡ xy′ = x′y, and

x

y
≤Q

x′

y′
≡ xy′ ≤ x′y
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Then it can be shown that

I∆0 ⊢ ⌊x/y⌋ ≤Q

x

y
<Q ⌊x/y⌋ + 1

(here ⌊x/y⌋ is the AC0 function: ⌊x/y⌋ = max{z : zy ≤ x}, and r <Q s ≡ (r ≤Q

s ∧ r 6=Q s)). In the following discussion, we will simply omit the subscript Q from =Q,

≤Q, etc.; the exact meaning will be clear from the context.

1 a+1
a

a+2
a

. . . x

1

1/a

y = 1/x

Figure 8.1: Defining ln(x,m): the shaded area is (8.6).

We will now define in VTC0 a function ln(x,m) which approximate ln(x) up to 1/m,

for x ∈ N. Note that

ln(x) =

∫ x

1

1

y
dy

Our approximation will be roughly (the shaded area in Figure 8.1, here a is to be deter-

mined later):
ax−1
∑

k=a

1

a

1

k/a
=

ax−1
∑

k=a

1

k
(8.6)

We will not compute this summation precisely (since we want to avoid computing the

common denominator). Instead we approximate 1
k

by ⌊b/k⌋
b

for some b determined below.

Thus

ln(x,m) =

∑ax−1
k=a ⌊b/k⌋

b
(8.7)

The summation in (8.7) can be computed using the function numones.

Notice that (8.6) is an upper bound for ln(x) with an error (the total area of the

shaded region above the line xy = 1) at most 1/a, and (8.7) is a lower bound for (8.6)
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with an error at most ax/b. So to get an 1/m-approximation to ln(x) it suffices to take

a = m, b = m3 (we will always have m > x).

Definition 8.1. ln(x,m) is defined as in (8.7) with a = m, b = m3.

Lemma 8.2. a) VTC0(ln) ⊢ x ≤ y ≤ m ⊃ ln(x,m) ≤ ln(y,m).

b) VTC0(ln) ⊢ xy ≤ m ⊃ ln(xy,m) ≤ ln(x,m) + ln(y,m) ≤ ln(xy,m) + xy
m

Proof. Part a) is obvious from definition. For part b) we have

ln(xy,m) =
1

b

axy−1
∑

k=a

⌊b/k⌋

= ln(x,m) +
1

b

axy−1
∑

k=ax

⌊b/k⌋

= ln(x,m) +
1

b

ay−1
∑

k=a

x−1
∑

j=0

⌊b/(kx+ j)⌋ (8.8)

Now using the facts (provable in I∆0) that ⌊b/(kx+ j)⌋ ≤ ⌊b/(kx)⌋ (for 0 ≤ j < x) and

x⌊b/(kx)⌋ ≤ ⌊b/k⌋ we have:

ln(xy,m) ≤ ln(x,m) +
1

b

ay−1
∑

k=a

x⌊b/(kx)⌋ ≤ ln(x,m) +
1

b

ay−1
∑

k=a

⌊b/k⌋ = ln(x,m) + ln(y,m)

Also, from (8.8) and the facts (provable in I∆0) that ⌊b/(kx + j)⌋ ≥ ⌊b/((k + 1)x)⌋ (for

0 ≤ j < x) and x⌊b/((k + 1)x)⌋ ≥ ⌊b/(k + 1)⌋ − (x− 1), we have

ln(xy,m) ≥ ln(x,m) +
1

b

ay−1
∑

k=a

x⌊b/((k + 1)x)⌋

≥ ln(x,m) +
1

b

ay−1
∑

k=a

(⌊b/(k + 1)⌋ − (x− 1))

= ln(x,m) +
1

b

((

ay−1
∑

k=a

⌊b/k⌋
)

− ay(x− 1) − ⌊b/a⌋ + ⌊b/(ay)⌋
)

= ln(x,m) + ln(y,m) − my(x− 1) +m2 − ⌊m3/(my)⌋
m3

(recall a = m, b = m3)

