
The provably total NP search problems of weak

second order bounded arithmetic

Leszek Aleksander Ko lodziejczyk∗ Phuong Nguyen†

Neil Thapen†

August 19, 2009

Abstract

We define a new NP search problem, the “local improvement” princi-

ple, about labellings of an acyclic, bounded-degree graph. We show that,

provably in PV, it characterizes the ∀Σb

1 consequences of V
1

2 and that

natural restrictions of it characterize the ∀Σb

1 consequences of U
1

2 and of

the bounded arithmetic hierarchy. We also show that over V
0 it char-

acterizes the ∀ΣB

0 consequences of V
1 and hence that, in some sense, a

miniaturized version of the principle gives a new characterization of the

∀Πb

1 consequences of S
1

2 . Throughout our search problems are “type-2”

NP search problems, which take second-order objects as parameters.

1 Introduction and results

An NP search problem is the problem of finding, given the parameter x, a
witness y for a true ∀Σb1 sentence, that is, a sentence of the form

∀x∃y<2|x|
k

R(x, y)

where R is decidable in polynomial time. If such a sentence is provable in
a theory T , we would like to be able to extract from the proof an algorithm
to solve the problem. In this way we think of the set of NP search problems
provably total in a theory, which we identify with the set of such sentences, as
characterizing the algorithmic strength of the theory. This is analogous with the
classification of classical fragments of PA by their provably recursive functions.

In [5], Buss defined the bounded arithmetic hierarchy Si2 and related it to the
polynomial hierarchy. In particular (translated into our terminology) he showed
that the NP search problems provably total in S1

2 can be solved by a polynomial

∗Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland,

lak@mimuw.edu.pl. Partially supported by grant N N201 382234 of the Polish Ministry of

Science and Higher Education, and supported on a visit to Prague by a grant from the John

Templeton Foundation.
†Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, CZ-

115 67 Praha 1, pnguyen@cs.toronto.edu & thapen@math.cas.cz. Partially supported by

Institutional Research Plan AV0Z10190503 and grant IAA100190902 of GA AV ČR, by a

grant from the John Templeton Foundation, and by Eduard Čech Center grant LC505.

1

time machine, and conversely, given a polynomial time machine, the problem of
finding its output given its input can be represented as such a problem.

The result for S1
2 is generalized in [5] to the other theories in the hierarchy,

but in such a way that the search problems considered are no longer NP search
problems. Precisely, the Σpi+1 search problems provably total in Si+1

2 corre-
spond to the functions computed by polynomial time machines with Σpi oracles.
Essentially this is the same as the result for S1

2 , but with i levels of quantifier
complexity added everywhere. Similar witnessing theorems are shown for the
stronger, two-sorted theories U1

2 and V 1
2 , but concerning an even more complex

kind of provable sentence, now with second-order existential quantifiers.
A more satisfying characterization would be to classify the strength of the

theories of the hierarchy and beyond by describing, in a non-logical way, the class
of algorithms needed to solve their provably total NP search problems, perhaps
in terms of some class of machines built up out of polynomial time “atoms” and
based on a simple combinatorial principle. Again a guiding analogy here is the
characterization of the provably recursive functions of fragments of PA in terms
of primitive recursive functions and countable ordinals (see e.g. [11]).

This was achieved for the second level of the hierarchy in [7]. It was shown
that the NP search problems provably total in S2

2 are exactly those that are
reducible to PLS problems, where a PLS problem is solved by finding a node
with locally minimal cost in an exponential-size graph with polynomial time
cost and neighbourhood functions; a PLS problem can also be thought of as
corresponding to a limited kind of exponentially-long iteration of a polynomial
time function. Another result along these lines was for the theory consisting
of S1

2 together with a form of the weak pigeonhole principle, in terms of a
subclass of probabilistic polynomial time machines (Wilkie, published in [13]).
In [15] combinatorial and computational characterizations were given of the
∀Σb1 consequences of the next two levels of the hierarchy, somewhat in the spirit
of PLS. In [18] this was extended to the whole bounded arithmetic hierarchy;
also see that paper for a broader introduction to this area, and in particular
to the important question about improving the known separations between the
theories in the relativized hierarchy to ∀Σb1(α) separations. Other work dealing
with these issues has appeared recently in [3] and [17]. The aim of the current
paper is to extend this kind of characterization to theories beyond the bounded
arithmetic hierarchy, such as the two-sorted theories U1

2 and V 1
2 (although in

this two-sorted setting the problems we consider will no longer be strictly NP
search problems, since they will take second-order objects, which can be thought
of as “oracles”, as parameters; see below).

Our characterizations involve a “local improvement” principle, LI, which is
about labellings of a directed, acyclic, bounded-degree graph. We are given a
scoring function that computes a “score” for every node in the graph from the
labels given to that node and its neighbours; an initial labelling which scores 0
everywhere; and an improvement function which allows us to increase the score
of a node x by 1 if the score s of x under the current labelling is even and all
predecessors of x already score s + 1, or if the current score s is odd and all
successors already score s+ 1. The principle says that under these conditions,
we can find labellings that give arbitrarily high scores.

The principle can be thought of as an exponentially blown-up version of
PLS: the solution space is the set of (exponential-sized) total labellings, and the
cost of a labelling is the (exponential-sized) total assignment of scores to nodes

2

that it generates. The improvement function changes a labelling to give you a
“better” cost. However all functions work locally, on a finite part of a labelling
at a time; this is what allows the principle to be written in an ∀Σb1 way.

In its full strength, LI captures the ∀Σb1 consequences of V 1
2 . If we restrict the

score to be of at most polylogarithmic size in our parameters, and fix the graph
to be an interval [0, a) with the usual ordering on it, the principle captures the
∀Σb1 consequences of U1

2 . If we restrict the maximum score to a finite number
k, and keep the graph as an interval, it corresponds to the game induction
principle of [18] and thus to the ∀Σb1 consequences of T k2 (equivalently, of Sk+1

2);
in particular for k = 1 it can be seen to correspond to the “exponentially-long
iteration” version of PLS. We remark that the new principle has intuitively a
different flavour from the game induction characterization of the consequences
of T k2 , since it has the feeling of constructing a witness co-operatively, rather
than of something adversarial.

In this way we give new algorithmic/combinatorial characterizations of the
strength of a large range of bounded arithmetic theories, in a uniform way
(except, unfortunately, for the change in the topology of the underlying graph),
over PV, a relatively weak base theory.

The results mentioned above concern bounded arithmetic theories with the
smash function, corresponding to the polynomial hierarchy and its extensions.
But by a similar construction we can show that the principle LI captures pre-
cisely the ΣB0 consequences of V 1 over V 0, where V 1 is a “linear” version of V 1

2

and V 0 has essentially the strength of I∆0 (see [10]). Via the RSUV translation
between one-sorted theories with the smash function and two-sorted theories
without it, this can be seen as a new characterization of the “∀Πb

1 consequences
of S1

2” (previously known characterizations have usually been based on consis-
tency statements for extended Frege and related propositional proof systems,
although these can have an elegant combinatorial nature, see e.g. [1]). We
would suggest that questions about the ∀Πb

1 consequences of S1
2 are more nat-

urally studied in the second-order setting. This is because using the first-order
setting leads to issues about finding a suitable language (for example, a language
containing all polynomial time functions is too strong) and a suitable base the-
ory (BASIC is too weak and PV too strong). V 0 provides a robust base theory
which is substantially weaker than V 1, and studying the strength of V 1 over V 0

is analogous to studying complexity classes below P using AC0-reductions.
We will mention two possible applications of this result about V 1 and V 0.

Firstly, one of the goals of research in bounded arithmetic is to characterize
the minimal theories needed to prove various theorems of finite mathematics
(recently [9] this has been called “bounded reverse mathematics”, by analogy
with the programme of reverse mathematics which has done this for theorems
of infinite mathematics and strong theories of second-order arithmetic). The
natural way to show that a theory is minimal is to prove its axioms from the
theorem in question. However, since many theorems studied in bounded reverse
mathematics are ∀ΣB0 and most relevant theories have higher logical complexity,
the best we can hope to show is that a given theorem implies all the ∀ΣB0
consequences of a theory. To achieve this goal, characterizations of the ∀ΣB0
consequences of various theories, such as ours for V 1, are likely to be helpful.

Secondly, via translations into propositional logic, it gives some new candi-
date families of DNFs which may be hard to prove in the Frege proof system.
One is the propositional translation of LI (which is as hard as the consistency of

3

extended Frege). The other two are the translations of two natural weakenings
of LI, namely LIlog, in which we restrict the bound on scores to polylogarithmic
size, and LLI, in which we restrict the graph to a line. If we combine these
restrictions we get LLIlog, which has a short proof in the Frege system; but it
is not clear where these two principles by themselves fall between Frege and
extended Frege. The difficulty of the bounded arithmetic versions of these prin-
ciples is similarly unclear; they may be as strong as LI, or already provable in
U1

2 , or somewhere in between.

The paper is organized in the following way. We first give precise definitions
of the languages and theories we will use and of our principle LI (we have been
rather informal with our notation above) and summarize our results. In Section
2, we use weakenings of LI together with results from [18] to characterize the
∀Σ̂b+1 consequences of the theories of the first-order bounded arithmetic hierar-

chy. In Section 3, we go on to characterize the ∀Σ̂b+1 consequences of U1
2 ; the

idea is to use the principle to simulate a polynomial time algorithm which is
trying to show that a certain large second-order object is not a correctly-formed
PSPACE computation. In Section 4, we characterize the ∀ΣB0 consequences of
V 1, by simulating a “linear PLS” algorithm which is trying to show that the
computation of a large circuit is incorrect. The idea is similar to the previous
section, but is more complicated both in the nature of the simulation and in
that we are working in the less familiar setting of linear rather than polynomial
resources. In Section 5, we characterize the ∀Σ̂b+1 consequences of V 1

2 , by de-
scribing how to adapt the argument of Section 4. Section 6 contains proofs of
some unsurprising technical lemmas which were postponed from earlier sections.

1.1 Languages and theories

We describe in particular where our definitions are different from the usual ones.
For more details of the usual definitions in bounded arithmetic see [13], [6] or
[10].

We will work with two-sorted theories of arithmetic. Normally, these are
formalized in such a way that the “first-order” sort consists of numbers and
the “second-order” sort consists of bounded sets, or equivalently, sequences of
bits [19]. However, we find it more convenient to deal with a second-order sort
containing bounded sequences of numbers, rather than sequences of binary bits.
We therefore redefine our languages and theories accordingly. All our main
results can be translated to the more traditional “set” setting (see Section 6.1
below).

Our languages will use symbols X(i), |X |l and |X |b for the ith element
of a sequence, the length of a sequence, and the upper bound of a sequence,
respectively. We take axioms guaranteeing that X(i) = 0 for all i ≥ |X |l and
that X(i) < |X |b for all i; but note that two second-order objects can have the
same non-zero elements but different lengths and upper bounds. We will not
include a symbol for second-order equality.

In general, when we write a tuple of parameters as X̄ it may include a mix-
ture of first- and second-order variables. A first-order formula is one which
contains no second-order quantifiers; it is allowed to contain second-order vari-
ables and constants.

4

We will consider two kinds of theory: one with the smash function x#y :=
2|x||y| for the number sort (the polynomial setting), the other without this func-
tion (the linear setting).

1.1.1 The linear setting

The language L1 contains the symbols X(i), |X |l, |X |b and the basic language
0, 1,+, ·, < of arithmetic. We also allow a finite number of other useful, easy
functions, in particular division, remainder, a pairing function 〈x, y〉 and pro-
jection functions π1, π2 to recover the elements of a pair. We will extend this
notation to talk about larger tuples as needed, and will use the pairing function
to treat second-order objects as two- or higher-dimensional tables in the usual
way.

We also close the language under the following operation: for each quantifier-
free formula φ(X̄), with all free variables shown, we add a new function symbol
chooseφ(X̄, y, z), which is intended to take the value y if φ(X̄) is true and the
value z otherwise.

If C is a (possibly empty) set of constant symbols, a simple L1(C) term con-
tains only first- and second-order free variables and constants, and the symbols
|X |l, |X |b, 0, 1,+, ·.

We call a first-order quantifier bounded if it is bounded by a simple term.
An E1 formula consists of a block of bounded existential quantifiers followed
by an open formula. An A1 formula is dual to this. The class of all bounded
first-order formulas is denoted ΣB0 . The class ΣB1 consists of formulas made up
of a bounded existential second-order quantifier (i.e. one of the form ∃X < t ,
where t is a simple term, meaning that both |X |l and |X |b are bounded by t)
in front of a ΣB0 formula.

All our theories in the language of L1 will extend the theory E1-IND, which
we define to contain induction for allE1 formulas with parameters, together with
axioms fixing the basic properties of the language as defined above. (We avoid
the name IE1, as this is associated with a weaker theory in a more algebraic
language.)

V 0 and V 1 are theories consisting of the basic axioms plus the ΣB0 or ΣB1
comprehension schemes, respectively. These schemes express that a second-
order object exists for every sequence definable by formulas from this class,
with parameters. Formally, comprehension for a formula φ(X̄, i, y) is the axiom

∀X̄∃W, |W |l = l ∧ |W |b = b+ 1 ∧ ∀i<l

[(φ(X̄, i,W (i)) ∧ ∀y<W (i)¬φ(X̄, i, y)) ∨ (W (i) = b ∧ ∀y<b¬φ(X̄, i, y))].

1.1.2 The polynomial setting

L2 extends L1 to include the smash function #. Furthermore it includes a
term fe(X,x) for every polynomial time oracle Turing machine e, where oracle
replies are allowed to be numbers (in binary), rather than just single bits. The
symbol fe(X,x) is understood as standing for the output of machine e if run on
input x, with queries to the oracle tape replied to according to the sequence X ,
and with the bounds on X available as hidden inputs to the machine (this is
necessary for the machine to be able to read all bits of an oracle reply and remain

5

polynomial time). Via coding we can take such terms to have any number of
first- or second-order inputs, in the usual way.

If C is a (possibly empty) set of constant symbols, a simple L2(C) term con-
tains only first- and second-order free variables and constants, and the symbols
|X |l, |X |b, 0, 1,+, ·,#.

We will not use the normal definition of a Σb1 formula from [5]. Instead we
define the closely-related class of Σ̂b+1 formulas, where the symbol ˆ indicates
that, in terms of quantifier complexity, the formulas correspond to strict Σb1
formulas and the superscript + indicates that the formulas may contain second-
order free variables.

A Σ̂b+1 formula consists of a block of bounded, first-order existential quan-

tifiers followed by an open L2 formula. Π̂b+
1 , Σ̂b+i , Π̂b+

i formulas are defined

similarly. Σb+∞ is the class of all such bounded first-order formulas, and Σ1,b
1 is

the class of formulas consisting of a bounded existential second-order quantifier
(i.e. ∃X with both |X |l and |X |b bounded by a simple L2 term) followed by a
Σb+∞ formula.

The L2 terms are a natural extension of the PV function symbols to a two-
sorted world, and all our theories in this language will extend a base theory
PV+. This is the universal theory which extends PV to talk in the obvious way
about the oracle machines named by our L2 terms, where PV is our name for
the usual first-order version (sometimes called PV1) of Cook’s equational theory
PV [8].

We will also consider natural second-order versions T 1+
2 , T 2+

2 , . . . of the
bounded arithmetic hierarchy, where T i+2 is PV+ together with induction for

Σ̂b+i formulas, with first- and second-order parameters.
V 1

2 is a theory containing the Σb+∞ comprehension scheme and the induc-

tion scheme Σ1,b
1 -IND. The theory U1

2 differs from V 1
2 in that it only has the

“polynomial induction” scheme Σ1,b
1 -LIND, in which induction only holds up

to logarithmically many steps. V 1
2 should be thought of as the analogue of V 1

in the polynomial setting. The reasons for differences in notation and in the
style of axioms (Σ1,b

1 induction as opposed to ΣB1 comprehension) are mainly
historical.

1.1.3 Term comprehension

A type of comprehension scheme useful when dealing with sequences rather
than sets is term comprehension. Our choice of language above, in particular
the inclusion of the “chooseφ” function in L1, was partly to ensure that in a
number of technical contexts term comprehension will give us all the sequences
we need.

Definition 1 Let L be L1, L2 or an extension of one of these. Term compre-
hension is the scheme

∀X̄, l, b ∃W [|W |l = l ∧ |W |b = b+ 1 ∧ ∀i<lW (i) = min(t(X̄, i), b)]

for L-terms t.
Let M be an L-structure. A sequence W is term definable in M if there

exist a term t(X̄, i), parameters X̄ in M and a length and bound l and b in M
such that

|W |l = l ∧ |W |b = b+ 1 ∧ ∀i<lW (i) = min(t(X̄, i), b).

6

Let Γ be an extension of L. A sequence is closed Γ-term definable in M if the
above holds but no parameters X̄ are present and both l and b are given by closed
Γ-terms.