≥ ln(x,m) + ln(y,m) − xy

m
�
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Lemma 8.3 (Provable in VTC0(ln)). For n + 2 < m:

ln(n,m) +
1

n + 1
− 1

m2
< ln(n + 1, m) ≤ ln(n,m) +

1

n

Proof. Consider the second inequality. By Definition 8.1 we have

ln(n + 1, m) − ln(n,m) =

∑m−1
i=0 ⌊m3/(mn+ i)⌋

m3
≤ m⌊m3/(mn)⌋

m3
=

⌊m2/n⌋
m2

≤ 1

n

Similarly, because ⌊ m3

mn+i
⌋ ≥ ⌊ m3

m(n+1)
⌋ > m2

n+1
− 1:

ln(n+ 1, m) − ln(n,m) >
1

m3
m(

m2

n + 1
− 1) =

1

n + 1
− 1

m2
�

Lemma 8.4 (Provable in VTC0(ln)). For m > n:

n ln(n,m) − n+ 1 ≤
n
∑

i=1

ln(n,m) < n ln(n,m) − n + ln(n,m) + 2

Proof. The first inequality is proved as follows,

n ln(n,m) −
n
∑

i=1

ln(n,m) =

n−1
∑

i=1

i(ln(i+ 1, m) − ln(i,m))

≤
n−1
∑

i=1

i
1

i
= n− 1 (Lemma 8.3)

Similarly,

(n+ 1) ln(n,m) −
n
∑

i=1

ln(n,m) =

n
∑

i=2

i(ln(i,m) − ln(i− 1, m))

≥
n
∑

i=2

i(
1

i
− 1

m2
) (Lemma 8.3)

= n− 1 − n(n + 1) − 2

2m2
> n− 2 (for m > n) �

The following corollary relates ln(n,m) to log(n) = ⌊log2(n)⌋ (one less than the length

of the binary representation of n, see Example 2.18).

Corollary 8.5 (Provable in VTC0(ln, log)). For 2n ≤ m,

log(n) ln(2, m) − n

m
≤ ln(n,m) ≤ (log(n) + 1) ln(2, m)
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Proof. Let y = 2log(n) (y is definable in I∆0). Then y ≤ n < 2y. Lemma 8.2 a) shows

that ln(y,m) ≤ ln(n,m) ≤ ln(2y,m). We can prove by induction on y using Lemma 8.2

b) that ln(2y,m) ≤ (log(n) + 1) ln(2, m) and ln(y,m) ≥ log(n) ln(2, m) − y
m

. �

The following lemma is used to calculate ln(2). Here we write ‖t1 − t2‖ ≤ s as an

abbreviation for t1 ≤ t2 + s ∧ t2 ≤ t1 + s.

Lemma 8.6 (Provable in VTC0(ln)). For x < m ∧m ≥ 3,

‖ln(x,m) − ln(x, 2m)‖ < x

4m

Proof. From definition we have

ln(x, 2m) − ln(x,m) =
1

8m3

2mx−1
∑

k=2m

⌊8m3/k⌋ − 1

m3

mx−1
∑

k=m

⌊m3/k⌋

=
1

8m3

mx−1
∑

k=m

(⌊8m3/2k⌋ + ⌊8m3/(2k + 1)⌋ − 8⌊m3/k⌋)

For m ≤ k < mx, let ⌊m3/k⌋ = q, then it can be shown that

4q ≤ ⌊8m3/2k⌋ ≤ 4q + 3

4q − 2m ≤ ⌊8m3/(2k + 1)⌋ ≤ 4q + 3

In other words, for m ≥ 3 we have ‖⌊8m3/2k⌋ + ⌊8m3/(2k + 1)⌋ − 8⌊m3/k⌋‖ ≤ 2m.

Consequently, ‖ln(x, 2m) − ln(x,m)‖ ≤ 1
8m3 (mx−m)2m < x

4m
. �

The lemma above can be used to approximate ln(2) using ln(2, m) where m is a

power of 2. Here we give only a rough estimation. (Note that in particular we have

1
2
< ln(2, 2log(m)) < 1 for m ≥ 8).

Corollary 8.7 (Provable in VTC0(ln)). For 8 ≤ m,

19

32
< ln(2, 2log(m)) <

27

32

Proof. Lemma 8.6 can be used to show that ‖ln(x,m) − ln(x, 2km)‖ < x
2m

. It follows

that ‖ln(2, m) − ln(2, 2km)‖ < 2
16

. Also, we have ln(2, 8) = 368
512

= 23
32

. �
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8.3 A Lower Bound Proof of π(x) in VTC0

Throughout this section, let

s =

n
∑

i=1

ln(n+ i,m) −
n
∑

i=1

ln(i,m) for some m > n2 (8.9)

Using the fact that ln(n+ i,m) ≥ ln(i,m) (Lemma 8.2) we can prove in VTC0(ln) that

s =
n
∑

i=1

(ln(n + i,m) − ln(i,m)) (8.10)

(see (8.1)). Also,

s =

2n
∑

i=1

ln(i,m) − 2

n
∑

i=1

ln(i,m) (8.11)

Using NUMONES and the fact that the relation xz = y is definable by a ∆0 formula

(Example 2.6), the following functions are provably total in VTC0 (in fact ex(p, n) is

provably total in I∆0, here ex stands for exponent):

ex(p, n) = max{j : pj |n} (8.12)

ex(p, n!) =

n
∑

i=1

ex(p, i) (8.13)

(These two functions have the same name, but the exact meaning will be clear from

context.) Following (8.2) we have:

Lemma 8.8 (Provable in VTC
0
). ex(p, n!) =

∑

j:pj≤n⌊n/pj⌋.

Proof. The proof is by formalizing in VTC0 the standard proof by a counting argument:

First we count the number of i ≤ n such that p|i (there are ⌊n/p⌋ of them), then we

count the number of i ≤ n such that p2|i (there are ⌊n/p2⌋ of them), etc. �

Prime factorization gives us:

Lemma 8.9 (Provable in VTC
0
).

∑

p|i
ex(p, i) ln(p,m) − i

m
≤ ln(i,m) ≤

∑

p|i
ex(p, i) ln(p,m)
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Proof. Each inequality can be proved by induction on i using Lemma 8.2 b. �

The next corollary follows easily:

Corollary 8.10 (Provable in VTC
0
).

∑

p≤n
ex(p, n!) ln(p,m) − n(n + 1)

2m
≤

n
∑

i=1

ln(i,m) ≤
∑

p≤n
ex(p, n!) ln(p,m)

Following (8.4) we prove (recall s from (8.9)):

Lemma 8.11 (Provable in VTC0(π, ln)). For m ≥ 4n2, s ≤ π(2n) ln(2n,m) + 1.

Proof. Using (8.11) and from Corollary 8.10 and Lemma 8.8 above we have

s =
2n
∑

i=1

ln(i,m) − 2
n
∑

i=1

ln(i,m)

≤
∑

p≤2n

ex(p, (2n)!) ln(p,m) − 2
∑

p≤n
ex(p, n!) ln(p,m) +

n(n + 1)

m

=
∑

p≤2n

ln(p,m)(ex(p, (2n)!) − 2ex(p, n!)) +
n(n+ 1)

m

=
∑

p≤2n

ln(p,m)
∑

p:pj≤2n

(⌊2n/pj⌋ − 2⌊n/pj⌋) +
n(n + 1)

m

≤
∑

p≤2n

ln(p,m) · max{j : pj ≤ 2n|} +
n(n+ 1)

m

The last inequality follows from the fact that I∆0 ⊢ 0 ≤ ⌊2r⌋ − 2⌊r⌋ ≤ 1 for rationals r.

Now we estimate ln(p,m) · max{j : pj ≤ 2n|}. Suppose that pj ≤ 2n, we can prove

(by induction on j, using Lemma 8.2 b) that

j ln(p,m) ≤ ln(pj, m) +
pj

m

Therefore by Lemma 8.2 a we have j ln(p,m) ≤ ln(2n,m) + 2n
m

. As a result,

ln(p,m) · max{j : pj ≤ 2n|} ≤ ln(2n,m) +
2n

m

Hence s ≤ π(2n) ln(2n,m) + π(2n)2n
m

+ n(n+1)
m

< π(2n) ln(2n,m) + 1 for m > 4n2. �
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The next lemma is stronger than (8.5):

Lemma 8.12 (Provable in VTC0(π, ln)). For m ≥ 4n2 (recall s from (8.11)),

s > 2n ln(2, m) − 2 ln(2n,m) − 4 (8.14)

Proof. By Lemma 8.4 we have

s > 2n ln(2n,m) − 2n+ 1 − 2(n ln(n,m) − n+ ln(n,m) + 2)

= 2n ln(2n,m) − 2n ln(n,m) − 2 ln(2n,m) − 3

> 2n(ln(2, m) + ln(n,m) − 2n

m
) − 2n ln(n,m) − 2 ln(2n,m) − 3 (Lemma 8.2)

≥ 2n ln(2, m) − 2 ln(2n,m) − 4 �

Corollary 8.13 (Provable in VTC0(π, ln)). For n2 < m,

n ln(2, m) < (π(n) + 2) ln(n,m) + 5 (8.15)

Proof. The case where n = 2k follows from Lemmas 8.11 and 8.12.