1.2 Search problems

To give our results about L2 theories in their strongest form, we present them
as reductions between NP search problems. In our two-sorted setting, these
are allowed to have second-order parameters, and are sometimes called type-2
search problems, following [2, 4].

We define a search problem to be a true sentence of the form ∀X̄φ(X̄), where,
in the setting of L1, φ is an E1 formula and we call such sentences ∀E1; in the
setting of L2, φ is a Σ̂b+1 formula and we call such sentences ∀Σ̂b+1 . The initial ∀
symbol can be thought of as indicating universal closure over all free variables
of both sorts.

Definition 2 A search problem P = ∀X̄ ∃y < t(X̄)φ(X̄, y) is reducible to a
search problem Q = ∀Ū ∃v < t(Ū) θ(Ū , v) if there exist polynomial time, oracle
machines F̄ , g such that

∀X̄, v [v < t(F̄ (X̄)) ∧ θ(F̄ (X̄), v) → g(X̄, v) < t(X̄) ∧ φ(X̄, g(X̄, v))].

If P and Q are classes of search problems, we say that P is reducible to Q,
P ≤ Q (provably in a theory T), if every search problem in P is reducible
to one in Q (provably in T , with the proof allowed to depend on the particular
problems). We use P ≡ Q to express that the reducibility goes in both directions.

We should explain the notation here. We are given an instance X̄ of P , and
make from it an instance Ū = F̄ (X̄) of Q, which we think of as locally being
derived from X̄ in polynomial time. Formally, F̄ is a collection of PV+ terms,
that is, of polynomial time oracle Turing machines. For each first-order variable
ui in Ū there is a term fi in F̄ , and for each second-order variable Ui in Ū
there are terms Fi, F

l
i and F bi in F̄ . Then θ(F̄ (X̄), v) is obtained by taking

θ(Ū , v) and replacing occurrences of terms of the form ui, Ui(z), |Ui|l and |Ui|b
respectively with fi(X̄), Fi(X̄, z), F

l
i (X̄) and F bi (X̄). Reducibility then states

that from any solution v for F̄ (X̄) in θ we may compute, in polynomial time, a
solution g(X̄, v) for X̄ in φ.

1.3 The local improvement principle

We give a formal statement of our principle. To write it in a ∀E1 (hence auto-
matically also ∀Σ̂b+1) way, as a type-2 search problem, we exploit the fact that
the principle only needs to talk about labels on constantly many nodes of the
graph at once, so can be expressed without referring to any global properties of
labellings or scores that would require a second-order quantifier.

Formally, fix size, bound and score parameters a, b and c. Let G be a directed
acyclic graph on [0, a). Further assume that G has indegree and outdegree both
bounded by a constant (which we take to be four, to fix our principle as a single
sentence), and that the directions agree with the ordering, that is, if there is
an edge from x to y then we must have x < y. We will call a node at the
other end of an edge coming into x (respectively going out of x) a predecessor

7

(respectively successor) of x. We assume that G comes with functions which,
for a node x, explicitly output its predecessors and successors.

Given a node x, call the predecessors and successors of x together the neigh-
bours of x. The neighbourhood of x consists of x together with its neighbours,
and the extended neighbourhood of x consists of x, its neighbours, and all of
their neighbours.

An initial global labelling E of G is a function which associates with every
node of G a label in [0, b).

A local labelling w of G of size k is a list naming k nodes of G and associating
with each of them a label in [0, b).

A scoring function S takes as input a node x and a local labelling w of
the neighbourhood of x. It either returns a number in [0, c], which we call the
score at x under w, or it returns a symbol ∗, in which case we say that x is not
well-formed under w.

An improvement function I takes as input a node x and a local labelling w
of the neighbourhood of x. It returns a number x′ in [0, b) which we think of as
a new, improved label for x.

Note that I and S may be given labellings as input that cover more nodes
than just the neighbourhood of x; however their output depends only on the
labels in the neighbourhood of x.

Definition 3 Let Θ(G,E, S, I, a, b, c) be the E1 formula asserting that if G, E,
S and I are as above, then the following three things cannot all be true:

1. All nodes x score 0 under the initial global labelling E. (Formally, for all
nodes x, if w is the local labelling of the neighbourhood of x that arises
naturally from E, then the score at x under w is 0).

2. For any node x let w be any local labelling of the extended neighbourhood
of x, under which x and all its neighbours are well-formed. Let w′ be w
with the label of x replaced by the improvement x′ = I(x,w). If there
is a number m such that S(x,w) = 2m and S(y, w) = 2m + 1 for every
predecessor y of x, then under the improved labelling w′, S(x,w′) = 2m+1
and all other scores are unchanged.

3. The dual of (2) - if the score at x under w is 2m+1 and the score at every
successor y of x is 2m+ 2, then in the improved labelling x scores 2m+ 2
and all other scores are unchanged.

This is first-order because there is a constant bound of 65, the maximum size of
an extended neighbourhood, on the size of the local labellings that are quantified
over. It is existential because membership of the neighbourhood or extended
neighbourhood of x can be expressed without quantifiers. The local improvement
principle LI is the sentence

∀G,E, S, I, a, b, c Θ(G,E, S, I, a, b, c).

For a term t, the linear local improvement principle LLIt is the sentence

∀E,S, I, a, b, c Θ(La, E, S, I, a, b, t(c))

where the scores are limited to values in [0, t(c)]∪{∗} and the graph G is replaced
with the fixed line graph La given by the interval [0, a) with the usual predecessors
and successors. We will be particularly interested in LLIlog and LLIk for k ∈ N.

8

Theorem 4 LI is true, and furthermore is provable in V 1 (and hence has poly-
nomial size extended Frege proofs).

Proof We construct an exponentially long (in |a|) sequence of exponential-size
total labellings of the graph. Start with the initial labelling E. The first node in
the graph has no predecessors and scores 0 under this labelling, which is even.
So by (2) we may improve E at the first node to a new labelling in which the
first node scores 1 and all the rest score 0. Now, the second node in the graph
scores 0 and all its predecessors score 1, so by (2) we may again improve our
labelling at the second node so that it and the first node both score 1 and the
rest still score 0.

We carry on like this until we have a labelling that scores 1 everywhere.
Then by (3) we may improve the score at the last node to 2, and then, using
(3) repeatedly, propagate 2s back across the whole graph.

Carrying on in this way, after ca local improvements we will have a labelling
which scores c everywhere. This cannot be improved at any point, since there
is no way to score c + 1. So this contradicts either (2) or (3), depending on
whether c is even or odd. �

1.4 Summary of results

Note that “over PV+, P ≡ ∀Σ̂b+1 (T)” means that T proves P , and each ∀Σ̂b+1
sentence provable in T , viewed as a search problem, is provably in PV+ reducible
to P .

Theorem 5 Over PV+, for k ∈ N, LLIk ≡ ∀Σ̂b+1 (T k+2).

This is proved in Section 2 below, by giving reductions between LLIk and
the game induction principle GIk of [18].

Theorem 6 Over PV+, LLIlog ≡ ∀Σ̂b+1 (U1
2).

This is proved in Section 3, essentially by showing that we can use LLIlog
to simulate first producing an exponentially long computation of a PSPACE
machine and then running a polynomial time machine which has oracle access
to this computation.

Theorem 7 Over PV+, LI ≡ ∀Σ̂b+1 (V 1
2).

Theorem 8 Over V 0, LI characterizes the ∀ΣB0 consequences of V 1.

These last two theorems have similar proofs. For both of them, one direction
follows immediately from Theorem 4. The other direction of Theorem 8 is proved
in Section 4, essentially by using LI to simulate first producing a computation
of an exponentially large circuit and then running an algorithm to solve an LLS
problem (a “linear” version of PLS, which we define below) which has oracle
access to this computation. The LLS algorithm here plays a similar role to
the polynomial time machine simulated in the proof of Theorem 6; the extra
complexity is needed because we are now dealing with two-dimensional circuits
rather than one-dimensional computations of PSPACE machines. We go on in
Section 5 to describe how this proof can be adapted to give a weak version of
Theorem 7, where the provability is only in T 1+

2 , and finally we show how this

9

can be improved to PV+ by taking advantage of the fact that our results are
given in a strong way, as reducibilities between search problems.

From Theorems 5, 6 and 7, ∀Σ̂b+1 axiomatizations of the ∀Σ̂b+1 consequences
of these theories can easily be derived as corollaries. However because of the
way our theories and principles are set up, it is necessary to be careful how to
state these. For example, from Theorem 5 we get that LLIk axiomatizes the
∀Σ̂b+1 consequences of T k+2 over the theory consisting of PV+ together with term
comprehension, where term comprehension is needed to guarantee that the right
instance of LLIk exists to witness a given instance of ∀Σ̂b+1 (T k+2). Alternatively,
if we define LLIk(PV+) to be the axiom scheme consisting of LLIk for all graphs,
scoring functions etc. that are PV+ definable from parameters, then LLIk(PV+)
axiomatizes the ∀Σ̂b+1 consequences of T k+2 over just PV+.

2 The bounded arithmetic hierarchy

We prove Theorem 5, that for k ∈ N, LLIk ≡ ∀Σ̂b+1 (T k+2) provably in PV+.
We start by recalling the game induction principle GIk. We have adapted the
definition to make it suitable for the two-sorted setting (we have also renumbered
the sequences to start from 0 rather than 1, as that is more convenient for this
paper). A k-turn game G with moves from [0, b) is formally a subset of bk. The
game is between two players A and B who alternate turns, starting with A,
and each turn play a number in [0, b) as their move. B wins if and only if the
k-tuple of moves is in G. A game-reduction of game G to game H is a sequence
of functions that tell B how to effectively adapt a winning strategy for H into
a winning strategy for G. See [18] for more details.

Definition 9 The k-turn game induction principle GIk is a ∀Σ̂b+1 sentence
asserting that if we are given size parameters a and b and second-order ob-
jects G,U, V,W , and interpret W as coding a sequence W0, . . . ,Wa−2 of game-
reductions and G as coding a sequence G0, . . . , Ga−1 of k-turn games with moves
from [0, b), then the following cannot all be true:

1. U is a winning strategy for B in G0;

2. V is a winning strategy for A in Ga−1;

3. For each i < a− 1, Wi gives a game-reduction of Gi+1 to Gi.

In [18] the relativized one-sorted version of this principle was shown to be
equivalent, as a class of search problems, to the ∀Σ̂b1(α) consequences of T k2 (α),
provably in PV(α). The same proof shows that the two-sorted version written
above is equivalent to the ∀Σ̂b+1 consequences of T k+2 in the sense of Definition
2, provably in PV+.

We prove the two directions of Theorem 5 as separate lemmas.

Lemma 10 For k ∈ N, LLIk is provable in T k+2 . Hence LLIk is reducible to

∀Σ̂b1(T
k+
2), trivially.

Proof Our proof resembles (but is not, quite) a search-problem reduction from
LLIk to GIk. We give a proof for odd k. The proof for even k is similar to this.

10

Using the sequences from our instance of LLIk as oracles, we define a se-
quence of games G0, . . . , Ga−1, one for each node in the graph. Moves in the
game Gi will be local labellings of the extended neighbourhood of i, under which
i and all its neighbours are well-formed. The game is played between two players
C and D, who take alternate turns. We will say what each player’s goal is at
each turn; if a player fails to make a move that achieves this, he loses the game
at that point. If both players make successful moves all the way through the
game, then the player who moves last wins.

• Before the first turn of the game, we think of the game board as being in
an initial position, which is the local labelling given by E.

• On odd-numbered turns, C tries to relabel i−2, i−1 and i (if these exist)
so that the score at i is increased by 1 but the score at i+1 is not changed.

• On even-numbered turns, D tries to relabel i, i + 1 and i + 2 (if these
exist) so that the score at i is increased by 1 but the score at i− 1 is not
changed.

We will derive a contradiction by Σ̂b+k induction on i in the formula “C can
always win game Gi”, written in the natural way using k quantifiers.

First note that C can always win G0. Suppose that the game has run for
2m turns. This means that both players have made successful moves up to this
point, so under the current labelling the score at 0 must be 2m. By part 2 of
LLIk (that is, item 2 from Definition 3), C can move successfully by improving
the labelling at 0. Since k is odd, C has the last move so must win the game.

Also, D can always win Ga−1. As in the previous paragraph, D can always
move successfully. But k is odd, so C has the last move; however if C could
make this last move successfully, then the final labelling would score k at a− 1.
This is impossible, since then by part 3 of LLIk this score could be improved to
k + 1, which contradicts the bound of k on the possible scores.

Now suppose that C can always win Gi. We will show that C can use his
strategy for Gi to win Gi+1, as follows (essentially via a game-reduction, see
[18]). To help him make moves in Gi+1, C will maintain a local labelling W of
nodes i− 2 to i+ 3, with the following properties at the beginning of each odd
turn 2m+ 1 in Gi+1:

• W scores 2m at both i and i+ 1;

• W ↾ {i− 1, . . . , i+ 3} is the current position in game Gi+1;

• W ↾ {i − 2, . . . , i + 2} would constitute a winning position for C at the
beginning of turn 2m+1 in game Gi – that is, C could win the game from
here, whatever D does.

At the start of the game, the initial labelling E gives such a W , by the induction
hypothesis.

Now in turn 2m+1 in Gi+1, C first uses his winning strategy for turn 2m+1
in Gi to relabel i − 2, i− 1 and i in W so that i scores 2m+ 1 and the scores
at i+ 1 and i+ 2 are not changed. He then uses part 2 of LLIk to improve the
label at i+ 1 to score 2m+ 1 there without changing any other scores. He then
plays W ↾ {i− 1, . . . , i+ 3} as his move in game Gi+1.

11

If 2m + 1 was the last turn, then this move wins Gi+1 for C. Otherwise,
suppose D plays a good move in the next turn of Gi+1, turn 2m+2. C updates
W with this move, so that in the new W the scores at i and i + 1 are 2m+ 1
and 2m + 2. C then uses part 3 of LLIk to improve W at i, to score 2m + 2
there. The changes to the labels of i − 2 to i+ 2 in W , from the beginning of
turn 2m + 1 to this point, constitute a move at turn 2m + 1 in Gi played by
C according to his winning strategy, followed by a good move at turn 2m + 2
in Gi played by his opponent. Hence by the properties of W this part of W is
now again in a winning position in Gi for C (at the start of turn 2m + 3), as
required. �

Lemma 11 For k ∈ N, GIk is reducible to LLIk, provably in PV+.

Proof The idea is to simulate the natural exponential time algorithm which
witnesses GIk. To illustrate this, consider the picture of an instance of GI3.

G0 : x1 → x2 x3

↑ ↓ ↑
G1 : x1 x2 x3

↑ ↓ ↑
...

...
...

↑ ↓ ↑
Ga−1 : → x1 x2 → x3

(Note that xj is meant to be a different number xij in each row i, but here and
below we have chosen not to write these superscripts.) The horizontal arrows
at the bottom represent A’s claimed winning strategy in Ga−1, the horizontal
arrows at the top represent B’s claimed winning strategy in G0 and all the
vertical arrows represent the game-reductions. The exponential time algorithm
is to fill in all the values xij , starting from the bottom left and following the
arrows. Once the table is full, somewhere it must contain a witness to our
instance of GIk.

We simulate this algorithm with an instance of LLIk. The labels that will
appear on a node i in our graph will be partially completed sequences of moves
in the game Gi; that is, partially completed rows of the table above. The score
at a well-formed node will be the number of moves in the sequence labelling
it, and an improvement will be the addition of the next move. Due to the
way the two principles have been defined, it will be convenient for us to use an
(equivalent) upside-down version of LLIk, in which the roles of predecessors and
successors in parts 2 and 3 of the definition of LLIk are reversed.

The functions in our instance of LLIk will be polynomial-time definable from
the instance of GIk, and will be set up so that the exponential procedure used to
prove LI in Theorem 4 translates into the exponential procedure witnessing GIk
described above. Furthermore, we show that the properties of the simulation
are “local” enough that just from the solution to the search problem LLIk we
can derive, in polynomial time, a witness for GIk. (This pattern of argument
will be repeated in later sections of this paper.)

We will do the case when k is odd. The proof for even k is similar. Let
our instance of GIk consist of games G0, . . . , Ga−1, a strategy U for B in G0,
a strategy V for A in Ga−1, and a sequence W0, . . . ,Wa−2 of game-reductions.
Let b be the bound on the size of the moves.

12

Our instance of LLIk has graph [0, a) and the labels are numbers smaller
than (b+ 1)k, representing partially completed sequences of moves — the +1 is
to allow an extra symbol ∅ representing the absence of a move.

The initial labelling E labels each node with the empty sequence 〈〉.
Given a node i and a local labelling w = (wi−1, wi, wi+1) of i and its neigh-

bours, we need to define the score at i and the improvement at i.
We define the score first. We will list a number of forms that w can have,

and will say what the score at i is in each case. If w does not have one of these
forms then it is not well-formed at i and scores ∗.

A question mark indicates that any value is possible at that location; a par-
tial row of vertical arrows indicates that these sequences of moves are matched
by the appropriate initial segment of the game-reduction between these two
games; a partial row of horizontal arrows indicates that we are at the top or
bottom of the graph and that these moves come from an initial segment of the
strategy U or V respectively.

wi−1 ∅ . . . ∅

wi ∅ . . . ∅ S(i, w) = 0; similar for i = 0 or a− 1

wi+1 ? . . . ?

wi−1 ? ? . . . ?

wi x1 ∅ . . . ∅ S(i, w) = 1; similar for i = 0
↑

wi+1 x1 ∅ . . . ∅

wa−2 ? ? . . . ?

wa−1 →x1 ∅ . . . ∅ S(a− 1, w) = 1

w0 x1→x2 ∅ . . . ∅ S(0, w) = 2
↑

w1 x1 ? ? . . . ?

wi−1 x1 x2 ∅ . . . ∅
↑ ↓

wi x1 x2 ∅ . . . ∅ S(i, w) = 2
↑

wi+1 x1 ? ? . . . ?

and so on, for scores up to k−1. The rules for scoring k have an extra condition
(recall that k is odd):

w0 x1→x2 . . . →xk−1 xk S(0, w) = k if also G0(x1, . . . , xk) is false
↑ ↓ ↓ ↑

w1 x1 x2 . . . xk−1 xk

13

wi−1 x1 x2 . . . xk−1 ?
↑ ↓ ↓

wi x1 x2 . . . xk−1 xk S(i, w) = k if also Gi(x1, . . . , xk) is false
↑ ↓ ↓ ↑

wi+1 x1 x2 . . . xk−1 xk

wa−2 x1 x2 . . . xk−1 ?
↑ ↓ ↓

wa−1 →x1 x2→ . . . xk−1→xk
S(a− 1, w) = k if also

Ga−1(x1, . . . , xk) is false

To describe the improvement function, we will give one example, for improv-
ing an even score to an odd score in the middle of the graph. The remaining
cases should be clear.

Suppose that w is a local labelling of the extended neighbourhood of i, that
S(i, w) = j for some even j and S(i+ 1, w) = j + 1, and that w is well-formed
at i− 1. Then w must look like the following picture.

wi−2 x1 x2 . . . xj ∅ ∅ . . . ∅
↑ ↓ ↓

wi−1 x1 x2 . . . xj ∅ ∅ . . . ∅
↑ ↓ ↓

wi x1 x2 . . . xj ∅ ∅ . . . ∅
↑ ↓ ↓

wi+1 x1 x2 . . . xj xj+1 ∅ . . . ∅
↑ ↓ ↓ ↑

wi+2 x1 x2 . . . xj xj+1 ∅ . . . ∅

The improvement at i is to extend wi to w′
i by calculating the correct next move

xj+1 in Gi according to the strategy for the reduction of Gi+1 to Gi. Notice
that making this change to wi does not change the score at any other node, and
that the improvement function cannot fail to correctly increase a score j less
than k − 1.

Now suppose we are given a witness (i, w) for our instance of LLIk. Then
the witness must violate (the upside-down version of) either part 2 or part 3 of
the definition LLIk, and the score at i under w must be either k − 1 or k.

If the score is k we must be violating part 3 of LLIk (since k is odd) and
since it is not possible to score k+ 1, i must have no predecessors (because any
predecessor of i must score k + 1, which is impossible) and so must be 0. Then
from the definition of the score, we have a sequence of moves in G0 in which B
plays according to his strategy but loses.

If the score is k − 1 then we must be violating part 2 of LLIk. If i = a− 1
this means that in the improved label for a − 1, A is playing according to his
strategy (by well-formedness in the original w and the rules for improvement)
but loses (since otherwise the improvement would score k). If i < a − 1 this
means that in the improved labelling, we have sequences of moves for Gi and
Gi+1 which are matched by the game-reduction but in which B wins Gi but
loses Gi+1. �

14

3 The ∀Σ̂b+
1 consequences of U

1
2

We prove Theorem 6, that LLIlog ≡ ∀Σ̂b+1 (U1
2), provably in PV+. We first need

a definition.

Definition 12 Given a term f(i, x), a length l and a bound b, we define an
iterator of f to be a sequence X of numbers, of length l, with all elements smaller
than b, such that X(0) = 0 and X(i+ 1) = min(f(i,X(i)), b) for 0 ≤ i < l − 1.

Let Γ be PV+ together with the term comprehension scheme and axioms
stating that for every term f (possibly with parameters, of both sorts) and every
pair of numbers l and b, there exists an iterator of f as above. Note that PV+

proves that iterators are unique, when they exist (where by “unique” we mean
that they have the same length, bound and values, since we do not formally have
second-order equality in our language).

The theory Γ proves that every oracle PSPACE machine has a computation,
in the following sense: consider a Turing machine which takes input x and
oracle A, runs for l(x) steps, only uses the first |b(x)| spaces on its work tape,
and where if y codes the contents of the tape at step i then g(A, y) codes the
contents at time i+ 1, for some L2 terms l, b and g. Then we can easily define
f (which will have x as a parameter) such that an iterator for f will consist of
0 followed by all the successive tape configurations in the computation of the
machine.

U1
2 is a theory of bounded arithmetic that closely captures the properties of

PSPACE [5], and in fact we have the following:

Lemma 13 Γ and U1
2 prove the same ∀Σ1,b

1 sentences.

Proof The proof of conservativity of U1
2 over Γ involves showing that some

standard arguments about PSPACE computations can be formalized using open
induction, which over the language L2 means induction for polynomial time
formulas, which is available in PV+. It is similar to the logical treatment of
PSPACE in Buss’ original work on U1

2 in [5], with the difference that the theory
we work over, PV+, is much weaker than the theory that Buss uses. The proofs
are technical and do not contain anything new, so are postponed to the final
section of this paper. It should be noted, however, that it is not always true
that things can be formalized in this way; in Section 4 we formalize some similar
standard constructions involving circuits, and there open induction alone does
not seem to be strong enough.

We will prove the other direction here, by showing that U1
2 ⊢ Γ. Given a

term f(i, x) and a bound b, let θ(W, l) express that W codes a b × l table of
numbers, all smaller than b, and that for all x < b and all i < l − 1, W (x, 0) =
x and W (x, i + 1) = f(i,W (x, i)). That is, column x of W iterates f from
the starting value x. If W satisfies θ(W, l) then we can define W ′ satisfying
θ(W ′, 2l) by term comprehension: for i < l − 1, W ′(x, i) = W (x, i) and for
i ≥ l, W ′(x, i) = W (y, i − l) where y = f(l − 1,W (x, l − 1)). Hence, using

Σ1,b
1 -LIND, in U1

2 we can construct iterators of any length. �

Now we can prove one direction of Theorem 6, which also shows that LLIlog
has quasipolynomial size Frege proofs, by [14].

15

Lemma 14 U1
2 ⊢ LLIlog, and hence LLIlog is reducible to ∀Σ̂b+1 (U1

2), trivially.

Proof Given an instance of LLIlog, let θ(X, j) express that X is a total la-
belling of the graph which scores j at every point. Given such an X , in U1

2

we can construct a new labelling X ′ such that θ(X ′, j + 1). This is because
the point-by-point relabelling of the graph from one end to the other (as in the
proof of Theorem 4) can be thought of as given by an iterator of length a which
takes X and the instance as parameters. We also have a labelling E such that
θ(E, 0). Hence, by Σ1,b

1 -LIND, for any c there is a labelling which scores |c| at
every point, which gives a contradiction as in Theorem 4. �

The other direction is more complicated. Suppose that a ∀Σ̂b+1 sentence
∀Ū∃v < t(Ū) θ(u, v) is provable in U1

2 . Then by Lemma 13 it is provable in Γ,
so we have (if we ignore term comprehension for the moment), that

PV+ + {∀Ē∃α Iterf (Ē, α) : f ∈ PV+} ⊢ ∀Ū∃v<t(Ū) θ(Ū , v),

where Iterf (Ē, α) expresses that α is an iterator of f using Ē as parameters.
Supposing that we can reduce the number of iterated functions f to one, this
can be rearranged as

PV+ ⊢ ∀Ū∃Ē∀α∃v<t(Ū) (¬Iterf (Ē, α) ∨ θ(Ū , v)).

We would like to apply a witnessing theorem to this, to get a polynomial time
algorithm which, given oracle access to an iterator α of f , outputs a witness
v to θ; we would then go on to use the LLI principle to simulate constructing
α and then running this algorithm. However the presence of the second-order
existential quantifier over Ē prevents us from doing this. The purpose of Lemma
15 is to show that we do not need this quantifier. We do this by expanding the
language with constants to stand for the variables Ū , and showing that we only
need to consider iterators which have all their parameters (including their length
and bound) definable in this language. Note also that since we are replacing
the universally quantified variables with constants, we only need to consider
Σ̂b+1 sentences in the expanded language where we had ∀Σ̂b+1 sentences in the
original language.

So let L2(C) be L2 together with a collection C of new first- and second-
order constant symbols. Take a new set A(C) of second-order constant symbols,
containing a symbol αf,l,b for each L2(C) term f and each pair l, b of simple,
closed L2(C) terms. For αf,l,b ∈ A(C) let Iterf,l,b(αf,l,b) be the universal axiom
stating that αf,l,b names an iterator of f of length l and bound b. We will use
the names Iterf and αf for short.

Lemma 15 Γ is Σ̂b+1 conservative over PV+ + {Iterg(αg) : αg ∈ A(C)} for
L2(C) sentences.

Proof Let ∃v < r φ(v) be any L2(C) formula, where φ is quantifier free and
r is a closed L2(C) term. Suppose that Γ ⊢ ∃v < r φ(v) and suppose for a
contradiction that there is an L2(C,A(C)) structure M which is a model of
PV+ + {Iterg(αg) : αg ∈ A(C)} and in which ∀v < r¬φ(v). We may assume
without loss of generality that every first-order element of M is smaller than
some simple, closed L2(C) term and that the only second-order elements of M
are those named by constants from L2, C or A(C).

16

We extend M to a bigger structure M+. The first-order part of M+ is the
same as that of M . The second-order part of M+ consists of every sequence
which is term definable in M , so that M+ is a model of PV+ and also of term
comprehension.

Let f(i, x) be any L2(C) term with parameters from M+ and let l and b be
any first-order elements of M+. We will show that an iterator for f, l, b exists
in M+. It follows that M+ is a model of Γ, but ∀v<r¬φ(v) still holds in M+,
giving our contradiction.

We may assume that the parameters of f have the form of constants from C
(which we will not mention from now on), a single first-order element u of M and
a finite number of iterators from M named by constants αg1 , . . . , αgk

∈ A(C).
By using some simple coding it is easy to iterate k functions in parallel and
combine all these iterators into one iterator αg ∈ A(C) from which all the other
ones are definable by term comprehension. So we may take the parameters of
f to be simply u and αg. We will write f(i, x) as f(i, x, u) and think of it as
having an oracle for αg. Let t, s be simple, closed L2(C) terms with u, l, b < t
and with |s| greater than the maximum time taken by f on inputs smaller than
t.

Consider the following PSPACE machine e, which runs on inputs l′, b′, u′.
The machine first simulates f(0, 0, u′) running for |s| steps. At each step of f it
assumes that f makes an oracle query of the form “αg(y) = ?”, and answers the
query by simulating the iteration which computes αg and saving the answer that
is given at the yth step of this “inner” computation. Hence this single computa-
tion of f takes exactly |s|lg steps in total (where lg is the length parameter of αg)
and only requires memory bounded by some L2(C) term. Let w1 be the output
of this simulation of f(0, 0, u′). The machine then simulates f(1,min(w1, b

′), u′)
in the same way, giving some output w2, then f(2,min(w2, b

′), u′), and so on
for l′ simulations of f . The machine then continues with dummy steps until it
has run for |s|lgt steps in total.

Let d be the PSPACE machine with no parameters which simulates e for all
triples l′, b′, u′ < t in turn. Then a computation of d is named by one of the con-
stants in A(C) and so exists in M+. We can use term-comprehension to extract
from it a computation X of e on inputs l, b, u. Then by term comprehension we
can construct a sequence W where W (i) = X(|s|lgi) for i = 0, . . . l, recording
all numbers wi computed by our simulations of f , and from W we can recover
an iterator of f .

We should note where open induction (in M+) is used in this argument:
we need it to show that every simulation of αg produces the same values that
actually appear in αg, and that our simulations of f using our oracle replies
αg(y1), . . . , αg(y|s|) give the same value as actual computations of f with these
oracle replies. �

Theorem 16 ∀Σ̂b+1 (U1
2) is reducible to LLIlog, provably in PV+.

Proof Suppose that U1
2 ⊢ ∀Ū∃v < t(Ū) θ(Ū , v), where θ ∈ PV+ and t is a

simple L2 term. Then by using Lemma 13, introducing some new constants C̄
and then using Lemma 15, we get that

PV+ + {Iterαf
: αf ∈ A(C̄)} ⊢ ∃v<t(C̄) θ(C̄, v).

17

By compactness only finitely many iterators are needed in this proof, so as
in the proof of the last lemma we can combine them all into one iterator αf,l,b
(where f, l, b are L2(C̄) terms). For simplicity we will write α for αf,l,b and will
assume that the bound b is built into the function f . So we have

PV+ + ∀i<(l − 1) [α(0) = 0 ∧ α(i+ 1) = f(i, α(i))] ⊢ ∃v<t(C̄) θ(C̄, v).

We now write the expression in square brackets as Deff (α, i) and move it to the
other side. Also we will no longer write C̄ but will simply think of every term
on the right hand side as being an L2(C̄) term. This gives

PV+ ⊢ ∃i<(l − 1)¬Deff (α, i) ∨ ∃v<t θ(v).

Now by a relativized version of Buss’ witnessing theorem there are PV func-
tion g, h with oracle tapes which, on input the first-order constants in C̄ and
given oracle access to α and the second-order constants in C̄, output numbers i
and v witnessing the right hand side, provably in PV+. Let us take g and h and
replace queries to the oracle α(i) with queries to an L2(C̄) term Az(i), with a
parameter z. The term A treats z as a code for a polylogarithmic-length list of
pairs of oracle queries and replies, and uses these to answer queries to α. If a
query i is not in this list, Az gives an arbitrary reply (say 0). Then, assuming
without loss of generality that always g < l − 1 and h < t, we get

PV+ ⊢ ∀z,¬Deff (Az, g(Az)) ∨ θ(h(Az))

where g(Az) and h(Az) represent g and h run using the sequence given by Az
to reply to oracle queries made to α.

We will describe an instance of LLIlog, with all first- and second-order pa-
rameters definable by L2 terms from the constants C̄, with the property that,
in any model of PV+(C̄), if z is a solution to our instance then Deff (Az, g(Az))
holds – that is to say, Az looks like a correctly-formed iterator of f at the point
which is found by g on input Az. This gives our desired search-problem reduc-
tion, because now we know that if we simulate h(Az) for any such z, the output
must witness ∃v<t θ(v).

We may assume that g always runs for exactly n steps and makes one oracle
query “α(i) = ?” at each step, for some 0 ≤ i < l. The domain of the graph in
our instance will be the interval [0, l), the scores will come from [0, 2n+1]∪{∗},
and the labels of the nodes will always have one of the following five forms:

• 〈〉, an empty tuple. We call this an “initial” configuration (even length).

• 〈βi〉. We call this a “first pass” configuration (odd length).

• 〈βi, q1i , . . . , q
k+1
i , r1i , . . . , r

k
i 〉. We call this a “going up” configuration (even

length).

• 〈βi, q1i , . . . , q
k+1
i , r1i , . . . , r

k
i , ?〉. We call this a “going down, waiting for

reply” configuration (odd length).

• 〈βi, q1i , . . . , q
k+1
i , r1i , . . . , r

k+1
i 〉. We call this a “going down with reply”

configuration (odd length).

18

Here βi will stand for what the simulation locally believes the value of αf (i)
to be, and q̄i and r̄i will stand for oracle queries and replies made so far in a
partial computation of g. “?” is represented by some fixed number. The index
k will be at most n, the queries qji will always be bounded by l, and βi and the

replies rji will always be bounded by b. This gives us a bound on the size of the
labels, as required.

We want to simulate the following process. Start with an initial labelling E
where each label w0, . . . , wl−1 is in the initial configuration. Then, beginning
at the top and working down, replace w0 with 〈β0〉 where β0 = 0 and replace
each wi+1 with 〈βi+1〉 where βi+1 = f(i, βi). Now every label is in a “first pass”
configuration.

Now beginning at the bottom and working up, calculate the first oracle query
q1 made by g and append this (the same value q1 each time) to each wi. Now
every label is in a “going up” configuration.

Then, beginning at the top and working down, append “?” to each of
w0, . . . , wq1−1 so that these are all in a “going down, waiting for reply” con-
figuration. Then let r1 = βq1 and, continuing down, append r1 to each of
wq1 , . . . , wl−1 (thus correctly answering the query q1) so that they are all in a
“going down with reply” configuration.