Now consider the case where n = 2k − 1. Using Lemma 8.3 and the fact that

π(2k − 1) = π(2k) for k ≥ 2:

(π(2k − 1) + 2) ln(2k − 1, m) + 5 ≥ (π(2k) + 2)(ln(2k,m) − 1

2k − 1
) + 5

> 2k ln(2, m) − π(2k) + 2

2k − 1
(by the case n = 2k)

= (2k − 1) ln(2, m) +

(

ln(2, m) − π(2k) + 2

2k − 1

)

Since ln(2, m) > 19
32

(Lemma 8.7) and π(2k − 1) ≤ k − 2 (for k ≥ 8), we have ln(2, m) −
π(2k)+2

2k−1
≥ 0 for k ≥ 8. As a result, the corollary holds when k ≥ 8. The corollary can be

verified for n = 2k − 1 and k ≤ 7 directly. �
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8.4 Outline of an Upper Bound Proof of π(n)

Recall that index p ranges over prime numbers. Chebyshev’s function ϑ(n) defined below

plays an important role:

ϑ(x) =
∑

p≤x
ln(p) (8.16)

Theorem 8.14. lim π(x)
ϑ(x)/ ln(x)

= 1.

We will only need the fact that π(x) = O(ϑ(x)/ ln(x)).

Proof. First, since ln(p) ≤ ln(x) for p ≤ x, we have ϑ(x) ≤ π(x) ln(x), i.e., π(x) ≥

ϑ(x)/ ln(x).

On the other hand, for any ǫ > 0 we have

ϑ(x) ≥
∑

x1−ǫ<p≤x
ln(p) ≥ (1 − ǫ) ln(x)(π(x) − π(x1−ǫ)) ≥ (1 − ǫ) ln(x)(π(x) − x1−ǫ)

So π(x) ≤ x1−ǫ + ϑ(x)
(1−ǫ) ln(x)

. Since π(x) = Ω(x/ ln(x)) (Section 8.1), for sufficiently large

x we have x1−ǫ ≤ ǫπ(x), and hence π(x) ≤ ϑ(x)
(1−ǫ)2 ln(x)

. �

Theorem 8.15. For n ≥ 1, ϑ(n) < 2n ln(2).

Proof. First, notice that

(2k + 1)!

k!(k + 1)!
≤ 1

2
22k+1 = 22k (8.17)

because (2k+1)!
k!(k+1)!

appears twice in the binomial expansion of 22k+1.

Also, all primes p where k + 1 < p ≤ 2k + 1 divide (2k+1)!
k!(k+1)!

. Hence

(2k + 1)!

k!(k + 1)!
≥

∏

k+1<p≤2k+1

p (8.18)

Consequently,

ϑ(2k + 1) − ϑ(k + 1) =
∑

k+1<p≤2k+1

ln(p) ≤ ln
(2k + 1)!

k!(k + 1)!
≤ ln(22k) = 2k ln(2) (8.19)

Now we prove the theorem by induction on n. The base cases (n = 1 and n = 2)

are trivial. For the induction step, the case where n is even is also obvious, since then



Chapter 8. Distribution of Prime Numbers 123

ϑ(n) = ϑ(n− 1). So suppose that n = 2k+1. Using (8.19) and the induction hypothesis

(for n = k + 1) we have ϑ(2k + 1) < 2k ln(2) + 2(k + 1) ln(2) = 2(2k + 1) ln(2). �

Corollary 8.16. For every ǫ > 0, there is a n0 ∈ N so that for all n ≥ n0,

π(n) ≤ (1 + ǫ)
2 ln(2)x

ln(x)

Again, we have to avoid computing (2k+1)!
k!(k+1)!

in VTC0. In the formalization below, we

will approximate ϑ(x) by ϑ(x,m) (using ln(x,m) defined in Section 8.2), and will show

that ϑ(x,m) = O(x) using a proof slightly different from the above proof.