Then, beginning at the bottom and working up, calculate the second oracle
query q2 made by g and add it to each wi, and also replace the “?”s from the
previous pass with the value r1.

Repeat the procedure in the previous paragraphs to add more queries and
replies to each wi, until the moment we obtain somewhere a complete set of n
queries and n replies, giving a full computation of g.

The important thing about this procedure is that the information we are
adding to a label wi is always available locally. Hence we can model it with an
instance of the local improvement principle.

The initial labelling is simple; every element is just the empty tuple.
The score at i is the number |wi| of elements in the tuple wi, if the triple

(wi−1, wi, wi+1) is well-formed. Otherwise the score is ∗. The triple is well-
formed if all of the following hold (suitably adapted in the cases i = 0 or
i = l − 1).

1. Each of wi−1, wi and wi+1 is in one of the five configurations above.

2. The sequence of lengths 〈|wi−1|, |wi|, |wi+1|〉 matches one of the following,
for some odd number m: 〈m,m − 1,m − 1〉; 〈m,m,m − 1〉; 〈m,m,m〉;
〈m,m,m+ 1〉; 〈m,m+ 1,m+ 1〉; 〈m+ 1,m+ 1,m+ 1〉. In other words,
the sequence contains either only one number or two consecutive numbers,
and an odd number cannot appear after an even one.

3. If wi is in one of the two “going down” configurations, then either i is
strictly less than the last query qk+1

i listed in wi and wi is in the “going
down, waiting for reply” configuration; or i is greater than or equal to
qk+1
i and wi is in the “going down with reply” configuration.

4. In each of the three tuples in the triple, the oracle queries and replies agree
with those in the other tuples and are consistent with a possible initial
segment of a computation of g.

5. If i = 0, then βi = 0. If i > 0, then βi = f(i− 1, βi−1).

19

6. The queries and replies in wi do not contain any witnesses that α is not
correctly formed as an iterator. That is, if “α(q) = r” and “α(q+1) = r′”
are among the oracle information in wi, then r′ = f(q, r); and “α(0) = r”
only appears for r = 0.

7. In wi, if i appears among the queries q̄i (that is, if the query “α(i) = ?”
appears), then the reply listed in r̄i, if there is one, is βi.

We think of the first four properties as “structural”. Note that property (5) is
exclusively about the numbers β, property (6) is exclusively about the informa-
tion about the oracle α encoded in the tuples, and property (7) is the only place
where the two things are connected, and there it is only the value at i which
matters.

Now we need to describe the improvement function and show that it changes
scores in the right way. We will deal first with improving even scores to odd
scores.

Suppose 0 < i < l − 1 and we have a local labelling in which the score at i
is 0, the score at i − 1 is 1 and the score at i+ 1 is not ∗. Then by properties
(1) and (2) the labels around wi must look like this:

wi−1 = 〈βi−1〉

wi = 〈〉

wi+1 = 〈〉

The improvement at i is to add βi := f(i−1, βi−1) to wi. This clearly preserves
well-formedness at i − 1, i and i + 1 so increases the score at i and does not
change any other scores.

The edge cases at the top and bottom are similar – the differences are that
if i = 0 we add β0 = 0 to w0; if i = l − 1 we do not need to worry about
well-formedness at i+ 1.

Now suppose 0 < i < l− 1, and we have a local labelling in which the score
at i is some even number 2m > 0, the score at i− 1 is 2m+ 1 and the score at
i+ 1 is not ∗. Then by properties (1), (2) and (3) the tuples wi−1, wi and wi+1

must look like this:

wi−1 = 〈βi−1, q
1, . . . , qk+1, r1, . . . , rk, ? or rk+1〉

wi = 〈βi, q
1, . . . , qk+1, r1, . . . , rk〉

wi+1 = 〈βi+1, q
1, . . . , qk+1, r1, . . . , rk〉

where k = m− 1 and the last element of wi−1 is ? if i− 1 < qk+1 and otherwise
is a reply rk+1. By property (5) at i and i+1 (since the sequence is well-formed
at both these places), we also have that βi = f(i− 1, βi−1) and βi+1 = f(i, βi).

If i < qk+1, then the improvement at i is to add ? to the end of wi. This leaves
the labelling well-formed at i and does not affect well-formedness anywhere else.

If i = qk+1, then the improvement at i is to add βi to the end of wi, as a new
oracle reply rk+1. To show well-formedness we need to show that properties (6)
and (7) still hold at i and that (4) still holds at i− 1, i and i+ 1. (7) is clear.
For (6): we have added to the tuple q̄, r̄ of queries and replies the statement
that “α(i) = βi”. By property (7) at i− 1, if the tuple already assigned a value
to α(i − 1) then this value was βi−1, which by (5) does not give a mismatch

20

with our new value of α(i). Similarly by well-formedness at i + 1, if the tuple
already assigned a value to α(i+ 1) then it must have been βi+1 = f(i, βi) and
we do not have a mismatch. For (4), we know by well-formedness at i− 1 and
i+ 1 that the queries and replies at i− 2 and i+ 2 are the same as those at i,
hence adding the new reply at i will not clash with these.

If i > qk+1, then wi−1 is in the “going down with reply” configuration and
already has a value for rk+1. The improvement at i is to add rk+1 to the end of
wi. Then properties (1) – (5) follow easily (at i− 1, i and i+ 1). Property (6)
at i in the new labelling follows from property (6) at i− 1 in the old sequence.
Property (7) must also still hold at i, since the new oracle reply added is for a
query qk+1 with qk+1 < i.

The cases at the top and bottom, for i = 0 or i = l − 1, are similar.
Now we describe how odd scores are improved to even scores.
Suppose 0 < i < l − 1, the score at i is some odd number 2m+ 1, the score

at i+ 1 is 2m+ 2 and the score at i− 1 is not ∗. Then by properties (1) – (4)
the tuples wi−1, wi and wi+1 must look like this:

wi−1 = 〈βi−1, q
1, . . . , qk+1, r1, . . . , rk, ? or rk+1〉

wi = 〈βi, q
1, . . . , qk+1, r1, . . . , rk, ? or rk+1〉

wi+1 = 〈βi+1, q
1, . . . , qk+1, qk+2, r1, . . . , rk, rk+1〉

where k = m− 1 and wi ends with ? if and only if i < qk+1, and similarly for
wi−1.

Then the improvement at i is to replace the question mark, if there is one,
with rk+1 and then to append qk+2 to the tuple q̄ of queries.

By property (4) at i + 1, qk+2 is the correct next query made by g, given
the previous history of oracle queries and replies. So property (4) also holds
at i in the improved labelling. Property (6) also carries across from i + 1 to
i. For property (7), either i ≥ qk+1, in which case rk+1 was already present
and the improvement is not adding any new information about the oracle at i,
or i < qk+1, in which case the information in rk+1 about the value of α(qk+1)
cannot directly clash with βi.

For the edge cases, if i = 0 then the improvement is as above. If i = l − 1
then wi will not contain a question mark (since all queries q are ≤ l − 1) and
the improvement is to calculate the next query qk+1 made by g (if there is one)
and append it to the tuple q̄ of queries.

To complete the argument, let w be any witness to the LLIlog principle. Then
w can only be a well-formed local labelling for which the improvement function
does not work, and by the construction of the function this can only happen
at the place mentioned in the previous paragraph; we are at the bottom of the
graph, and trying to compute the next query made by g, which is impossible
if k = n and we have already gone through a complete computation of g. But
in this case our local labelling contains all the oracle queries and replies made
in this computation, and by property (6) of well-formedness these queries and
replies fail to witness that α is not the iterator of f , as required. �

21

4 The ∀ΣB
0 consequences of V

1 over V
0

This section has a similar shape to the last one, but for two-dimensional objects
(circuits) in a linear setting, rather than one-dimensional objects (our iterators)
in a polynomial setting. The low-complexity consequences of V 1 follow from V 0

together with an axiom asserting that every circuit has a computation. We show
(Lemma 19) that for us it is enough to consider only definable circuits. This
allows us to take a first-order sentence provable in V 1, obtain a single definable
circuit C from the proof, and use a witnessing theorem to derive an algorithm
(a version of PLS appropriate to the linear setting, see Definition 20) that will
witness the sentence if we give the algorithm oracle access to a computation of
C. We can then use the LI principle to simulate constructing the computation
of C and running the algorithm on it.

The next definition is a natural generalization of the iterators used in Section
3 (except that to make some things simpler, the transition function uses i as
a parameter when calculating values in column i, where an iterator would use
i− 1).

Definition 17 We define a circuit to be a 4-tuple (f, l, h, b) consisting of a
term f(i, j, x1, x2, x3) (which we will call the transition function of the circuit,
and which may also have some other parameters) and a length l, height h and
bound b.

A computation of a circuit consists of an l×h table of cells, each potentially
holding a number < b; the value computed in cell (i, j) is min(f(i, j, x1, x2, x3), b)
where x1, x2 and x3 are the values respectively in cells (i − 1, j − 1), (i − 1, j)
and (i−1, j+1). A computation is coded as a second-order object in the normal
way.

Values outside the domain given by the height and width are taken to be 0.
The circuit has no input, but the term f may have other parameters which can
effectively be used as inputs.

Given a language L, we will say that a circuit is L definable if its transition
function f(i, j, x1, x2, x3) is given by an L term (with only the free variables
shown) and its length, height and bound l, h, b are given by simple, closed L
terms.

Let L1(C) be L1 together with a collection C of new first- and second-order
constant symbols.

Lemma 18 Let T be any theory in L1 extending V 0. To show ∀ΣB0 conserva-
tivity of V 1 over T for L1 sentences, it is enough to show E1 conservativity of
V 1 over T for L1(C) sentences.

Proof Suppose V 1 ⊢ ∀X̄ θ(X̄) for θ a ΣB0 formula from L1. We will assume for
simplicity that θ is of the form ∃y<t(X̄)∀z<t(X̄)φ(X̄, y, z) with φ quantifier-
free, since the argument extends easily to more general formulas with more
quantifiers. Let C̄ be a tuple of constants from C and let α be one more second-
order constant from C. Then

V 1 ⊢ ∃y<t(C̄) [α(y) < t(C̄) → φ(C̄, y, α(y))],

22

so E1 conservativity of V 1 over T for L1(C) formulas implies that this is also
provable in T , so also (since the constants C do not appear in T)

T ⊢ ∀A∃y<t(C̄) [A(y) < t(C̄) → φ(C̄, y, A(y))].

Now since T extends V 0, which has comprehension for ΣB0 formulas, in any
structure (M, C̄) � T we can take A to be the bounded sequence t(C̄) −→ t(C̄)
where A(y) is the least z < t(C̄) such that ¬φ(C̄, y, z) or is 0 if there is no such
z. Then

(M, C̄) � ∃y<t(C̄)∀z<t(C̄)φ(C̄, y, z)

and the lemma follows. �

Take a new set A(C) of second-order constant symbols, containing a sym-
bol αf,l,h,b for each L1(C) definable circuit (f, l, h, b). For αf,l,h,b ∈ A(C) let
Iterf,l,h,b(αf,l,h,b) be an A1 axiom stating that αf,l,h,b is a computation of the
circuit (f, l, h, b), that is, an l × h table with suitable values in all the cells. In
what follows we will often write these as αf and Iterf for short.

The next lemma does a similar job to Lemma 15 in the precious section.
In the proof, we will appeal to E1−IND several times to prove essentially the
following: if two circuits D and E have the same bounds and have transition
functions which agree on all inputs below the bounds, and αD is a computation
of D and αE is a computation of E, then αD and αE are the same everywhere.
We need this to show that we can simulate one circuit as part of another; it is
provable by induction on i in the bounded universal formula “the ith column of
αD agrees at all points with the ith column of αE”.

Lemma 19 V 1 is conservative over E1−IND+{Iterf (αf) : αf ∈ A(C)} for E1

sentences in the language L1(C).

Proof Let ∃y<t φ(y) be any L1(C) sentence, where φ is open and t is a closed
L1(C) term. Suppose that V 1 ⊢ ∃y<t φ(y) and suppose for a contradiction that
there is an L1(C,A(C)) structure M which is a model of E1−IND+{Iterf (αf) :
αf ∈ A(C)} and in which ∀y < t¬φ(y). We may assume without loss of gen-
erality that every first-order element of M is smaller than some simple, closed
L1(C) term and that the only second-order elements of M are those named by
constants.

We extend M to a bigger structure M+. The first-order part of M+ is the
same as that of M . The second-order part of M+ consists of every sequence
which is term definable in M . Notice that given any first-order formula with
parameters from M+ we can replace all second-order parameters with their
definitions, yielding an equivalent formula (with respect to first-order variables;
we are treating the second-order variables as fixed) with the same quantifier
complexity but in which all parameters are from M . Hence M+ is a model both
of E1−IND and of term comprehension.

We will show that every circuit definable with parameters from M+ already
has a computation in M+. It can then easily be shown (by constructing compu-
tations to evaluate quantifiers) that M+ satisfies comprehension for all bounded
first-order formulas. This, together with E1−IND and the statement that every
circuit has a computation, proves all the bounded first-order consequences of
V 1 [16, 10]. But in M+ we still have that ∀y<t¬φ(y), giving a contradiction.

23

We first claim that for any L1(C,A(C)) term t(x), with x the only free
variable, and for any simple, closed L1(C) term c, we can construct an L1(C)
definable circuit (f, l, h, b) such that t(x) = αf,l,h,b(l − 1, x) for all x < c.

We first convert t into a (finite) arithmetic circuit. This has gates for +, ·
and our other arithmetic operations. It has gates for = and <, which both take
two inputs and output 0 or 1 depending in the obvious way on these; these gates
are used to translate the chooseφ terms. For each C ∈ C it has a gate labelled
C with one input, intended to map y to C(y), and for each α ∈ A(C) it has
a gate labelled α with two inputs, intended to map y and z to α(y, z). It has
an input gate for x and hard-wired inputs for constants c ∈ C and for |C|l and
|C|b for C ∈ C. The circuit is constructed by showing inductively that there is
a circuit for every term and open formula, using induction on the complexity of
the terms and formulas measured by their length and by the depth of nesting
of chooseφ functions inside the index formulas φ of other chooseφ functions.

We then show by induction on the (finite) structure of such a circuit that
the value at each gate can be calculated by a L1(C) definable circuit as re-
quired above. The difficult case is if the outermost gate of t(x) has the
form αf ′,l′,h′,b′(t1(x), t2(x)) for some constant αf ′,l′,h′,b′ in A(C) for a circuit
(f ′, l′, h′, b′). In this case, by the inductive hypothesis we have L1(C) definable
circuits (f1, l1, h1, b1) and (f2, l2, h2, b2) such that t1(x) = αf1,l1,h1,b1(l1 − 1, x)
and t2(x) = αf2,l2,h2,b2(l2 − 1, x) for all x < c. We will call these circuits Ef ′ ,
Ef1 and Ef2 for short.

Let h = max(h1, h2, h
′) and b = cb1b2b

′. We will describe a circuit Ef
of height ch, length l = 1 + l1 + l2 + l′ + 3h′ and bound b such that t(x) =
π4(αf (l − 1, hx)) (where π4 is a projection function). From this it is easy to
construct the circuit needed for the inductive step.

The circuit Ef is actually made up of c circuits D0, . . . Dc−1, with each Dx

having height h and length l and consisting of rows xh to (x + 1)h − 1 of Ef .
These subcircuits can be thought of as operating independently and in parallel;
there is no interaction between them. We will describe one such subcircuit Dx.
Each cell is thought of as containing a 4-tuple (x, z1, z2, z3). The first column
computes and stores x (in every row). The next l1 columns use place z1 to
simulate a computation of Ef1 . The next h′ columns take the xth row in the
output of this simulation and propagate it so that, from this point on, z1 has
this value in each of the first h′ rows of the subcircuit. The next l2 +h′ columns
do the same for Ef2 in place z2. From this point on, z1 and z2 will not change,
so the first h′ rows of the subcircuit will have access to t1(x) and t2(x) as
parameters. This is provable in E1−IND, which is needed to show that all the
values in our simulations are the same as the values in αf1 and αf2 themselves
(open induction is enough to show that the propagation works). The next l′

columns simulate Ef ′ in place z3, up until the t1(x)-th column of the simulation,
after which they just copy the values from this column. The final h′ columns
take the value of z3 in the t2(x)-th row of the subcircuit and transfer it to row
0. As above, E1−IND proves that row 0 of the last column of our subcircuit
contains αf ′(t1(x), t2(x)) in place z3.

This completes the proof of the claim. Now take any circuit D in M+.
By the construction of M+, D has a length, height and bound l, h, b that are
first-order elements of M+ and a transition function f(p, i, j, x1, x2, x3) that is
an L1(C,A(C)) term with a first-order parameter p from M and no parameters
except for the ones shown. By the claim, there is an L1(C) definable circuit

24

(g, l′, h′, b′) such that f(p, i, j, x1, x2, x3) = αg(l
′ − 1, 〈p, i, j, x1, x2, x3〉). Using

this and a similar construction to that used in the claim, we can expand D
to a much larger circuit D′ in which each transition in D is replaced with a
simulation of a computation of (g, l′, h′, b′) and an extraction of the value of
f(p, i, j, x1, x2, x3) from this computation. From any computation of this new
circuit we can extract by term comprehension a computation of D (and use
E1−IND to show that each (g, l′, h′, b′) simulates f correctly and thus prove
that this really is a computation of D).

However we still do not know that a computation of D′ exists in M+, since
the transition function and bounds are not pure L1(C) terms but still depend
on the parameters p, l, h, b. But p, l, h and b must all be smaller than some
closed L1(C) term t, so we can take an L1(C) definable circuit which simulates
in parallel t4 versions of D′, one for each possible value of these parameters up
to this bound. A computation of this circuit exists in M+ and we can recover
a computation of D′ from it by term comprehension. �

As a technical tool, we define a natural adaptation of polynomial local search
problems [7] to the L1 setting.

Definition 20 A linear local search (LLS) problem is given by a triple of L1

terms 〈C(X̄, x), N(X̄, x), s(X̄)〉. Given input parameters X̄, a solution to the
problem is a witness to the fact that the following things cannot all be true (where
∗ is a special value that may be taken by C, and is not treated as a number):

1. C(X̄, 0) 6= ∗;

2. For each x < s(X̄) such that C(X̄, x) 6= ∗, either N(X̄, x) = x or
N(X̄, x) < s(X̄) and C(X̄,N(X̄, x)) > C(X̄, x);

3. There is no x < s(X̄) such that C(X̄, x) 6= ∗ and N(X̄, x) = x.

The x < s(X̄) such that C(X̄, x) 6= ∗ are regarded as the “possible solu-
tions” to the problem, and C(X̄, x) is the cost of possible solution x. N is a
neighbourhood function on possible solutions. The problem expresses the fact
that if 0 is a possible solution and if the neighbour of a possible solution x
always either equals x or has higher cost, then there is a possible solution with
locally maximal cost, i.e. x such that N(X̄, x) = x. Note that there is an L1

term m(X̄) which dominates C(X̄, x) for any X̄ and any x < s(X̄).

Lemma 21 Let φ be an open L1 formula, t an L1 term and suppose that
E1−IND ⊢ ∀X̄ ∃y< t(X̄)φ(X̄, y). Then witnessing the right hand side is prov-
ably reducible to solving an LLS problem. That is, there is an LLS problem
P = 〈C,N, s〉 and an L1 term g such that

E1−IND ⊢ ∀X̄, z [“z is a solution to P (X̄)” → g(X̄, z) < t(X̄)∧φ(X̄, g(X̄, z))].

Proof Postponed until Section 6.

Lemma 22 Let ∃y < t φ(y) be an E1 sentence in L1(C). If E1−IND +
{Iterf (αf) : αf ∈ A(C)} proves ∃y < t φ(y), then there is an L1(C) definable
circuit D, an L1(C, α) LLS problem P (with no parameters except ones that are
definable from C and α, where α is a new constant symbol) and L1(C, α) terms
g, h such that, provably in E1−IND, if w is a solution to P , then either g(w)
witnesses that IterD(α) is false or h(w) witnesses that ∃y<t φ(y).

25

Proof By compactness, we may assume that there is a finite sequence
C1, . . . , Ck of L1(C) definable circuits such that E1−IND + {IterC1

(α1), . . . ,
IterCk

(αk)} proves ∃y<t φ(y). Let D be the L1(C) definable circuit which sim-
ulates C1, . . . , Ck computing in parallel. Then the computations of C1, . . . , Ck
can be recovered from a computation of D by term comprehension. So we
can make any model of E1−IND + IterD(α) into a model of E1−IND +
{IterC1

(α1), . . . , IterCk
(αk)} by adding these computations. The computations

are term-definable, so E1−IND will still hold, and are second-order, so do-
ing this will not change the truth of any first-order L1(C) sentences. Hence
E1−IND + IterD(α) ⊢ ∃y<t φ(y).

So E1−IND ⊢ ¬IterD(α) ∨ ∃y < t φ(y) and since IterD(α) is A1 the result
follows by Lemma 21. �

We can now prove the main result of this section. The proof will take up
the rest of the section.

Theorem 23 Every ∀ΣB0 consequence of V 1 is already provable in V 0 + LI.

Proof By Lemma 18 it is enough to show E1 conservativity of V 1 over V 0+LI
for L1(C) sentences. So let ∃v < t φ(v) be an E1 sentence in L1(C) which is
provable in V 1.

By Lemma 19, ∃v < t φ(v) is also provable in E1−IND + {Iterf (αf) : αf ∈
A(C)}. So by Lemma 22, replacing the constant α a universally quantified
second-order variable α, there is an LLS problem P , a tuple of L1(C) terms
f(i, j, x1, x2, x3), l, h, b and an L1(C) term g(α,w) such that

E1−IND ⊢ ∀α,w, “w is a solution to P (α)” → [∃v<t φ(v)∨¬Deff (α, g(α,w))]

where ¬Deff (α, z) expresses that z is a pair 〈i, j〉 witnessing that α is not a
correct computation of the circuit defined by f , l, h and b, that is, that either
one of the bounds is violated or

α(i, j) 6= f(i, j, α(i− 1, j − 1), α(i− 1, j), α(i− 1, j + 1)).

Now suppose for a contradiction that there is an L1(C) structure M which is a
model of V 0 + LI but in which ∃v<t φ(v) is false. Then we must have

M � ∀α,w, “w is a solution to P (α)” → ¬Deff (α, g(α,w)).

We now follow a similar plan to the proof of Theorem 16, with the difference
that we are simulating an LLS problem rather than a polynomial time function
(so will need exponentially more steps, and the steps will be of a slightly different
nature) and simulating oracle queries to a two-dimensional circuit computation
rather than to a one-dimensional iterator. In what follows we will assume that
the constants C are built into our language and will no longer mention them.
For clarity we have broken the proof up under sub-headings.

A modification of the LLS problem. For reasons of technical convenience,
we redefine the notion of an LLS problem slightly. The redefined version is easily
seen to be equivalent to the official one; in particular, the witnessing Lemma 21
remains true.

Instead of being defined by a triple of terms 〈C(α, x), N(α, x), s(α, x)〉, we
assume our problem P is given by a predicate U(α, s, y), a function N(α, s, y)

26

and a size parameter a. A solution to the problem is a pair 〈s, y〉 witnessing the
following (α is suppressed):

[U(0, 0) ∧ ∀i, x<aN(i, x) < a ∧ ∀i, x<a (U(i, x) → U(i+ 1, N(i, x)))]

→ ∃x<aU(a, x).

So, if ¬U(0, 0), then any pair 〈s, y〉 is a solution; otherwise a solution is a pair
〈s, y〉 with s, y < a such that either N(s, y) > a, U(s, y) ∧ ¬U(s+ 1,N(s, y)) or
U(a, y) holds.

Additionally, rather than thinking of U , N and g as being computed by
L1(α) formulas or terms, it is convenient to make an ad-hoc definition of a
different computation model. A straight-line program consists of a sequence of
n instructions. A computation of it is a sequence z1, . . . , zn of numbers, where
each zi is computed (according to the ith instruction in the program) either as
t(z̄), where t is an L1 term, or as α(zj , zk). Here z̄ or zj, zk are some specified
earlier numbers in the sequence. The output of the program is zn. Every L1(α)
term is computed by such a straight-line program of some constant, finite length.

We may assume that U , N and g are computed by three such programs, all
of the same length n ∈ N. The programs for N and g will output the value
of the terms N and g; the program for U will output 1 (“accept”) or output 0
(“reject”) depending on whether U is true or false. By padding these programs
out with dummy queries if necessary, this allows us to simulate U , N and g by
processes which each make exactly n oracle queries of the form “α(i, j) = ?”
(with i < l and j < h), where each query is determined in a simple way by the
answers to previous queries. This simulation can be formalized in V 0, in the
sense that there is a bounded first-order formula defining a function that takes as
input a sequence q1, r1, q2, r2, . . . , qn, rn of oracle queries and replies and either
outputs the value of U or returns an error if the sequence did not correspond
to a computation of U , and similarly for N and g. Because a sequence of oracle
queries and replies q1, r1, q2, r2, . . . , qm, rm, for m ≤ n, uniquely determines a
(partial) computation of one of our straight-line programs, we will refer to such
a sequence simply as a (partial) computation of the program. For the purposes
of our proof, a partial computation is even allowed to omit the last reply rm, or
to have a question mark “?” in place of rm (indicating that in our simulation,
we are still waiting for a reply to this query).

Our goal. Working in M , we want to find a tuple s, y, q1, r1, q2, r2, . . . , q4n, r4n
where each qk is an oracle query and rk is the corresponding reply, such that if
we use these q̄, r̄ to define an “oracle” Aq̄,r̄ (which is defined arbitrarily to be 0
at places which do not appear in q̄), then 〈s, y〉 gives a solution to P (Aq̄,r̄), but
Deff (Aq̄,r̄, g(Aq̄,r̄, s, y)) is true, which is a contradiction.

An iterative algorithm for linear local search. First, to avoid having to
make extra queries in some cases, in place of g(α, s, y) we will use a program
g′(α, s, y) that first runs g(α, s, y), getting a pair (i, j) as output, and then
queries α(i, j), α(i − 1, j − 1), α(i − 1, j) and α(i − 1, j + 1). The program g′

finally outputs 1 if the replies to these queries show that

α(i, j) 6= f(i, j, α(i− 1, j − 1), α(i− 1, j), α(i− 1, j + 1)),

that is, if they witness that Deff (α, 〈i, j〉) is false, and outputs 0 otherwise, that

27

is, if they witness that Deff (α, 〈i, j〉) is true. We may assume without loss of
generality that g′ still runs in exactly n steps.

To obtain the desired tuple, we will simulate the following algorithm B that
computes, in the obvious, iterative way, a solution to the local search problem.
In our simulation, we will reply to oracle queries in a way that guarantees that
g′ never accepts (that is, outputs 1) on the solution that the algorithm finds.
To make the simulation more uniform (and so easier to describe), we will in fact
make the algorithm itself run g′ on every candidate solution that turns up in
the course of the computation, although this is not strictly necessary.

B starts by setting s and y to 0 and running U(α, s, y). If U(α, s, y) = 0
then it runs g′(α, s, y) and halts. Otherwise, until s = a: it runs g′(α, s, y); then
computes y′ = N(α, s, y); then runs U(α, s+ 1, y′) and halts if the output is 0,
and otherwise replaces y with y′ and increments s.

Note that, although B runs for an exponentially long time, when simulating
B the only oracle replies that we need to store when we increment s are those for
the most recent computation of U ; informally, we can discard the other replies,
and give different answers the next time these queries are made, and B will still
find a solution to the LLS problem. Hence the length 4n of q̄ and r̄ in our goal
above is the maximum number of oracle queries that we need to store at one
time during the simulation, and when B halts this information is sufficient to
verify that we have a solution of the local search problem and to run g′ on this
solution. For example, if B halts with a solution (s, y) where 0 < s < a we will
have computations of U(α, s, y), g′(α, s, y), N(α, s, y) and U(α, s+1, N(α, s, y)).

This bound on the information we need to store is important because it will
allow us to store the state of our simulation of B in each label on the graph, so
that it is locally accessible from everywhere, which we would not be able to do
if we had to remember simultaneously all the oracle replies made so far.

The LI instance – the graph. Now we describe the instance of LI that we
use to simulate B and g′. The underlying graph has lh nodes (i, j) arranged
in an l × h grid, matching the form of our circuit. The node (0, 0) is at the
top-left corner and (l − 1, h − 1) is at the bottom-right corner. We order the
nodes lexicographically, that is, first by column, then by row. The edges of the
graph are as follows: there is an outgoing edge from every node (i, j) to each of
the nodes (i+ 1, j− 1), (i+ 1, j), (i+ 1, j + 1) and (i, j + 1) (when these exist).
The neighbourhood of a typical (i, j) is depicted in Figure 1.

i− 1 i i + 1

j − 1

j

j + 1

Figure 1: The neighbourhood of (i, j) (only edges touching (i, j) are shown).

28

The LI instance – the labels. The labels on the nodes can take the following
forms:

• 〈〉 – the “initial” configuration; the initial labelling E labels every node
with this.

• 〈βi,j , 0, 0〉 – a “first pass” configuration;

• 〈βi,j , s, y, C〉, where C stands for a sequence of length ≤ 8n with one of
three possible forms:

q1, r1, q2, r2, . . . , qk, rk, qk+1 – a “backwards” configuration;

q1, r1, q2, r2, . . . , qk, rk, qk+1, ? – a “forwards & waiting” configura-
tion;

q1, r1, q2, r2, . . . , qk, rk, qk+1, rk+1 – a “forwards & done” configura-
tion.

The labels have bounded size, with βi,j < b, s ≤ a, y < a, each qj < lh and each
rj < b; n ∈ N is fixed, and “?” is a symbol represented by, say, the number b.

An exponential algorithm to simulate B. We can now describe an algo-
rithm, requiring exponential time and space, that simulates B by labelling and
relabelling the graph in the style of the proof of Theorem 4 (our original proof
of LI in V 1). The algorithm will only ever make use of information recorded
locally in the part of the graph it is working on at the moment, so can be trans-
lated into the score and improvement functions of an instance of LI. We will
define those functions formally in the next part of the proof; the exponential
algorithm is included here to make the definitions easier to understand.

The algorithm repeatedly passes forwards and backwards across the graph,
following the ordering. It first fills in the graph with a computation of the circuit
(f, l, h, b), and then begins to simulate B. To do this, on each forwards pass it
picks up an answer to the current oracle query made by B. On each backwards
pass it works out the next query made by B and tidies up the labelling, to be
ready for the next forward pass.

In more detail, we begin with the graph labelled according to the empty
initial configuration. Then, starting from the top-left corner, we pass forwards
through the graph and label each node (i, j) with a value 〈βi,j , 0, 0〉 such that

βi,j = f(i, j, βi−1,j−1, βi−1,j , βi−1,j+1)

(we are assuming, without loss of generality, that the bound b on values appear-
ing in the circuit is already implicit in the function f). Informally, βi,j is what
the graph locally (around (i, j)) believes the value of α(i, j) to be.

After the first forward pass, we calculate the first oracle query q1 in the
computation of U on input (0, 0) and then pass through the graph backwards,
replacing each label 〈βi,j , 0, 0〉 with the backwards configuration

〈βi,j , 0, 0, q1〉.

Suppose that q1 is the query “α(i1, j1) = ?” for some i1, j1. For the next
forward pass we define Pi1,j1 to be the set of nodes that are reachable from node
(i1, j1). Formally

Pi,j = {(i′, j′) : i ≤ i′ ∧ i+ j ≤ i′ + j′},

29

0 i l − 1

h− 1

j

0

Figure 2: Pi,j .

illustrated in Figure 2. We go through the graph and replace each backwards
configuration with either

〈βi,j , 0, 0, q1, ?〉 (forwards & waiting)

if (i, j) 6∈ Pi1,j1 , or

〈βi,j , 0, 0, q1, βi1,j1〉 (forwards & done)

if (i, j) ∈ Pi1,j1 . Note that if (i, j) = (i1, j1) then βi1,j1 is already available in
the existing label of (i, j), and for other nodes (i, j) ∈ Pi1,j1 the value βi1,j1 is
already available in the label of at least one predecessor of (i, j).

For the next backward pass we calculate the second oracle query q2 for the
computation of U on input (0, 0) and add this to the labels in the same way as
in the first backward pass. We also carry out one extra task: we propagate the
oracle reply to the first query q1 to all nodes (i, j) not in Pi1,j1 .

Continuing this way, after 2n+ 1 passes (n+ 1 forwards and n backwards)
we will have simulated U on input (0, 0), and labelled every node with a history
of this computation (except perhaps for the last oracle reply). In the same
fashion we then simulate g′ on (0, 0), and if U did not accept (0, 0) we halt our
algorithm at this point (on reaching the bottom-right corner). Otherwise, we
simulate N on input (0, 0), getting some output y′, and then U on (1, y′). If
U is rejecting we then halt at the bottom-right corner; otherwise on the next
backwards pass we discard the computations of U , N and g′ on (0, 0) from all
labels, and then simulate, as before, g′ and N on (1, y′) and U on (2, N(1, y′)).
Note that we still have the computation of U on (1, y′) available, since we did
not discard this.

We iterate this process until a solution (s, y) is found. We know that g′ will
reject (s, y), since by construction we have guaranteed that it never sees a place
where the circuit is not calculated correctly according to the transition function.

The LI instance – scoring. Recall that in the proof of Theorem 16 we
used the length of a label to define the score function, and also as a condition

30

for well-formedness. Here in place of length we use the “pseudo-score” of a
configuration, defined as follows: the pseudo-scores of 〈〉 and 〈βi,j , 0, 0〉 are 0
and 1, respectively; the pseudo-score of a configuration 〈βi,j , s, y, C〉 is

1 + 6sn+ |C|

where |C| denotes the length of the sequence C. Typically, for each pass through
the simulation we will increase |C| by 1 until |C| = 8n, and at that point we
increase s by 1 and reduce |C| to 2n+ 1. Thus the pseudo-scores will increase
by 1 in each pass.