8.5 An Upper Bound Proof of π(x) in VTC0

Our version of Chebyshev’ function is

ϑ(x,m) =
∑

p≤x
ln(p,m) (8.20)

Note that ϑ(x,m) is provably total in VTC0. Following Theorem 8.15 we prove:

Theorem 8.17 (Provable in VTC
0
). For (n + 1)2 ≤ m

ϑ(n,m) ≤ (2 ln(2, m))n+ (ln(n− 1, m))2 + 3 ln(n− 1, m)

Proof. Using lemma 8.8 we can prove the following formalization of (8.18):

∑

k+1<p≤2k+1

ln(p,m) ≤
2k+1
∑

i=1

ln(i,m) −
k
∑

i=1

ln(i,m) −
k+1
∑

i=1

ln(i,m)

The LHS is ϑ(2k + 1, m) − ϑ(k + 1, m), so using Lemma 8.4 we have

ϑ(2k + 1, m) − ϑ(k + 1, m) < (2k + 2) ln(2k + 1, m) − k ln(k,m) − (k + 1) ln(k + 1, m)
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By Lemma 8.3,

RHS ≤ (2k + 2)(ln(2k,m) +
1

2k
) − k ln(k,m) − (k + 1)(ln(k,m) +

1

k + 1
− 1

m2
)

≤ (2k + 2)(ln(2, m) + ln(k,m)) − (2k + 1) ln(k,m) +
1

k
+
k + 1

m2

≤ 2k ln(2, m) + ln(k,m) + (2 ln(2, m) +
1

k
+
k + 1

m2
)

≤ 2k ln(2, m) + ln(k,m) + 3

As in the proof of Theorem 8.15, the current theorem can be proved by strong induction

on k. �

Now we prove the upper bound for π(x) in VTC0(π, ln).

Corollary 8.18 (Provable in VTC0(π, ln)). For n ≥ 2 and (n + 1)2 ≤ m:

π(n) ≤ 4 ln(2, m)
n

ln(n,m)
+ ⌈√n⌉ + ln(n,m) + 3

Note that the RHS can be bounded by c n
ln(n,m)

for some constant c > 4 ln(2, m) when

n is sufficiently large, but we leave the details to the reader.

Proof. We follow the proof of the fact that π(x) = O(ϑ(x)/ ln(x)) (Theorem 8.14). Let

⌈√x⌉ = min{y ≤ x : y2 ≥ x}. Then by Lemma 8.2, for x ≤ m we have

ln(⌈√x⌉, m) ≥ ln(x,m)

2

Hence for m ≥ (n+ 1)2:

ϑ(n,m) ≥
∑

⌈√n⌉<p≤n

ln(p,m) ≥ ln(⌈√n⌉, m)(π(n) − π(⌈√n⌉)) ≥ ln(n,m)

2
(π(n) − ⌈√n⌉)

Therefore π(n) ≤ 2 ϑ(n)
ln(n,m)

+ ⌈√n⌉. Consequently, the upper bound for π(n) follows from

Theorem 8.17 �
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8.6 Bertrand’s Postulate and a Lower Bound for

π(2n) − π(n)

We will show that π(2n)−π(n) ≥ 1 for all n, and π(2n)−π(n) = Ω(n/ ln(n). The upper

bound for π(n) proved in the previous section does not allow us to formalize directly the

proof from [Mos49]. However, it suffices for a proof obtained by slightly modifying the

proof from [Mos49]. First, the following lemma is easily proved using (8.3):

Lemma 8.19. Suppose that p is a prime number where ⌈
√

2n⌉ ≤ p ≤ ⌊2n/3⌋. Then p

occurs in the prime factorization of (2n)!
n!n!

at most once, and p occurs exactly once in (2n)!
n!n!

if and only if for some 1 ≤ c ∈ N:

⌊

n

c+ 1

⌋

+ 1 ≤ p ≤
⌊

2n

2c+ 1

⌋

Theorem 8.20. For n > 312/2, every prime number p where ⌊ n
c+1

⌋+1 ≤ p ≤ ⌊ 2n
2c+1

⌋ for

some c, 1 ≤ c ≤ 14, occurs exactly once in the prime factorization of A = A1 · A2 · A3,

where

A1 =







⌊2n/3⌋

⌊n/6⌋






, A2 =







⌊2n/5⌋

⌊n/15⌋






, A3 =







⌊2n/13⌋

⌊n/91⌋






(8.21)

Proof. The condition n ≥ 312/2 guarantees that n/15 ≥ ⌈
√

2n⌉. The proof is by count-

ing, using (8.2), the difference between the number of occurrences of a prime number p

in the numerator and denominator of A. For example,

A1 =
(⌊2n/3⌋ − ⌊n/6⌋ + 1) · (⌊2n/3⌋ − ⌊n/6⌋ + 2) · . . . · ⌊2n/3⌋

1 · 2 · . . . · ⌊n/6⌋

Hence, any prime number p where ⌊n
2
⌋+1 ≤ p ≤ ⌊2n

3
⌋ occurs exactly once in A1, because

p appears in the numerator but no multiple of p appears in the denominator.

Similarly, any p where ⌊ n
c+1

⌋+1 ≤ p ≤ ⌊ 2n
2c+1

⌋, for c ∈ {3, 4, 5, 9}, occurs exactly once

in A1; and any p such that ⌊ n
c+1

⌋ + 1 ≤ p ≤ ⌊ 2n
2c+1

⌋, for c ∈ {2, 7, 8, 10, 11, 12, 13, 14},

occurs exactly once in A2; and any p where ⌊n
7
⌋ + 1 ≤ p ≤ ⌊2n

13
⌋ occurs exactly once in

A3. �
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Corollary 8.21. Suppose that n ≥ 312/2, and let A be as in Theorem 8.20. Then

(2n)!

n!n!
≤ A · (2n)π(2n/31) ·

∏

n<p<2n

p (8.22)

Proof. The condition n ≥ 312/2 ensures that ⌊2n/31⌋ ≥ ⌈
√

2n⌉. By Lemma 8.19, each

prime p where ⌊2n/31⌋ < p ≤ n occurs at most once in (2n)!
n!n!

, and the product of those

that occur exactly once is bounded above by A by Theorem 8.20. In addition, for each

of the π(2n/31) primes p ≤ ⌊2n/31⌋, by (8.3) we know that the exponent d of p in (2n)!
n!n!

is at most ln(2n)
ln(p)

, i.e., pd ≤ 2n. �

Corollary 8.22. π(2n) − π(n) = Ω(n/ ln(n)) and π(2n) − π(n) ≥ 1 for all n ≥ 1.

Proof. Since (2n)!
n!n!

is the largest coefficient in the binomial expansion of 22n, we have

22n

2n+ 1
≤ (2n)!

n!n!

Also, (recall Ai in (8.21)) A1 ≤ 22n/3, A2 ≤ 22n/5 and A3 ≤ 22n/13. Thus (8.22) gives us

22n

2n+ 1
≤ 2

2n
3

+ 2n
5

+ 2n
13 · (2n)π(2n/31) ·

∏

n<p<2n

p

Hence

ln(
∏

n<p<2n

p) ≥ ln(2)(2n− 2n

3
− 2n

5
− 2n

13
) − π(

2n

31
) ln(2n) =

152 ln(2)

195
n− π(

2n

31
) ln(2n)

From the proof of Theorem 8.14, setting ǫ = 1/2 and note that x1/2 < 1
2
π(x) for

x ≥ 4096, (using π(x) ≥ ln(2)
2

x
ln(x)

by Section 8.1) we have π(x) ≤ 4ϑ(x)
ln(x)

. Hence, from

Theorem 8.15, π(x) ≤ 8 ln(2) x
ln(x)

. In other words,

π(
2n

31
) ≤ 16 ln(2)

31

n

ln(2n/31)

Consequently,

ln(
∏

n<p<2n

p) ≥ 152 ln(2)

195
n− 16 ln(2)

31

n

ln(2n/31)
ln(2n) (8.23)

Hence ln(2nπ(2n)−π(n)) ≥ ln(
∏

n<p<2n p) = Ω(n). So π(2n) − π(n) = Ω(n/ ln(n)).

In addition, the RHS of (8.23) is > 0 whenever n ≥ 12975. It follows that π(2n) −

π(n) ≥ 1 for n ≥ 12975. The fact that π(2n) > π(n) for n < 12975 can be checked

directly. �
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8.6.1 Formalization in VTC0

Theorem 8.23. a) It is provable in VTC0(π) that π(2n) − π(n) ≥ 1 for n ≥ 1.

b) There are r, s ∈ N, r > 0, s > 0, n0 ∈ N so that

VTC0(π, ln) ⊢ n ≥ n0 ⊃ π(2n) − π(n) ≥ r

s

n

ln(n)

Proof Sketch. Notice that Corollary 8.21 can be formalized and proved in VTC0(π, ln)

as in previous sections, i.e., the following is provable in VTC0(π, ln) (writing ln(x) for

ln(x,m)):

2n
∑

i=1

ln(i) − 2

n
∑

i=1

ln(i) ≤ ln(2n)π(2n/31) +
∑

n<p<2n

ln(p)

+
∑

c∈{1,2,6}





⌊2n/(2c+1)⌋
∑

i=1

ln(i) −
⌊n/(c+1)⌋
∑

i=1

ln(i) −
⌊2n/(2c+1)⌋−⌊n/(c+1)⌋

∑

i=1

ln(i)