For a local labelling w which is well-formed at node (i, j), the score at (i, j)
under w is defined to be the pseudo-score of the label of (i, j). The maximum
score c in our instance of LI is 1 + (6a+ 8)n.

It remains to define well-formedness. A local labelling w is well-formed at
(i, j) if the following conditions A1–A8 and B1–B5 hold. Conditions A1–A8
describe properties of the label at (i, j), while B1–B5 describe properties that
also involve other labels in the neighbourhood of (i, j). Here 〈βi,j , s, y, C〉 is the
label at (i, j), and C is a sequence of the form q1, r1, q2, r2, . . . , δ where the last
entry δ may be a query qk, a reply rk or a question mark, and no other entries
may be question marks. For an interval [u, v] we will use C ↾ [u, v] to mean
the (possibly empty) subsequence of C that begins at the uth element and ends
either at the vth element or when we reach the end of C.

A1. If s = 0 then y = 0. If |C| ≤ 2n then s = 0.

A2. C ↾ [1, 2n] is a (partial) computation of U on (s, y).

A3. If C ↾ [1, 2n] is a rejecting computation of U , then s = 0 and |C| ≤ 4n.

A4. C ↾ [2n+ 1, 4n] is a (partial) computation of g′ on (s, y).

A5. C ↾ [4n+ 1, 6n] is a (partial) computation of N on (s, y).

A6. C ↾ [6n + 1, 8n] is a (partial) computation of U on (s + 1, y′) where y′ is
the output of N on (s, y) from the computation in A5.

A7. If C is in a “forwards & waiting” configuration

〈βi,j , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1, ?〉

the last query qk+1 must be of the form “α(i′, j′) = ?”, where (i, j) 6∈ Pi′,j′ .
On the other hand, if C is in a “forwards & done” configuration

〈βi,j , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1, rk+1〉

the last query qk+1 must be of the form “α(i′, j′) = ?”, where (i, j) ∈ Pi′,j′ .

A8. If, for any node (i′, j′), replies to all the queries “α(i′, j′) = ?”, “α(i′ −
1, j′ − 1) = ?”, “α(i′ − 1, j′) = ?” and “α(i′ − 1, j′ + 1) = ?” are present
in C, then they obey the transition function f .

B1. The pseudo-scores of the nodes in the neighbourhood of (i, j) must be
either all the same or of two consecutive values (i.e., {2m + 1, 2m} or
{2m+1, 2m+2}). Furthermore a node with an even pseudo-score cannot
have a successor with an odd pseudo-score.

31

B2. If two nodes u v in the neighbourhood of (i, j) have pseudo-scores in some
set {2m + 1, 2m} then the labels must be the same at every position,
except possibly for the first position and where there is a “?”.

B3. Suppose two nodes u, v in the neighbourhood of (i, j) have pseudo-scores
of the form 2m+ 1 and 2m+ 2 respectively, for some m; in particular the
label of u has the form

〈βi′,j′ , s
′, y′, q′1, r

′
1, q

′
2, r

′
2, . . . , q

′
k, z〉

for some k (where z is either ? or some reply r′k). Then either (a) k < 4n,
in which case the labels of u and v must be the same at every position,
except possibly for the first position and where there is a “?”; or (b)
k = 4n, in which case the label of v must have the form

〈βi′′,j′′ , s
′ + 1, y′′, q′′1 , r

′′
1 , q

′′
2 , r

′′
2 , . . . , q

′′
n, r

′′
n, q

′′
n+1〉

where

• y′′ is the output of the computation q′2n+1, r
′
2n+1, . . . , q

′
3n, r

′
3n (of N

on input (s′, y′));

• q′′1 = q′3n+1, r
′′
1 = r′3n+1, q

′′
2 = q′3n+2, r

′′
2 = r′3n+2, . . . , q

′′
n = q′4n; and

• if z is not a ?, then r′′n = z.

B4. The transition function is locally correct at (i, j), that is,

βi,j = f(i, j, βi−1,j−1, βi−1,j , βi−1,j+1).

B5. At each node (i′, j′) in the neighbourhood of (i, j), if the query “α(i′, j′) =
?” appears in the label of (i′, j′), then the corresponding reply, if there is
one, must be βi′,j′ .

Now we describe the improvement function. It will be the case that the only
well-formed local labellings for which this function does not improve the score
are certain labellings that can occur at the bottom-right corner, and from any
such labelling we will be able to obtain a solution to the search problem which
we know will not witness ¬Deff .

The LI instance – improving an even score to an odd score. This is
always possible and corresponds to one step in a forward pass of our exponential
algorithm; the effect it has on scores is illustrated in Figure 3. Suppose that
we have a local labelling w in which (i, j) scores 2m, all the neighbours of (i, j)
are well-formed, and all of its predecessors score 2m + 1. By condition B1 of
well-formedness at (i, j), all its successors must also score 2m. Furthermore
since B1 holds at every other node in the neighbourhood of (i, j), the only
possible pseudo-scores in the extended neighbourhood of (i, j) are also 2m and
2m + 1. Note that B1 is still true at all nodes in the neighbourhood after an
improvement.

Suppose first that m = 0. Then it must be the case that (i, j) and its
successors are labelled with the empty sequence 〈〉, and its predecessors have
labels of the form

〈βi−1,j−1, 0, 0〉, 〈βi−1,j , 0, 0〉, 〈βi−1,j+1, 0, 0〉 and 〈βi,j−1, 0, 0〉.

32

i− 1 i i+ 1

j − 1

j

j + 1

2m+ 1

2m+ 1

2m+ 1

2m+ 1

2m

2m

2m

2m

2m

Ii,j

=⇒

i− 1 i i + 1

j − 1

j

j + 1

2m+ 1

2m+ 1

2m+ 1

2m+ 1

2m+ 1

2m

2m

2m

2m

Figure 3: Improving an even score at (i, j).

The improvement function changes the label at (i, j) to

〈f(i, j, βi−1,j−1, βi−1,j , βi−1,j+1), 0, 0〉.

This preserves B4 and B2 at all nodes in the neighbourhood, and B3 and
B5 do not apply. The improved labelling satisfies A1 at (i, j), and A2–A8 are
irrelevant.

Next, suppose that m > 0. Suppose the label wi,j of (i, j) is of the form
〈βi,j , s, y, C〉. By definition 2m = 1 + 6sn+ |C|, hence |C| is odd, and it can be
seen that wi,j must be a backwards configuration,

wi,j = 〈βi,j , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1〉

for some k ≥ 0. Similarly, the predecessors of (i, j) are labelled with forwards
configurations. Now, the improved label at (i, j) will depend on the last query
qk+1. Suppose that qk+1 is the query “α(i1, j1) = ?”, for some i1, j1. There
are three cases. The first case is (i, j) 6∈ Pi1,j1 . Here the improvement function
changes the label at (i, j) to the “forwards & waiting” configuration

〈βi,j , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1, ?〉.

The second case is where (i, j) = (i1, j1). Here the new label at (i, j) is the
“forwards & done” configuration

〈βi,j , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1, βi,j〉.

The third case is where (i, j) ∈ Pi1,j1 but does not equal (i1, j1). Then at least
one predecessor of (i, j) is also in Pi1,j1 , and hence by B2 and A7 this predecessor
must be labelled with a “forwards & done” configuration of the form

〈βi′,j′ , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1, rk+1〉

(and by B2 it does not matter which predecessor we pick). The label at (i, j) is
improved to

〈βi,j , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1, rk+1〉.

In no case are we changing s or increasing |C| to 2n+ 1, so A1 is preserved.
A2 and A4–A6 are preserved, because adding a reply or a question mark cannot

33

make a partial computation into a non-computation. For A3, we are not chang-
ing s or increasing |C| to 4n+ 1, and if this improvement completes a rejecting
computation of U , then |C| ≤ 2n and hence s = 0 by A1. A7 is satisfied by
construction. For A8, if we are in the first case, there is no problem because we
are not adding any reply. If we are in the third case, then all the replies were
already present and satisfying A8 in the chosen predecessor of (i, j). If we are in
the second case, and A8 was true before the improvement, then we only need to
check what happens if we are adding βi,j as one of the replies mentioned in A8
and the node (i′, j′) mentioned in A8 is in the neighbourhood of (i, j); but in
this case A8 is preserved, by B4 and B5 at (i′, j′) in the unimproved labelling.

For B2, the first case is clear; in the second case, all predecessors of (i, j)
are outside Pi,j so have a question mark at the end of their label and are thus
automatically consistent with the new reply; in the third case it follows from
B2 at the chosen predecessor in the unimproved labelling. B3 is not relevant
because the extended neighbourhood of (i, j) does not contain a node with an
odd pseudo-score and a node with a larger even pseudo-score. B4 is unchanged
and B5 is preserved in the second case and irrelevant in the other cases.

The LI instance – improving an odd score to an even score. This
corresponds to one step in a backward pass of our exponential algorithm; the
effect it has on scores is illustrated in Figure 4. Suppose that we have a local

i− 1 i i+ 1

j − 1

j

j + 1

2m+ 1

2m+ 1

2m+ 1

2m+ 1

2m+ 1

2m+ 2

2m + 2

2m + 2

2m + 2

Ii,j

=⇒

i− 1 i i + 1

j − 1

j

j + 1

2m+ 1

2m+ 1

2m+ 1

2m+ 1

2m+ 2

2m+ 2

2m+ 2

2m+ 2

2m+ 2

Figure 4: Improving an odd score at (i, j).

labelling w in which (i, j) scores 2m + 1, all the neighbours of (i, j) are well-
formed, and all of its successors score 2m+2. By condition B1 of well-formedness
at (i, j), all its predecessors must also score 2m+1, and as before since B1 holds
at every other node in the neighbourhood of (i, j), the only possible pseudo-
scores in the extended neighbourhood of (i, j) are also 2m+ 1 and 2m+ 2. B1
is still true at all nodes in the neighbourhood after an improvement.

The label wi,j of (i, j) must be a forwards configuration

〈βi,j , s, y, C〉 = 〈βi,j , s, y, q1, r1, q2, r2, . . . , qk, z〉

for some 0 ≤ k ≤ 4n, where the last entry z is either ? or some reply rk (or
k = 0, in which case C is empty).

Case 1: suppose that s 6= 0. By A1 and A3, |C| > 2n and U accepts (s, y).
There are two subcases: either k < 4n or k = 4n.

(1a) Consider the case k < 4n. In this case we can always improve the score
at (i, j). If (i, j) is at the bottom-right corner (i.e., i = l − 1, j = h − 1), then

34

by A7 and the fact that the bottom-right corner is reachable from anywhere, z
must be a non-? value rk. Let qk+1 be the next oracle query – depending on
k, this may come from a computation of U , g′ or N (but always exists, since
k < 4n). We improve the label at (i, j) to the backwards configuration

〈βi,j , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1〉.

Otherwise, (i, j) has at least one successor, and its successors are labelled with
backward configurations. Pick the least successor (i′, j′) of (i, j) and consider
its label. By B3, since k < 4n, it must have the form:

〈βi′,j′ , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1〉.

The improvement function changes the label at (i, j) to

〈βi,j , s, y, q1, r1, q2, r2, . . . , qk, rk, qk+1〉

(note that rk here might be replacing a question mark in the original label).
A1 and A3 are irrelevant here. A2 and A4–A6 either hold by construction (if

we are in the corner) or carry over from the successor of (i, j). A7 is irrelevant,
and A8 is either irrelevant or, if we are replacing a question mark with a reply
rk, carries over from the successor. B2 and B4 are clear. For B3, notice that
before the improvement, by B1 the only pseudo-scores possible in the extended
neighbourhood of (i, j) are 2m+1 and 2m+2. The labels with odd pseudo-score
2m+ 1 have the form 〈. . . , qk, z〉 with k < 4n, so the situation described in B3
cannot occur. For B5, if we replaced a question mark at (i, j) with a reply rk,
then by A7 the query qk must have been about some other node than (i, j).

(1b) Consider now the case k = 4n. Suppose first that (i, j) is the bottom-
right corner (l − 1, h− 1). Then as above z is not ?, and by A2 and A4-A6 we
have complete computations of U , g′ and N on (s, y) as well as of U on (s+1, y′)
where y′ is the output of N on input (s, y). If U rejects (s+ 1, y′) or s = a then
it is not possible to improve the score at (i, j) and in fact such a labelling will
yield a witness to our instance of LI; see below. Otherwise, the score at (i, j)
can be improved as follows. Let

q′1 = q3n+1, r
′
1 = r3n+1, q

′
2 = q3n+2, r

′
2 = r3n+2, . . . , q

′
n = q4n, r

′
n = r4n

and let q′n+1 be the first oracle query that g′ makes on input (s + 1, y′). The
new label at (i, j) is defined to be

〈βi,j , s+ 1, y′, q′1, r
′
1, q

′
2, r

′
2, . . . , q

′
n, r

′
n, q

′
n+1〉.

Suppose finally that (i, j) is not the bottom-right corner. Then by B3 each
successor (i′, j′) of (i, j) has a label of the form

〈βi′,j′ , s+ 1, y′, q′1, r
′
1, q

′
2, r

′
2, . . . , q

′
n, r

′
n, q

′
n+1〉

and we give (i, j) the new label

〈βi,j , s+ 1, y′, q′1, r
′
1, q

′
2, r

′
2, . . . , q

′
n, r

′
n, q

′
n+1〉.

For (i, j) in the bottom-right corner, A1 holds because in the new label,
|C| > 2n and we have increased s by one; A2 holds by construction; A3 holds in

35

the new label because the computation of U that we preserve is accepting; A4–
A8 are trivial. For (i, j) not in the bottom corner, A1–A8 hold trivially because,
except for the first component βi,j , the new label is a copy of an existing one.
In both cases, B2 is preserved because the new score at (i, j) is 2m + 2; B3
holds by construction and by B2 in the old labelling; B4 and B5 are preserved
straightforwardly.

Case 2: Suppose that s = 0. By A1, y = 0.
(2a) C ↾ [1, 2n] is not yet a complete computation of U(0, 0). Then we

improve as in case (1a) above. We do not change s or y so A1 and A3 are
preserved; the other conditions are as in (1a).

(2b) C ↾ [1, 2n] is an accepting computation of U(0, 0). We improve just as
in case 1.

(2c) C ↾ [1, 2n] is a rejecting computation of U(0, 0). Then by A3, |C| ≤ 4n.
If |C| < 4n we improve as in (2a) above. But if |C| = 4n, then we must be at the
bottom-right corner, since by B3 any successor of (i, j) scoring 2m+2 must also
contain a rejecting computation of U(0, 0), contradicting A3. Similarly there is
no way to improve this labelling at (i, j).

Obtaining the desired sequences q̄ and r̄. By construction, the only pos-
sible witnesses to our instance of LI are certain well-formed local labellings of
the bottom-right corner of the graph in which all nodes in the neighbourhood of
(l−1, h−1) have odd scores but the improvement function does not increase the
score at (l−1, h−1) to the next even number. This is because the improvement
function increases the score correctly in all other cases.

The possible labellings of (l−1, h−1) that may occur in such a witness have
the following forms (where we make heavy use of the fact that our labelling is
well-formed):

• 〈βl−1,h−1, 0, 0, q1, r1, q2, r2, . . . , q2n, r2n〉 where q1, r1, q2, r2, . . . , qn, rn is a
rejecting computation of U on (0, 0);

• 〈βl−1,h−1, s, y, q1, r1, q2, r2, . . . , q4n, r4n〉 where q3n+1, . . . , r4n is a rejecting
computation of U on (s+1, N(s, y)), for some s < a – this gives a solution
to the LLS problem, since by condition A3 of well-formedness, U accepts
(s, y) with the listed replies;

• 〈βl−1,h−1, a, y, q1, r1, q2, r2, . . . , q4n, r4n〉 – this has the maximum score,
and always gives a solution, since s = a and U accepts (a, y), again by A3.

In each case we have a pair (s, y) and a set of oracle queries and replies such
that (s, y) is a solution to our LLS problem simulated with this oracle, and such
that g′ run on this solution with this oracle is rejecting, by A8. Hence if we
define Aq̄,r̄ to be the oracle built out of these queries and replies, we will have
Deff (Aq̄,r̄, g(Aq̄,r̄, s, y)), as required. �

5 The ∀Σ̂b+
1 consequences of V

1
2

To prove the hard direction of Theorem 7, we need to show that ∀Σ̂b+1 (V 1
2) is

reducible to LI, provably in PV+. This is proved by a similar construction to
the last section. We will need to be careful about what we mean by “polynomial

36

time” and “polynomial size”. Generally we will have some collection C of con-
stants that we are using as parameters. “Polynomial” will mean of size |c|O(1)

for some first-order constant from C or of size ||C|l|
O(1) or ||C|b|

O(1) for some
second-order constant from C.

We will use the same definition of a circuit as in Section 4, but in this
section the transition function will be an L2 term (that is, a polynomial time
oracle machine) and the length, height and bound l, h, b will be given by simple
L2 terms. As before these will usually have some extra constant symbols as well.
We still need some induction over universal formulas to reason about circuits, so
will take T 1+

2 to be our base theory (where in the linear case we had E1−IND).
However we will be able to weaken this to PV+ at the end of this section.

Let C be a set of new first- and second-order constant symbols, and let A(C)
contain a constant symbol for each circuit (f, l, h, b) definable from C.

Lemma 24 V 1
2 is conservative over T 1+

2 + {Iterf (αf) : αf ∈ A(C)} for Σ̂b+1
sentences in the language L2(C).

Proof As for Lemma 19. Take an L2(C,A(C)) structure M which is a model
of T 1+

2 + {Iterf (αf) : αf ∈ A(C)} but not of ∃y < t φ(y), where φ is an open
L2(C) formula, t is a simple, closed L2(C) term and V 1

2 ⊢ ∃y< t φ(y). We may
assume that M contains no second-order objects except those named by C and
A(C). Extend M to a bigger structure M+ by adding to M every sequence that
is term-definable in M . Then we claim that every circuit in M+ already has a
computation in M+.

This is shown as in the proof of Lemma 19. The important difference is that
in that proof we first considered an L1(C,A(C)) term t(x) with x the only free
variable, and showed that it could be converted to a finite “arithmetic circuit”
with gates for the constant symbols from C and A(C), evaluating t(x) for all x
less than some bound c; we then went on to replace the gates for the symbols
α from A(C) with subcircuits simulating the computation of α. The equivalent
thing here is to take an L2(C,A(C)) term t(x) with x the only free variable, and
first show that it can be converted to a polynomial size (in the above sense)
circuit E with first-order constants from C as parameters and gates for second-
order objects in C and A(C) – but this is clear, since such a t is just a description
of a polynomial time machine with oracles for C and A(C). Given such an E,
we can write down the transition function for a circuit F in which each gate
for a constant α ∈ A(C) in E is replaced with a complete circuit simulating a
computation of α (we also replace all other gates in E with large, dummy circuits
so that the structure of F is kept uniform). Then given any computation of F ,
we use Π̂b+

1 -IND first to show that each simulation of an α ∈ A(C) computes
the same values as α itself does, and then that the values computed in E are
matched by those at corresponding points in F .

Finally, by constructing computations to eliminate quantifiers, we can show
that such an M+ is also a model of full bounded comprehension, and it follows
that it also satisfies all the bounded consequences of V 1

2 . �

We will use a somewhat nonstandard, “iterative” definition of PLS. This
is completely analogous to the modified version of LLS used in the proof of
Theorem 23. It is easily seen to be equivalent to the usual definition.

37

Lemma 25 Let ∃y<t φ(y) be an Σ̂b+1 formula in L2(C). If T 1+
2 + {Iterf (αf) :

αf ∈ A(C)} proves ∃y < t φ(y), then there is an L2(C) definable circuit D, an
L2(C, αf) PLS problem P (with no parameters except ones that are definable
from C and αf) and L2(C, αf) terms g, h such that, provably in T 1+

2 , if (i, x)
is a solution to P (αf) then either g(i, x) witnesses that IterD(αf) is false or
h(i, x) witnesses that ∃y<t φ(y).

Proof Just as for Lemma 22. �

Theorem 26 ∀Σ̂b+1 (V 1
2) is reducible to LI, provably in T 1+

2 .

Proof The construction of an LI instance is exactly the same as in the proof
of Theorem 23, except that now the length n of our straight-line programs is a
polynomial (in the logarithm of the parameters) rather than a constant. This
is not a problem, since the smash function is available so we can still bound the
size of the scores.

A more subtle difference is that in that theorem we just wanted to show that
certain consequences of V 1 were provable from V 0 + LI. Here we want to show
something stronger, that the problem of witnessing a ∀Σ̂b+1 consequence of V 1

2 ,
considered as a search problem, is effectively reducible to solving LI, provably
in T 1+

2 .
So suppose that V 1

2 ⊢ ∀X̄∃v < t(X̄)φ(X̄, v). Then we may replace the
quantified variables X̄ with some constant symbols C̄ and apply Lemmas 24 and
25 to get an L2(C) PLS problem P , a tuple of L2(C) terms f(i, j, x1, x2, x3), l, h, b
and two L2(C) term g1(α, s, y) and g2(α, s, y) such that

T 1+
2 ⊢ ∀α, s, y, “(s, y) is a solution to P (α)”

→ [¬Deff (α, g1(α, s, y)) ∨ φ(C̄, g2(α, s, y))]

where ¬Deff (α, u) expresses that u is a pair 〈i, j〉 witnessing that α is not a
correct computation of the circuit defined by f , l, h and b, and where we assume
that g2 is implicitly bounded by t(C̄).

As in the proof of Theorem 23, we can now replace α with an “oracle” Az
defined in terms of some first-order string w of oracle queries and replies, to get,
rearranging things slightly,

T 1+
2 ⊢ ∀z, s, y, “(s, y) is a solution to P (Az)” ∧ Deff (Az , g1(Az , s, y))

→ φ(C̄, g2(Az , s, y)).

Now to get our reducibility result, it suffices to give an instance of LI which is
polynomial time definable from the constants C̄ and from any solution of which
we can extract z, s, y satisfying the conjunction on the left hand side of the
above implication. But this is exactly what we get from the construction in the
proof of Theorem 23, adapted for L2. �

Finally, we can use a characterization of the ∀Σ̂b+1 consequences for T 1+
2 to

weaken our base theory from T 1+
2 to PV+.

Theorem 27 ∀Σ̂b+1 (V 1
2) is reducible to LI, provably in PV+.

38

Proof We will show how the proof of Theorem 26 can be adapted to give this
stronger result. In the last paragraph of that proof, we obtained the following:

T 1+
2 ⊢ ∀z, s, y,Φ(z, s, y) → φ(C̄, g2(Az, s, y)).

where we have written Φ(z, s, y) to express the quantifier free, L2(C̄) formula

“(s, y) is a solution to P (Az)” ∧ Deff (Az, g1(Az , s, y)).

This is a ∀Π̂b
1 sentence, provable in T 1+

2 . Hence by the PLS witnessing theorem
([7] – see for example [12] for a strengthened version which works over PV), there
is a PLS problem Q = (NQ, UQ) in the language L2(C̄), which takes (z, s, y) as
parameters, such that

PV+ ⊢ ∀ z, s, y, r, x, “(r, x) is a solution to Q((z, s, y))” ∧ Φ(z, s, y)

→ φ(C̄, g2(Az , s, y)).

So to complete the proof it is sufficient to alter the LI instance constructed in
the proof of Theorem 26 in such a way that from any solution w of our new
instance, not only can we recover z, s and y satisfying Φ, but we can also recover
a solution (r, x) to the PLS problem Q run with parameters (z, s, y).

Let us write I for the LI instance from Theorem 26. It has a graph G, which
is an l × h grid; it has scoring, initialization and improvement functions S, E
and I; the labels are bounded by b and the scores go up to c. We may assume
that solving the PLS problem Q = (NQ, UQ) consists in finding witness r, x to
a sentence

¬UQ(0, 0) ∨ ∃r, x<t (UQ(r, x) ∧ ¬UQ(r + 1, NQ(r, x))) ∨ ∃x<tUQ(t, x)

(where we omit the parameter (z, s, y) of UQ and NQ) and that the range of NQ
is bounded by t. All numbers, functions and sets can be taken to be definable
in L2(C̄).

We will define a new instance J of LI. Essentially this will be an isomor-
phic copy of I, modified so that once a solution to I is found, this solution is
propagated to every node of the graph, and then NQ is iterated at each node
separately, using the solution as a parameter, until a solution to Q is found.

The graph and labels. The underlying graph of J is just G. The labels
are triples (ω, i, x), where ω < b has the form of a label from I, i is from
[0, t] ∪ {−1} and x is from [0, t) ∪ {−1}. The labels in J can have one of two
forms. “First-stage” labels have the form (ω,−1,−1); their pseudo-score is the
pseudo-score of ω. “Second-stage” labels have the form (ω, r, x) with r, x ≥ 0;
their pseudo-score is (the pseudo-score of ω) + r + 1.

The initialization function assigns to every node the label (〈〉,−1,−1).
Let w be a local labelling of a point (i, j) and its neighbours, and let (ω, r, x)

be the label of (i, j) under w. Recall that ω has the form

〈β, s, y, q1, r1, . . . , qk/rk/?〉.

We will write sω and yω for the elements s and y from this sequence, and zω for
the sequence of complete pairs of oracle queries and replies.

39

The scoring function. We can now give the conditions for w to be well-
formed at (i, j). We will use the definitions A1-A8 and B1-B5 from the proof of
Theorem 23, suitably adapted for the L2 setting. If w is well-formed at (i, j),
the score at (i, j) is just the pseudo-score of (ω, r, x).

If (ω, r, x) is first-stage, w is well-formed at (i, j) if B1 holds, A1-A8 hold
(for ω), B2-B5 hold restricted to only the nodes in the neighbourhood of (i, j)
with first-stage labels (for the first components ω′ of their labels), and lastly
the extra condition B6 holds:

B6. In the neighbourhood of (i, j), no node with a second-stage label can have
a successor with a first-stage label; and no two nodes with respectively
first- and second-stage labels can share the same pseudo-score.

If (ω, r, x) is second-stage, w is well-formed at (i, j) if B6 holds and ω also
satisfies Φ(zω, sω, yω) and U((zω, sω, yω), r, x).

The improvement function. We will first consider improving a first-stage
label. Suppose that w is a labelling in which (i, j) scores an even number 2m,
in which all the neighbours of (i, j) are well-formed, and in which all the prede-
cessors of (i, j) score 2m+ 1. By B1, all the successors of (i, j) score 2m, and
in fact the only pseudo-scores possible in the extended neighbourhood of (i, j)
are 2m and 2m+ 1. Thus by B6 all labels in the extended neighbourhood are
first-stage. Therefore we can improve the label at (i, j) by using the improve-
ment function of I, applied just to the first components of the labels; this will
always improve scores correctly.

Now suppose that (i, j) scores an odd number 2m+1, its successors all score
2m+ 2, and all its neighbours are well-formed. Then by B1 all its predecessors
score 2m+ 1, and 2m+ 1 and 2m+ 2 are the only pseudo-scores appearing in
the extended neighbourhood. By B6 all the predecessors of (i, j) are first-stage.

If (i, j) has no successor, or has only first-stage successors, then the im-
provement function is again the improvement function of I applied to first
components. This will improve scores correctly, except in the case that these
components form a local labelling for which the improvement function of I fails
itself to improve the score in I. But in this case, this labelling is a solution
of I, so (i, j) must be at the bottom-right corner of G and the label of (i, j)
must have the form (ω,−1,−1) satisfying Φ(zω, sω, yω) – note that although
these properties were proved in Theorem 26 in the context of a stronger base
theory, they really only need PV+. The improvement in this case is to replace
this label with (ω, 0, 0). If this is not a valid second-stage label, it can only be
because ¬UQ((zω, sω, yω), 0, 0), which gives us a solution to the PLS problem
Q, as required.

If (i, j) has a second-stage successor, then by B6 all of its successors are
second stage. The improvement is simply to replace the label of (i, j) with the
label of its least successor.

Finally, the improvement function for a second-stage label (ω, r, x) with r < t
is to replace the label with (ω, r+1, x′) where x′ = NQ((zω, sω, yω), r, x). If this
improvement changes a labelling from being well-formed into not being well-
formed, it must be because UQ((zω, sω, yω), r, x) but ¬UQ((zω, sω, yω), r+1, x′),
giving us a solution to the PLS problem Q. If r = t, then no improvement is
possible, but the labelling must already contain a solution to the PLS prob-
lem. �

40

6 Postponed proofs

6.1 From Section 1

We sketch how our results, formulated officially in terms of theories about se-
quences, can be transferred to the more common framework where the second-
order sort consists of sets. In this subsection, for any theory T axiomatized
by one of the standard schemes mentioned above, we let Tseq, Tset denote the
sequence and set versions of T , respectively.

The possibility of moving back and forth between results about Tseq and
Tset, for all T we are interested in, is essentially due to the existence of suitably
well-behaved interpretations set of Tset in Tseq and seq in the opposite direction.
These interpretations should be chosen so that they do not change the quantifier
complexity of sentences (at least on a level meaningful to us) and have the
additional property that Tseq ⊢ φ↔ ((φ)seq)set and Tset ⊢ φ↔ ((φ)set)seq for all
relevant φ.

Consider first the linear setting, i.e. Theorem 8. Here, we do not count
alternations of first-order quantifiers, so we have a rather wide choice of set and
seq: for example, a set is a 0-1 valued sequence, while a sequence is a set of
ordered pairs with the existence and uniqueness properties. Assume that

V 1
set ⊢ ∀X̄ φ(X̄),

where φ is bounded first-order. This implies

V 1
seq ⊢

(

∀X̄ φ(X̄)
)set

,

and hence, by our Theorem 8 for sequence theories,

V 0
seq ⊢

(

∀X̄ φ(X̄)
)set

∨ ¬LI.

We can then get

V 0
set ⊢

(

(

∀X̄ φ(X̄)
)set

)seq

∨ (¬LI)seq,

which is the same as
V 0
set ⊢ ∀X̄ φ(X̄) ∨ (¬LI)seq

or
V 0
set + (LI)seq ⊢ ∀X̄ φ(X̄).

The principle (LI)seq is a little awkward, as there are objects naturally viewed
as sets but which we have formally coded as sequences (e.g. the graphs in the
original LI principle of Section 1.3), which sequences we now have to interpret
as (different) sets, via seq. However, it is easy to formulate an equivalent version
of LI which would be more natural in the context of V 0

set. This version is then
our “official” principle characterizing the ∀ΣB0 consequences of V 1

set over V 0
set.

The polynomial setting is similar, except that now we need to take into
account first-order quantifier complexity, so we have to be more careful with
our choice of interpretations. Here, sequences should not be regarded as sets
of ordered pairs, but referred to by means of their bit-graphs, where the bit-
graph of a sequence X is a relation X̃ such that X̃(i, j) holds if the j-th bit of
X(i) is 1. Contexts like X(i) = k can then be translated as ∀j < |k| (X̃(i, j) ↔

41

bit(k, j) = 1). This ensures that the translation of a Σ̂b+i formula in the language

of sequences remains Σ̂b+i in the language of sets.
A separate issue is raised by our decision not to include second order equality

in our languages, contrary to standard practice. In the polynomial setting, this
is justified by the fact that we are not really interested in ∀Σ̂b+1 with second-order
=, because equality of second order objects is not a ∆b

1 notion (it is Πb
1). In the

linear setting, the usual V 0 (with second-order =) contains the extensionality
axiom, so every ∀ΣB0 statement with second-order = is equivalent to a ∀ΣB0
statement without it, obtained by replacing each occurrence of = by its obvious
A1 definition.

6.2 From Section 3

We prove the remaining direction of Lemma 13, that U1
2 is ∀Σ1,b

1 conservative
over Γ. By a functional we mean a function which takes some arguments (which
may be first- or second-order) and outputs a second-order object.

Definition 28 Extend our language by adding, for each triple f(i, x, Z̄), l(Z̄),
b(Z̄) of L2 terms (with only the parameters shown and with l and b simple), the
second-order function symbol Θf,l,b(Z̄). Extend Γ by adding axioms expressing
that Θf,l,b(Z̄) is the iterator of f(i, x, Z̄) with length l(Z̄) and bound b(Z̄). Note
that every PSPACE function (formalized as in the remark after Definition 12)
with both input and oracles given by Z̄ can now be written as a term G(Z̄) of
the form Θf,l,b(Z̄)(l(Z̄) − 1). Let us call terms of this form PSPACE terms.

Further extend the language and the theory Γ by adding, for each
PSPACE term G(Z̄, i), a second-order function symbol ΦG(Z̄, a) with axioms
|ΦG(Z̄, a)|l = a, |ΦG(Z̄, a)|b = b(Z̄), where b(Z̄) is the bound appearing in the
iterator used in G, and ΦG(Z̄, a)(i) = G(Z̄, i). We will call the terms ΦG(Z̄, a)
the PSPACE functional terms; note that every PSPACE functional can be writ-
ten this way.

We will call the extended theory PSF.

Note that PSF is a conservative extension of Γ and that it contains Herbrand
functions for every axiom of Γ, so that any subset of a model of Γ which is closed
under PSPACE functional terms is also a model of Γ.

Lemma 29 In PSF, every PSPACE term G(X̄) is equivalent to a PSPACE
term defined by iterating a polynomial time function which makes exactly one
oracle query to X̄ at each step of the iteration.

Proof Suppose G is defined by iterating a polynomial time function g with
oracle X̄ for l steps with size bound b. Let t be the maximum running time of g
on inputs bounded by b. We can simulate l iterations of g using one iterator of
length lt, in the obvious way, as in the proof of Lemma 15. This iterator makes
at most one oracle call at each step, since g does; and we can add a dummy call
if necessary.