 (8.24)

Now by Lemma 8.18, for n ≥ 31 we have

π(2n/31) ≤ 8 ln(2, m)

31 ln(⌊2n/31⌋)n+ O(⌈√n⌉)

Next, it can be shown (using Lemmas 8.2 and 8.3) that for n ≥ 3,

⌊2n/3⌋
∑

i=1

ln(i) −
⌊n/2⌋
∑

i=1

ln(i) −
⌊2n/3)⌋−⌊n/2⌋

∑

i=1

ln(i) < (4 ln(4) − 3 ln(3))
n

6
+ O(ln(n))

Similarly, for each c the summand on the second line of (8.24) is less than

((2c+ 2) ln(2c+ 2) − (2c+ 1) ln(2c+ 1))
n

(c+ 1)(2c+ 1)
+ O(ln(n))

Hence, the RHS of (8.24) is at most

tn+ O(ln(n)⌈√n⌉) +
∑

n<p<2n

ln(p)

where

t =
4 ln(4) − 3 ln(3)

6
+

6 ln(6) − 5 ln(5)

15
+

14 ln(14) − 13 ln(13)

91
+

8 ln(2) ln(2n)

31 ln(⌊2n/31⌋)
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The lower bound for the LHS of (8.24) is from Lemma 8.12. So we have

2n ln(2) − 2 ln(2n) − 4 < tn+ O(ln(n)⌈√n⌉) +
∑

n<p<2n

ln(p)

The conclusion follows from the fact that t < 2 ln(2), ln(n)⌈√n⌉ = o(n), and that

log(n) = Θ(ln(n,m)) for m > n (Corollary 8.5). �

8.7 Comparison with Earlier Work

As this thesis is about to be submitted, we become aware of [CD94] and [Cor95]. In

[CD94] the Prime Number Theorem has been formalized and proved in the theory I∆0 +

exp, where exp is the axiom ∀x∀z∃y(y = xz) (here y = xz is the ∆0 formula defining

the graph of the exponentiation function, see [Ben62, HP93, Bus98, CN06]). Indeed, it

is remarked in [CD94] that much of their formalization can be done in the theory IE2, or

even an apparently weaker theory which we call I∆0 + counting (see below). Here IE2 is

the theory that extends I∆0 by the defining axioms for functions of Grzegorczyk’s class

E2 (linear space) together with the induction axioms for bounded formulas containing

these functions.

Let I∆0 + counting be the extension of I∆0 defined as follows. For each ∆0-formula

ϕ(x, ~y) we introduce a function fϕ(x,~y)(z, ~y) whose value is the cardinality of the set

{x : x ≤ z ∧ϕ(x, ~y)}. Now define I∆0 + counting to be I∆0 together with the defining

axioms (in the style of (3.1)–(3.3) on page 26) for the new functions and induction

axioms on bounded formulas in the new language. It can be shown that I∆0 + counting

is equivalent to the number part of VTC
0

(Definition 3.6), and that I∆0 + counting is

a subtheory of IE2. Similarly, it can be shown that IE2 is equivalent to the number part

of our theory VL (VL is defined in Section 3.6, and for a general definition of VC see

Section 3.2.2). Now, both our formalizations in this chapter and the formalizations in

[CD94] can be carried out in I∆0 + counting .
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In [Cor95] Bertrand’s Postulate and a lower bound O(n/ln(n)) for π(2n)−π(n) have

been formalized and proved in I∆0(π,K), where

K(x) =
∑

0<i≤x
log∗(i)

Here log∗(x) [Woo81] is the approximation, definable in I∆0, that approximates ln(x)

within 1/(log(m))k for some constant k ∈ N and for some m. (Our approximation

ln(x;m) approximates ln(x) upto 1/m but we need VTC0 to define it.) Since bothK and

π are definable in I∆0+counting , the theory I∆0(π,K) is a subtheory of I∆0+counting .

So the results of [Cor95] are stronger than our results here.



Chapter 9

Conclusion

A separation of any two classes in (1.1) would imply the separation of the corresponding

theories VC given in Chapter 3. So if such separations are indeed the case, the latter

is easier to prove and it might shed light on the former. Believing that an inclusion is

proper, one might try first to separate the theories. (It is also consistent with our current

knowledge that the theories are different but the classes coincide.) There is a hope that

techniques from first-order logic and model theory are useful.

One topic that has not been discussed in this thesis is the Paris-Wilkie propositional

translation of proofs in the theories into corresponding propositional proof systems. For

example, ΣB
0 theorems of TV0 are translated into families of propositional tautologies

having polynomial-size Extended Frege proofs, and Extended Frege is the strongest (up

to polynomial simulation) propositional proof system whose soundness is provable in

TV0. Similarly, for each theory VC discussed in Chapter 3 we can define a propositional

proof system C-Frege which can be viewed as the nonuniform version of VC. The idea

is to introduce some general connectives (e.g., the threshold connectives) that capture

the complexity of the function FC that is complete for C (e.g., numones for TC0). The

details are being worked out.

The Bounded Reverse Mathematics program is to prove (the bounded versions of)

130
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mathematical theorems in (the weakest possible) theories of Bounded Arithmetic. A

large number of interesting theorems, such as those from graph theory, can be listed here.

Consider, for example, Hall’s Theorem: Given a bipartite graph G with the bipartition

(X, Y ) of the nodes, Hall’s Theorem states that, if for all subsets A of X,

#N(A) ≥ #A

(where #A denotes the number of elements in the set A, and N(A) denotes the set of

neighbors of A, i.e., the set of vertices not in A which are adjacent to at least one vertex

in A), then G has a perfect matching.

It is known that finding a perfect matching (if it exists) can be done in RNC. It

might therefore be possible to prove the theorem in a theory that characterizes RNC.

A plan for this direction is to develop a theory for RNC, and then try to prove Hall’s

Theorem in that theory.

An interesting question is whether it is possible to formalize in VTC0 the TC0

algorithm for integer division from [HAB02]. Here we have established in VTC0 facts

about the distribution of prime numbers that are needed for the construction in [HAB02].

The next step is to see whether the relation

an ≡ b mod p

can be formulated in VTC0. Although this relation is expressible by a ∆0 formula (see

[HAB02]), it is not clear how to prove in VTC0 that such formula is correct.



Bibliography

[ACN07] Klaus Aehlig, Stephen Cook, and Phuong Nguyen. Relativizing Small Com-

plexity Classes and their Theories. In 16th EACSL Annual Conference on

Computer Science and Logic, pages 374–388, 2007.

[All91] Bill Allen. Arithmetizing uniform NC. Annals of Pure and Applied Logic,

53(1):1 – 50, 1991.

[Ara00] Toshiyasu Arai. Bounded arithmetic AID for Frege system. Annals of Pure

and Applied Logic, 103:155–199, 2000.

[Bar89] David A. Barrington. Bounded-Width Polynomial-Size Branching Programs

Recognizes Exactly Those Languages in NC1. Journal of Computer and System

Sciences, 38:150–164, 1989.

[Ben62] James Bennett. On Spectra. PhD thesis, Princeton University, Departmentof

Mathematics, 1962.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On Uni-

formity within NC1. Journal of Computer and System Sciences, 41:274–306,

1990.

[Bus86a] Jonathan Buss. Relativized Alternation. In Proceedings, Structure in Complex-

ity Theory Conference. Springer-Verlag, 1986.

[Bus86b] Samuel Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.

132



Bibliography 133

[Bus87a] Samuel Buss. Polynomial Size Proofs of the Propositional Pigeonhole Principle.

Journal of Symbolic Logic, 52:916–927, 1987.

[Bus87b] Samuel Buss. The Boolean formula value problem is in Alogtime. In Pro-

ceedings of the 19th Annual ACM Symposium on Theory of Computing, pages

123–131, 1987.

[Bus95] Samuel Buss. Relating the Bounded Arithmetic and Polynomial-Time Hierar-

chies. Annals of Pure and Applied Logic, 75:67–77, 1995.

[Bus98] Samuel Buss. First–Order Proof Theory of Arithmetic. In S. Buss, editor,

Handbook of Proof Theory, pages 79–147. Elsevier, 1998.

[Bus06] Samuel Buss. Polynomial-size Frege and Resolution Proofs of st-Connectivity

and Hex Tautologies. Theorectical Computer Science, 357:35–52, 2006.

[CD94] C. Cornaros and C. Dimitracopoulos. The Prime Number Theorem and Frag-

ments of PA. Archive for Mathematical Logic, 33:265–281, 1994.

[CK02] Peter Clote and Evangelos Kranakis. Boolean Functions and Computation Mod-

els. Springer, 2002.

[CK03] Stephen Cook and Antonina Kolokolova. A Second-Order System for Polytime
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