To complete the proof, fix values for X̄ and let W be the iterator defining
G for these inputs and V be the iterator in our length lt simulation. For each
i < l, open induction is enough to show that our simulation of g recorded in
V (it) . . . V ((i+ 1)t− 1) is a correct computation of g, and another use of open
induction then shows that the values of g recorded in V (t − 1) . . . V (lt − 1)
correspond to the values computed in W (1) . . .W (l). �

42

Lemma 30 In PSF, the composition of two PSPACE functionals is already a
PSPACE functional. That is, if G(X̄, Y) is a PSPACE term and we replace
queries “Y (i) = ?” with queries “H(X̄, i) = ?” for some PSPACE term H,
then the resulting function K(X̄) = G(X̄, λi.H(X̄, i)) is definable by a PSPACE
term.

Proof Similar to the proof of Lemma 29. �

Lemma 31 In PSF, any first-order, bounded formula in the language L2 is
equivalent to an open formula and in particular to one of the form G(X̄) = 1
for some PSPACE term G.

Proof Standard PSPACE argument, formalized using Lemma 30. �

Lemma 32 In PSF, let Φ(X, a, j) be a parametrized family of PSPACE func-
tionals, given by some PSPACE term G(X, i, j) (there may also be some other
parameters which we do not show). Let t be a simple term. Then there is
a parametrized family of PSPACE functionals IterΦ(W,a, j) such that for all
sequences W of length a and for all parameters j < |t(a)|,

1. IterΦ(W,a, 0) = W

2. IterΦ(W,a, j + 1) = Φ(IterΦ(W,a, j), a, j).

In other words, the set of PSPACE functionals is closed under polylogarithmic
iteration.

Proof This is a polylogarithmic depth version of Lemma 30. Let us write
G(X, i, j) as Gj(X, i). We can think of this as being computed by a machine of
the form described in Lemma 29, which takes a parameter i < a, has bound b
and runs for some number l of iterations (where b and l can be taken to be the
same for all the machines Gj , once we fix W and a), at each step making exactly
one query to X . IterΦ(W,a, j) has to simulate an array Gj−1, Gj−2, . . . , G0 of
such machines, where at each step of a machine, any query “X(i) = ?” is
replaced with a query to the next machine down. So for each 0 < k < j, each
step of Gk requires a full run of l steps of Gk−1 (and so on, recursively, down
the array).

We will use three numbers y, v and i to keep track of our progress in this
simulation. y is uniquely decomposeable as a sum y = lj−1yj−1 + . . .+ ly1 + y0,
where each yk is the current position in the simulation of machine Gk. v codes
a tuple vj−1, . . . , v0, where vk is the value at the current step in the iterator of
Gk. i codes a tuple ij−1, . . . , i0, where ik is the parameter for the current run
of Gk. Note that we may bound v by bj and i by aj .

The simulation is given by iterating lj times a function f(y, 〈v, i〉) which
given a configuration 〈v, i〉 of all machines at position y computes the configu-
ration 〈v′, i′〉 for position y + 1.

The details are standard and are left to the reader. Open induction is enough
to prove that the functional has the required properties. �

Lemma 33 U1
2 is ∀Σ1,b

1 -conservative over PSF. Lemma 13 follows, since PSF
is a conservative extension of Γ.

43

Proof We will use a standard model-theoretic form of the witnessing argu-
ment, see e.g. [19]. Let M be any model of PSF. We will first extend M in a

Π1,b
1 -elementary way to a structure N with the property that, for any PSPACE

term G, if N |= ∀X̄ ∃Y < t(X̄)G(X̄, Y) = 1 then this is witnessed in N by

some PSPACE functional. The induction step in an instance of Σ1,b
1 -LIND has

this form, so in N all induction steps will be uniformly witnessed by PSPACE
functionals, and by Lemma 32 we can combine these to give one functional wit-
nessing any (polylogarithmic) number of induction steps, hence showing that
N |= U1

2 .
Enrich the language of PSF with names for every first- and second-order

element of M , together with a new countable set C0, C1, . . . of second-order
constant symbols. Enumerate as θ0, θ1, . . . all ∀Σ1,b

1 sentences in this language,
where each θi has the form ∀X̄ ∃Y <t(X̄)G(X̄, Y) = 1, for some G, t and some
arity of the tuples. To make an argument easier below, without loss of generality
we assume that G does not directly query |Y |b or |Y |t.

Let T0 be the Π1,b
1 diagram of M ′ in our enriched language (without the

new constant symbols C0, C1, . . .). We will construct N by building a chain
T0 ⊆ T1 ⊆ . . . of universal, consistent theories. Suppose we have constructed up
to Ti. For Ti+1, consider the sentence θi ≡ ∀X̄ ∃Y < t(X̄)G(X̄, Y) = 1. There
are two cases.

Case 1: Ti ⊢ ∀X̄ ∃Y <t(X̄)G(X̄, Y) = 1. In this case, we put Ti+1 := Ti.
Case 2: Ti 6⊢ ∀X̄ ∃Y <t(X̄)G(X̄, Y) = 1. In this case, we define Ti+1 to be

Ti + {∀Y < t(C̄)G(C̄, Y) 6= 1} where C̄ is a tuple of some of the new constant
symbols C0, C1, . . ., chosen so that none of these symbols have already appeared
in T0, . . . , Ti or in θi. Note that Ti+1 is consistent and universal.

Now let T be the union of the chain T0 ⊆ T1 ⊆ Then T is consistent,
so has a model N . T is universal, so we may assume without loss of generality
that all elements of N are named by closed terms in the language. Hence the
first-order elements of N are precisely the closure of the elements of M and
the new constants under PSPACE terms, and similarly for the second-order
elements and PSPACE functionals.

Now let G(X̄, Y) be any PSPACE term with parameters fromN and suppose
N |= ∀X̄ ∃Y < t(X̄)G(X̄, Y) = 1. By the previous paragraph, we may assume
that the parameters in G are actually either from M or are named by the new
constants. Hence this sentence is equivalent to one of the sentences θi. It is true
in N and hence must be consistent with T , so in the construction of Ti+1 we
must have been in case 1. So Ti ⊢ ∀X̄ ∃Y <t(X̄)G(X̄, Y) = 1. By Herbrand’s
theorem and Lemma 30, since Ti is universal, there are PSPACE functionals
ΦG1

, . . . ,ΦGk
, for some k ∈ N, such that

Ti ⊢ ∀X̄
k

∨

j=1

G(X̄,ΦGj
(X̄, t(X̄))) = 1.

Let H be the PSPACE functional which tests the sequences Yj := ΦGj
(X̄, t(X̄))

in turn for j = 1, . . . , k and outputs the first Yj which satisfies G(X̄, Yj). Then

H is the PSPACE functional witnessing our ∀Σ1,b
1 sentence, as required.

To show that N is a model of U1
2 , let G(Y, j) be any PSPACE term (possibly

with other parameters), let a ∈ N , let t be a simple term, and suppose that

N |= ∃Y <aG(Y, 0) ∧ ∀j< |t(a)| [∃Y <aG(Y, j) → ∃Y <aG(Y, j + 1)].

44

Let W < a be such that G(W, 0) and rearrange the second conjunct as

∀j< |t(a)| ∀Y <a ∃Y ′<a [G(Y, j) → G(Y ′, j + 1)].

Then by the construction ofN there is a PSPACE functional F , with parameters
in N , such that in N

∀Y <a [G(Y, j) → G(F (Y, j, a), j + 1)].

By Lemma 32 we may iterate this functional to get a PSPACE functional
IterF such that IterF (W, 0, a) = W and for all j < |t(a)|, IterF (W, j + 1, a) =
F (IterF (W, j, a), j, a).

Open induction is now enough to show that G(IterF (W, j, a), j) holds for all

j < |t(a)|. This gives us Σ1,b
1 -LIND. �

6.3 From Section 4

We prove Lemma 21: Let φ be an open L1 formula, t an L1 term and suppose
that E1−IND ⊢ ∀X̄ ∃y < t(X̄)φ(X̄, y). Then witnessing the right hand side is
provably reducible to solving an LLS problem. That is, there is an LLS problem
P = 〈C,N, s〉 and an L1 term g such that

E1−IND ⊢ ∀X̄, z [“z is a solution to P (X̄)” → g(X̄, z) < t(X̄)∧φ(X̄, g(X̄, z))].

Proof The proof is a rather standard witnessing argument, based on the one
relating T 1

2 and PLS in [7]. E1−IND may be formulated as a sequent calculus
with some quantifier-free initial sequents corresponding to the basic axioms,
rules for bounded quantifier introduction and the E1-induction rule:

Γ, ψ(c),−→ ψ(c+ 1),∆

Γ, ψ(0) −→ ψ(t),∆

for ψ ∈ E1.
By free-cut elimination, every sequent Γ −→ ∆ consisting of E1 formulas

and provable in this system has a proof in which only sequents of (at most) E1

formulas appear. By induction on the length of a free-cut free proof, we show
that Γ −→ ∆ can be provably witnessed by an LLS problem, in the following
strong sense: there is an LLS problem P = 〈C,N, s〉 such that:

• inputs to P are of the form 〈X̄, w̄〉 where X̄ are the free variables of
Γ −→ ∆ and w̄ is a tuple of the same length as the number of formulas in
Γ,

• E1−IND proves that conditions (1) and (2) from Definition 20 are always
satisfied,

• E1−IND proves that solutions v to P on input 〈X̄, w̄〉 have the property
that if w̄ consists of witnesses for the existential quantifiers of all formulas
from Γ(X̄), then v witnesses the existential quantifiers in some formula
from ∆(X̄).

45

Obviously, this will suffice to prove the theorem.
The steps for initial sequents, propositional and structural rules other than

cut, and the ∃-introduction rules are straightforward, while the ∀-introduction
rules never appear. Hence, we sketch only the two most interesting cases: cut
and induction, leaving verification of correctness in E1−IND to the reader.

In the case where the last inference in the proof is a cut:

Γ −→ ψ,∆ ψ,Γ −→ ∆

Γ −→ ∆

we have two LLS problems P1 = 〈C1, N1, s1〉 and P2 = 〈C2, N2, s2〉, where P1

takes as input 〈X̄, w̄Γ〉 and produces solutions v such that if w̄Γ witnesses Γ
then v witnesses ψ or some formula in ∆, while P2 takes as input 〈X̄, w̄Γ, wψ〉
and produces solutions u such that if w̄Γ witnesses Γ and wψ witnesses ψ then
u witnesses some formula in ∆.

We define a new problem P = 〈C,N, s〉 witnessing Γ −→ ∆ essentially
by “composing” P1 and P2. Possible solutions to P on input 〈X̄, w̄Γ〉 in the
nontrivial case when w̄Γ does witness Γ will have one of the following three
forms: (i) 〈0, x〉 where x is a possible solution to P1 on input 〈X̄, w̄Γ〉, (ii)
〈1, v, x〉 where x is a possible solution to P2 on input 〈X̄, w̄Γ, v〉 and v witnesses
ψ, (iii) u witnessing ∆. Clearly, this lets us define s(X̄, w̄Γ) as an L1 term
in: s1(X̄, w̄Γ), some common bound on s2(X̄, w̄Γ, v) for possible witnesses v to
ψ, and the maximum of the bounds on the existential quantifiers in ∆. The
neighbourhood function N is defined by (the inputs X̄, w̄Γ are suppressed):

• N(〈0, x〉) is 〈0, N1(x)〉 unless x = N1(x), in which case x witnesses ψ or
∆ and N(〈0, x〉) equals 〈1, x, 0〉 or x, respectively,

• N(〈1, v, x〉) equals 〈1, v,N2(v, x)〉 unless x = N2(v, x), in which case x
witnesses ∆ and N(〈1, v, x〉) is defined to be x,

• N(u) := u for u of type (iii).

Let m1 and m2 be bounds on the cost function for P1 and P2 respectively. To
define the cost function, fix some term m̃(X̄) which dominates m2(X̄, w̄Γ, v)
whenever v is below the bound on the quantifier in ψ(X̄). Then:

• C(〈0, x〉) := C1(x),

• C(〈1, v, x〉) := m1 + C2(v, x),

• C(u) := m1 + m̃ for u of type (iii).

If the last inference in the proof uses the E1-induction rule

Γ, ψ(c) −→ ψ(c+ 1),∆

Γ, ψ(0) −→ ψ(t),∆

and P ′ = 〈C′, N ′, s′〉 is the LLS problem witnessing the upper sequent, we
construct P witnessing the lower sequent as a t(X̄)-long iteration of P ′. P ′

takes as input 〈X̄, c, w̄Γ, wc〉 and produces solutions v such that if w̄Γ witnesses
Γ and wc witnesses ψ(c) then v witnesses ψ(c+ 1) or one of the formulas in ∆.
In the nontrivial case where w̄Γ, w0 witness what they should, possible solutions
to P on input 〈X̄, w̄Γ, w0〉 will have one of the following forms: (i) 〈c, wc, x〉

46

where c < t(X̄), wc witnesses ψ(c) and x is a possible solution to P ′ on input
〈X̄, c, w̄Γ, wc〉, (ii) v witnessing ψ(t) or ∆. The bound s(X̄, w̄Γ, w0) is defined
accordingly. The neighbourhood function is defined by (the inputs X̄, w̄Γ, w0

are suppressed):

• N(〈c, wc, x〉) := 〈c, wc, N ′(c, wc, x)〉 unless x = N ′(c, wc, x); in the latter
case, x witnesses ψ(c+ 1) or ∆, and we let N(〈c, wc, x〉) equal 〈c+ 1, x, 0〉
if c+ 1 < t and x witnesses ψ(c+ 1), or simply x if c+ 1 = t (and hence
x witnesses ψ(t)) or if x witnesses ∆ ,

• N(v) := v for v of type (ii).

To define cost, let m̃(X̄) dominate m′(X̄, c, w̄Γ, wc) for all c < t(X̄) and wc
below the bound on the quantifier in ψ(c, X̄), where m′ is a bound on the cost
function of P ′. Then:

• C(〈c, wc, x〉) := cm̃+ C′(c, wc, x),

• C(v) := tm̃ for v of type (ii). �

References

[1] J. Avigad. Plausibly hard combinatorial tautologies. In P. Beame and
S. Buss, editors, Proof Complexity and Feasible Arithmetics, pages 1–12.
AMS, 1997.

[2] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The rela-
tive complexity of NP search problems. Journal of Computer and System
Sciences, 57(1):3–19, 1998.

[3] A. Beckmann and S. Buss. Polynomial local search in the polynomial
hierarchy and witnessing in fragments of bounded arithmetic. Preprint,
2008.

[4] J. Buresh-Oppenheim and T. Morioka. Relativized NP search problems
and propositional proof systems. In IEEE Conference on Computational
Complexity, pages 54–67, 2004.

[5] S. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[6] S. Buss. Chapter 1: An introduction to proof theory & Chapter 2: First-
order proof theory of arithmetic. In S. Buss, editor, Handbook of Proof
Theory. Elsevier, 1998.

[7] S. Buss and J. Kraj́ıček. An application of Boolean complexity to separation
problems in bounded arithmetic. Proceedings of the London Mathematical
Society, 69:1–21, 1994.

[8] S. Cook. Feasibly constructive proofs and the propositional calculus. Pro-
ceedings of the 7th Annual ACM Symposium on Theory of computing, pages
83–97, 1975.

[9] S. Cook. Bounded reverse mathematics. Plenary lecture for CiE, 2007.

47

[10] S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. 2009.
Book, to appear.

[11] M. Fairtlough and S. Wainer. Hierarchies of provably recursive functions.
In S. Buss, editor, Handbook of Proof Theory. Elsevier, 1998.

[12] F. Ferreira. What are the ∀Σb1-consequences of T 1
2 and T 2

2 ? Annals of Pure
and Applied Logic, 75(1):79–88, 1995.

[13] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic and Computational
Complexity. Cambridge University Press, 1995.

[14] J. Kraj́ıček. On Frege and extended Frege proof systems. In P. Clote and
J. Remmel, editors, Feasible Mathematics II, pages 284–319. Birkhäuser,
1995.

[15] J. Kraj́ıček, A. Skelley, and N. Thapen. NP search problems in low frag-
ments of bounded arithmetic. Journal of Symbolic Logic, 72(2):649–672,
2007.

[16] P. Nguyen. Bounded Reverse Mathematics. PhD thesis, University of
Toronto, 2008. http://www.cs.toronto.edu/~pnguyen/.

[17] P. Pudlák. Fragments of bounded arithmetic and the lengths of proofs.
Journal of Symbolic Logic, 73(4):1389–1406, 2008.

[18] A. Skelley and N. Thapen. The provably total search problems of bounded
arithmetic. Preprint, 2007.

[19] D. Zambella. Notes on polynomially bounded arithmetic. Journal of Sym-
bolic Logic, 61(3):942–966, 1996.

48

